Lecture 7

Relating Denotational and Operational Semantics

Adequacy

For any closed PCF terms M and V of ground type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types:

$$\llbracket \mathbf{fn} \ x : \tau . \ (\mathbf{fn} \ y : \tau . \ y) \ x \rrbracket = \llbracket \mathbf{fn} \ x : \tau . \ x \rrbracket : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$$

but

$$\mathbf{fn} \ x : \tau. \ (\mathbf{fn} \ y : \tau. \ y) \ x \not \! \downarrow_{\tau \to \tau} \mathbf{fn} \ x : \tau. \ x$$

Adequacy proof idea

- 1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.
 - ▶ Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$, $\mathbf{fn} x : \tau . M'$.
- 2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

$$[\![M]\!] \lhd_{\tau} M$$
 for all types τ and all $M \in \mathrm{PCF}_{\tau}$

where the formal approximation relations

$$\lhd_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}$$

are *logically* chosen to allow a proof by induction.

Requirements on the formal approximation relations, I

We want that, for $\gamma \in \{nat, bool\}$,

$$\llbracket M \rrbracket \lhd_{\gamma} M \text{ implies } \underbrace{\forall \, V \, (\llbracket M \rrbracket = \llbracket V \rrbracket \implies M \Downarrow_{\gamma} V)}_{\text{adequacy}}$$

Definition of
$$d \lhd_{\gamma} M$$
 $(d \in [\![\gamma]\!], M \in \mathrm{PCF}_{\gamma})$ for $\gamma \in \{nat, bool\}$

$$n \lhd_{nat} M \stackrel{\text{def}}{\Leftrightarrow} (n \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \mathbf{succ}^n(\mathbf{0}))$$

$$b \lhd_{bool} M \stackrel{\text{def}}{\Leftrightarrow} (b = true \Rightarrow M \Downarrow_{bool} \mathbf{true})$$

$$\& (b = false \Rightarrow M \Downarrow_{bool} \mathbf{false})$$

Proof of: $[\![M]\!] \lhd_{\gamma} M$ implies adequacy

Case $\gamma = nat$.

$$\llbracket M
rbracket = \llbracket V
rbracket$$
 $\implies \llbracket M
rbracket = \llbracket \mathbf{succ}^n(\mathbf{0})
rbracket$ for some $n \in \mathbb{N}$
 $\implies n = \llbracket M
rbracket \lhd_{\gamma} M$
 $\implies M \Downarrow \mathbf{succ}^n(\mathbf{0})$ by definition of \lhd_{nat}

Case $\gamma = bool$ is similar.

Requirements on the formal approximation relations, II

We want to be able to proceed by induction.

 \blacktriangleright Consider the case $M=M_1\,M_2$.

→ logical definition

Definition of

$$f \lhd_{\tau \to \tau'} M \ (f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in \mathrm{PCF}_{\tau \to \tau'})$$

$$f \vartriangleleft_{\tau \to \tau'} M$$

$$\stackrel{\text{def}}{\Leftrightarrow} \forall x \in \llbracket \tau \rrbracket, N \in \mathrm{PCF}_{\tau}$$

$$(x \vartriangleleft_{\tau} N \Rightarrow f(x) \vartriangleleft_{\tau'} M N)$$

Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

ightharpoonup Consider the case $M = \mathbf{fix}(M')$.

→ admissibility property

Admissibility property

Lemma. For all types τ and $M \in \mathrm{PCF}_{\tau}$, the set

$$\{ d \in [\![\tau]\!] \mid d \vartriangleleft_{\tau} M \}$$

is an admissible subset of $[\tau]$.

Further properties

Lemma. For all types τ , elements $d, d' \in [\![\tau]\!]$, and terms $M, N, V \in \mathrm{PCF}_{\tau}$,

- 1. If $d \sqsubseteq d'$ and $d' \lhd_{\tau} M$ then $d \lhd_{\tau} M$.
- 2. If $d \lhd_{\tau} M$ and $\forall V (M \Downarrow_{\tau} V \implies N \Downarrow_{\tau} V)$ then $d \lhd_{\tau} N$.

Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.

ightharpoonup Consider the case $M = \operatorname{fn} x : \tau \cdot M'$.

→ substitutivity property for open terms

Fundamental property

Theorem. For all
$$\Gamma = \langle x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \rangle$$
 and all $\Gamma \vdash M : \tau$, if $d_1 \lhd_{\tau_1} M_1, \dots, d_n \lhd_{\tau_n} M_n$ then $[\![\Gamma \vdash M]\!][x_1 \mapsto d_1, \dots, x_n \mapsto d_n] \lhd_{\tau} M[M_1/x_1, \dots, M_n/x_n]$.

NB. The case $\Gamma = \emptyset$ reduces to

$$\llbracket M \rrbracket \lhd_{\tau} M$$

for all $M \in \mathrm{PCF}_{\tau}$.

Fundamental property of the relations \triangleleft_{τ}

Proposition. If $\Gamma \vdash M : \tau$ is a valid PCF typing, then for all Γ -environments ρ and all Γ -substitutions σ

$$\rho \lhd_{\Gamma} \sigma \Rightarrow \llbracket \Gamma \vdash M \rrbracket(\rho) \lhd_{\tau} M[\sigma]$$

- $\bullet \ \rho \lhd_{\Gamma} \sigma \text{ means that } \rho(x) \lhd_{\Gamma(x)} \sigma(x) \text{ holds for each } x \in dom(\Gamma).$
- $M[\sigma]$ is the PCF term resulting from the simultaneous substitution of $\sigma(x)$ for x in M, each $x \in dom(\Gamma)$.

Contextual preorder between PCF terms

Given PCF terms M_1, M_2 , PCF type τ , and a type environment Γ , the relation $\Gamma \vdash M_1 \leq_{\text{ctx}} M_2 : \tau$ is defined to hold iff

- ullet Both the typings $\Gamma dash M_1 : au$ and $\Gamma dash M_2 : au$ hold.
- For all PCF contexts \mathcal{C} for which $\mathcal{C}[M_1]$ and $\mathcal{C}[M_2]$ are closed terms of type γ , where $\gamma = nat$ or $\gamma = bool$, and for all values $V \in \mathrm{PCF}_{\gamma}$,

$$\mathcal{C}[M_1] \Downarrow_{\gamma} V \implies \mathcal{C}[M_2] \Downarrow_{\gamma} V$$
.

Extensionality properties of \leq_{ctx}

At a ground type $\gamma \in \{bool, nat\}$, $M_1 \leq_{\operatorname{ctx}} M_2 : \gamma \text{ holds if and only if}$ $\forall \, V \in \operatorname{PCF}_{\gamma} \left(M_1 \Downarrow_{\gamma} V \right. \Longrightarrow M_2 \Downarrow_{\gamma} V \right) \,.$ At a function type $\tau \to \tau'$,

 $M_1 <_{\mathrm{ctx}} M_2 : \tau \to \tau'$ holds if and only if

$$\forall M \in \mathrm{PCF}_{\tau} (M_1 M \leq_{\mathrm{ctx}} M_2 M : \tau')$$
.