Lecture 6

Denotational Semantics of PCF

Denotational semantics of PCF

To every typing judgement

$$
\Gamma \vdash M: \tau
$$

we associate a continuous function

$$
\llbracket \Gamma \vdash M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

between domains.

Denotational semantics of PCF types

$$
\begin{array}{cc}
\llbracket n a t \rrbracket \stackrel{\text { def }}{=} \mathbb{N}_{\perp} & \text { (flat domain) } \\
\llbracket b o o l \rrbracket \stackrel{\text { def }}{=} \mathbb{B}_{\perp} & \text { (flat domain) } \\
\llbracket \tau \rightarrow \tau^{\prime} \rrbracket \stackrel{\text { def }}{=} \llbracket \tau \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket & \text { (function domain). } \\
\text { where } \mathbb{N}=\{0,1,2, \ldots\} \text { and } \mathbb{B}=\{\text { true, false }\} .
\end{array}
$$

Denotational semantics of PCF type environments

$$
\llbracket \Gamma \rrbracket \stackrel{\text { def }}{=} \prod_{x \in \operatorname{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad(\Gamma \text {-environments) }
$$

$=$ the domain of partial functions ρ from variables to domains such that $\operatorname{dom}(\rho)=\operatorname{dom}(\Gamma)$ and $\rho(x) \in \llbracket \Gamma(x) \rrbracket$ for all $x \in \operatorname{dom}(\Gamma)$

Example:

1. For the empty type environment \emptyset,

$$
\llbracket \emptyset \rrbracket=\{\perp\}
$$

where \perp denotes the unique partial function with $\operatorname{dom}(\perp)=\emptyset$.
2. $\llbracket\langle x \mapsto \tau\rangle \rrbracket=(\{x\} \rightarrow \llbracket \tau \rrbracket) \cong \llbracket \tau \rrbracket$
3.

$$
\begin{aligned}
& \llbracket\left\langle x_{1} \mapsto \tau_{1}, \ldots, x_{n} \mapsto \tau_{n}\right\rangle \rrbracket \\
& \quad \cong\left(\left\{x_{1}\right\} \rightarrow \llbracket \tau_{1} \rrbracket\right) \times \ldots \times\left(\left\{x_{n}\right\} \rightarrow \llbracket \tau_{n} \rrbracket\right) \\
& \quad \cong \llbracket \tau_{1} \rrbracket \times \ldots \times \llbracket \tau_{n} \rrbracket
\end{aligned}
$$

Denotational semantics of PCF terms, I

$$
\begin{aligned}
& \llbracket \Gamma \vdash \mathbf{0} \rrbracket(\rho) \stackrel{\text { def }}{=} 0 \in \llbracket n a t \rrbracket \\
& \llbracket \Gamma \vdash \text { true } \rrbracket(\rho) \stackrel{\text { def }}{=} \text { true } \in \llbracket b o o l \rrbracket \\
& \llbracket \Gamma \vdash \text { false } \rrbracket(\rho) \stackrel{\text { def }}{=} \text { false } \in \llbracket b o o l \rrbracket \\
& \\
& \llbracket \Gamma \vdash x \rrbracket(\rho) \stackrel{\text { def }}{=} \rho(x) \in \llbracket \Gamma(x) \rrbracket \quad(x \in \operatorname{dom}(\Gamma))
\end{aligned}
$$

Denotational semantics of PCF terms, II

$\llbracket \Gamma \vdash \operatorname{succ}(M) \rrbracket(\rho)$

$$
\stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M \rrbracket(\rho)+1 & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \perp \\ \perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=\perp\end{cases}
$$

$\llbracket \Gamma \vdash \operatorname{pred}(M) \rrbracket(\rho)$

$$
\stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M \rrbracket(\rho)-1 & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)>0 \\ \perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=0, \perp\end{cases}
$$

$\llbracket \Gamma \vdash \operatorname{zero}(M) \rrbracket(\rho) \stackrel{\text { def }}{=} \begin{cases}\text { true } & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=0 \\ \text { false } & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)>0 \\ \perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=\perp\end{cases}$

Denotational semantics of PCF terms, III

$$
\begin{aligned}
& \llbracket \Gamma \vdash \text { if } M_{1} \text { then } M_{2} \text { else } M_{3} \rrbracket(\rho) \\
& \stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M_{2} \rrbracket(\rho) & \text { if } \llbracket \Gamma \vdash M_{1} \rrbracket(\rho)=\text { true } \\
\llbracket \Gamma \vdash M_{3} \rrbracket(\rho) & \text { if } \llbracket \Gamma \vdash M_{1} \rrbracket(\rho)=\text { false } \\
\perp & \text { if } \llbracket \Gamma \vdash M_{1} \rrbracket(\rho)=\perp\end{cases} \\
& \llbracket \Gamma \vdash M_{1} M_{2} \rrbracket(\rho) \stackrel{\text { def }}{=}\left(\llbracket \Gamma \vdash M_{1} \rrbracket(\rho)\right)\left(\llbracket \Gamma \vdash M_{2} \rrbracket(\rho)\right)
\end{aligned}
$$

Denotational semantics of PCF terms, IV

$$
\begin{aligned}
& \llbracket \Gamma \vdash \mathbf{f n} x: \tau . M \rrbracket(\rho) \\
& \quad \stackrel{\text { def }}{=} \lambda d \in \llbracket \tau \rrbracket \cdot \llbracket \Gamma[x \mapsto \tau] \vdash M \rrbracket(\rho[x \mapsto d]) \quad(x \notin \operatorname{dom}(\Gamma))
\end{aligned}
$$

NB: $\rho[x \mapsto d] \in \llbracket \Gamma[x \mapsto \tau] \rrbracket$ is the function mapping x to $d \in \llbracket \tau \rrbracket$ and otherwise acting like ρ.

Denotational semantics of PCF terms, V

$$
\llbracket \Gamma \vdash \mathrm{fix}(M) \rrbracket(\rho) \stackrel{\text { def }}{=} f i x(\llbracket \Gamma \vdash M \rrbracket(\rho))
$$

Recall that $f i x$ is the function assigning least fixed points to continuous functions.

Denotational semantics of PCF

Proposition. For all typing judgements $\Gamma \vdash M: \tau$, the denotation

$$
\llbracket \Gamma \vdash M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

is a well-defined continous function.

Denotations of closed terms

For a closed term $M \in \mathrm{PCF}_{\tau}$, we get

$$
\llbracket \emptyset \vdash M \rrbracket: \llbracket \emptyset \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

and, since $\llbracket \emptyset \rrbracket=\{\perp\}$, we have

$$
\llbracket M \rrbracket \stackrel{\text { def }}{=} \llbracket \emptyset \vdash M \rrbracket(\perp) \in \llbracket \tau \rrbracket \quad\left(M \in \mathrm{PCF}_{\tau}\right)
$$

Compositionality

Proposition. For all typing judgements $\Gamma \vdash M: \tau$ and
$\Gamma \vdash M^{\prime}: \tau$, and all contexts $\mathcal{C}[-]$ such that $\Gamma^{\prime} \vdash \mathcal{C}[M]: \tau^{\prime}$ and $\Gamma^{\prime} \vdash \mathcal{C}\left[M^{\prime}\right]: \tau^{\prime}$,

$$
\begin{aligned}
& \text { if } \llbracket \Gamma \vdash M \rrbracket=\llbracket \Gamma \vdash M^{\prime} \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket \\
& \text { then } \llbracket \Gamma^{\prime} \vdash \mathcal{C}[M] \rrbracket=\llbracket \Gamma^{\prime} \vdash \mathcal{C}[M] \rrbracket: \llbracket \Gamma^{\prime} \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket
\end{aligned}
$$

Soundness

Proposition. For all closed terms $M, V \in \mathrm{PCF}_{\tau}$,

$$
\text { if } M \Downarrow_{\tau} V \text { then } \llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \tau \rrbracket .
$$

Substitution property

Proposition. Suppose that $\Gamma \vdash M: \tau$ and that
$\Gamma[x \mapsto \tau] \vdash M^{\prime}: \tau^{\prime}$, so that we also have $\Gamma \vdash M^{\prime}[M / x]: \tau^{\prime}$.
Then,

$$
\begin{aligned}
& \llbracket \Gamma \vdash M^{\prime}[M / x] \rrbracket(\rho) \\
& \quad=\llbracket \Gamma[x \mapsto \tau] \vdash M^{\prime} \rrbracket(\rho[x \mapsto \llbracket \Gamma \vdash M \rrbracket])
\end{aligned}
$$

for all $\rho \in \llbracket \Gamma \rrbracket$.

In particular when $\Gamma=\emptyset, \llbracket\langle x \mapsto \tau\rangle \vdash M^{\prime} \rrbracket: \llbracket \tau \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket$ and

$$
\llbracket M^{\prime}[M / x] \rrbracket=\llbracket\langle x \mapsto \tau\rangle \vdash M^{\prime} \rrbracket(\llbracket M \rrbracket)
$$

