Lecture 6

Denotational Semantics of PCF

Denotational semantics of PCF

To every typing judgement

$$\Gamma \vdash M : \tau$$

we associate a continuous function

$$\llbracket \Gamma \vdash M \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$$

between domains.

Denotational semantics of PCF types

$$[nat] \stackrel{\text{def}}{=} \mathbb{N}_{\perp}$$
 (flat domain)

$$\llbracket bool \rrbracket \stackrel{\text{def}}{=} \mathbb{B}_{\perp}$$
 (flat domain)

$$\llbracket \tau \to \tau' \rrbracket \stackrel{\text{def}}{=} \llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket$$
 (function domain).

where
$$\mathbb{N}=\{0,1,2,\dots\}$$
 and $\mathbb{B}=\{\mathit{true},\mathit{false}\}$.

Denotational semantics of PCF type environments

$$\llbracket \Gamma \rrbracket \stackrel{\mathrm{def}}{=} \prod_{x \in dom(\Gamma)} \llbracket \Gamma(x) \rrbracket$$
 (Γ -environments)

= the domain of partial functions ρ from variables to domains such that $dom(\rho)=dom(\Gamma)$ and $\rho(x)\in \llbracket\Gamma(x)\rrbracket$ for all $x\in dom(\Gamma)$

Example:

1. For the empty type environment \emptyset ,

$$\llbracket\emptyset\rrbracket=\{\,\bot\,\}$$

where \perp denotes the unique partial function with $dom(\perp) = \emptyset$.

2.
$$[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!]) \cong [\![\tau]\!]$$

3.

Denotational semantics of PCF terms, I

$$\llbracket \Gamma \vdash \mathbf{0} \rrbracket (\rho) \stackrel{\text{def}}{=} 0 \in \llbracket nat \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{true} \rrbracket(\rho) \stackrel{\text{def}}{=} true \in \llbracket bool \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{false} \rrbracket(\rho) \stackrel{\text{def}}{=} \mathit{false} \in \llbracket \mathit{bool} \rrbracket$$

$$\llbracket \Gamma \vdash x \rrbracket(\rho) \stackrel{\text{def}}{=} \rho(x) \in \llbracket \Gamma(x) \rrbracket \qquad (x \in dom(\Gamma))$$

Denotational semantics of PCF terms, II

$$\begin{split} & [\![\Gamma \vdash \mathbf{succ}(M)]\!](\rho) \\ & \stackrel{\mathrm{def}}{=} \begin{cases} [\![\Gamma \vdash M]\!](\rho) + 1 & \text{if } [\![\Gamma \vdash M]\!](\rho) \neq \bot \\ \bot & \text{if } [\![\Gamma \vdash M]\!](\rho) = \bot \\ \end{split} \\ & [\![\Gamma \vdash \mathbf{pred}(M)]\!](\rho) \\ & \stackrel{\mathrm{def}}{=} \begin{cases} [\![\Gamma \vdash M]\!](\rho) - 1 & \text{if } [\![\Gamma \vdash M]\!](\rho) > 0 \\ \bot & \text{if } [\![\Gamma \vdash M]\!](\rho) = 0, \bot \\ \end{split} \\ & [\![\Gamma \vdash \mathbf{zero}(M)]\!](\rho) \stackrel{\mathrm{def}}{=} \begin{cases} true & \text{if } [\![\Gamma \vdash M]\!](\rho) = 0 \\ false & \text{if } [\![\Gamma \vdash M]\!](\rho) > 0 \\ \bot & \text{if } [\![\Gamma \vdash M]\!](\rho) = \bot \\ \end{split}$$

Denotational semantics of PCF terms, III

$$\llbracket\Gamma \vdash M_1 \, M_2 \rrbracket(\rho) \stackrel{\text{def}}{=} \bigl(\llbracket\Gamma \vdash M_1 \rrbracket(\rho)\bigr) \, (\llbracket\Gamma \vdash M_2 \rrbracket(\rho))$$

Denotational semantics of PCF terms, IV

$$\begin{bmatrix}
\Gamma \vdash \mathbf{fn} \ x : \tau \ . \ M \end{bmatrix}(\rho) \\
\stackrel{\text{def}}{=} \lambda d \in \llbracket \tau \rrbracket \ . \ \llbracket \Gamma[x \mapsto \tau] \vdash M \rrbracket(\rho[x \mapsto d])
\end{cases} (x \notin dom(\Gamma))$$

NB: $\rho[x \mapsto d] \in \llbracket \Gamma[x \mapsto \tau] \rrbracket$ is the function mapping x to $d \in \llbracket \tau \rrbracket$ and otherwise acting like ρ .

Denotational semantics of PCF terms, V

$$\llbracket\Gamma \vdash \mathbf{fix}(M)\rrbracket(\rho) \stackrel{\mathrm{def}}{=} fix(\llbracket\Gamma \vdash M\rrbracket(\rho))$$

Recall that fix is the function assigning least fixed points to continuous functions.

Denotational semantics of PCF

Proposition. For all typing judgements $\Gamma \vdash M : \tau$, the denotation

$$\llbracket\Gamma \vdash M\rrbracket : \llbracket\Gamma\rrbracket \to \llbracket\tau\rrbracket$$

is a well-defined continous function.

Denotations of closed terms

For a closed term $M \in \mathrm{PCF}_{\tau}$, we get

$$\llbracket \emptyset \vdash M \rrbracket : \llbracket \emptyset \rrbracket \to \llbracket \tau \rrbracket$$

and, since $\llbracket \emptyset \rrbracket = \{ \bot \}$, we have

$$\llbracket M \rrbracket \stackrel{\text{def}}{=} \llbracket \emptyset \vdash M \rrbracket (\bot) \in \llbracket \tau \rrbracket \qquad (M \in \mathrm{PCF}_{\tau})$$

Compositionality

```
Proposition. For all typing judgements \Gamma \vdash M : \tau and \Gamma \vdash M' : \tau, and all contexts \mathcal{C}[-] such that \Gamma' \vdash \mathcal{C}[M] : \tau' and \Gamma' \vdash \mathcal{C}[M'] : \tau',  \text{if } \llbracket \Gamma \vdash M \rrbracket = \llbracket \Gamma \vdash M' \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket  then \llbracket \Gamma' \vdash \mathcal{C}[M] \rrbracket = \llbracket \Gamma' \vdash \mathcal{C}[M] \rrbracket : \llbracket \Gamma' \rrbracket \to \llbracket \tau' \rrbracket
```

Soundness

Proposition. For all closed terms $M, V \in \operatorname{PCF}_{\tau}$,

if
$$M \Downarrow_{ au} V$$
 then $\llbracket M
rbracket = \llbracket V
rbracket \in \llbracket au
rbracket$.

Substitution property

Proposition. Suppose that $\Gamma \vdash M : \tau$ and that $\Gamma[x \mapsto \tau] \vdash M' : \tau'$, so that we also have $\Gamma \vdash M'[M/x] : \tau'$. Then,

for all $\rho \in \llbracket \Gamma \rrbracket$.

In particular when
$$\Gamma=\emptyset$$
, $[\![\langle x\mapsto \tau\rangle \vdash M']\!]: [\![\tau]\!] \to [\![\tau']\!]$ and
$$[\![M'[M/x]]\!] = [\![\langle x\mapsto \tau\rangle \vdash M']\!]([\![M]\!])$$