Lecture 2

Least Fixed Points

Thesis

All domains of computation are partial orders with a least element.

All computable functions are mononotic.

Partially ordered sets

A binary relation \sqsubseteq on a set D is a partial order iff it is

reflexive: $\forall d \in D. \ d \sqsubseteq d$

transitive: $\forall d, d', d'' \in D. \ d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$

anti-symmetric: $\forall d, d' \in D. \ d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'.$

Such a pair (D, \sqsubseteq) is called a partially ordered set, or poset.

$$x \sqsubseteq x$$

$$\begin{array}{c|c} x \sqsubseteq y & y \sqsubseteq z \\ \hline x \sqsubseteq z \end{array}$$

$$\begin{array}{c|cc}
x \sqsubseteq y & y \sqsubseteq x \\
\hline
 & x = y
\end{array}$$

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f, with domain of definition $dom(f) \subseteq X$ and taking values in Y.

Partial order:

$$f\sqsubseteq g \quad \text{iff} \quad dom(f)\subseteq dom(g) \text{ and } \\ \forall x\in dom(f). \ f(x)=g(x) \\ \text{iff} \quad graph(f)\subseteq graph(g)$$

Monotonicity

ullet A function f:D o E between posets is monotone iff $\forall d,d'\in D.\ d\sqsubseteq d'\Rightarrow f(d)\sqsubseteq f(d').$

$$\frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)} \quad (f \text{ monotone})$$

Least Elements

Suppose that D is a poset and that S is a subset of D.

An element $d \in S$ is the *least* element of S if it satisfies

$$\forall x \in S. \ d \sqsubseteq x$$
.

- ullet Note that because \sqsubseteq is anti-symmetric, S has at most one least element.
- Note also that a poset may not have least element.

Pre-fixed points

Let D be a poset and $f:D \to D$ be a function.

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The *least pre-fixed point* of f, if it exists, will be written

It is thus (uniquely) specified by the two properties:

$$f(fix(f)) \sqsubseteq fix(f)$$
 (Ifp1)

$$\forall d \in D. \ f(d) \sqsubseteq d \Rightarrow fix(f) \sqsubseteq d.$$
 (Ifp2)

Proof principle

1.

$$f(fix(f)) \sqsubseteq fix(f)$$

2. Let D be a poset and let $f:D\to D$ be a function with a least pre-fixed point $fix(f)\in D$.

For all $x \in D$, to prove that $f(x) \sqsubseteq x$ it is enough to establish that $f(x) \sqsubseteq x$.

$$\frac{f(x) \sqsubseteq x}{fix(f) \sqsubseteq x}$$

Least pre-fixed points are fixed points

If it exists, the least pre-fixed point of a mononote function on a partial order is necessarily a fixed point.

Thesis*

All domains of computation are complete partial orders with a least element.

All computable functions are continuous.

Cpo's and domains

A chain complete poset, or cpo for short, is a poset (D, \sqsubseteq) in which all countable increasing chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \ldots$ have least upper bounds, $\bigsqcup_{n \geq 0} d_n$:

$$\forall m \ge 0 . d_m \sqsubseteq \bigsqcup_{n \ge 0} d_n \tag{lub1}$$

$$\forall d \in D . (\forall m \ge 0 . d_m \sqsubseteq d) \Rightarrow \bigsqcup_{n \ge 0} d_n \sqsubseteq d.$$
 (lub2)

A domain is a cpo that possesses a least element, \perp :

$$\forall d \in D . \bot \sqsubseteq d.$$

$$\bot \sqsubseteq x$$

$$\frac{\forall n \ge 0 . x_n \sqsubseteq x}{\bigsqcup_{n \ge 0} x_n \sqsubseteq x} \quad (\langle x_i \rangle \text{ a chain})$$

Domain of partial functions, $X \longrightarrow Y$

Underlying set: all partial functions, f, with domain of definition $dom(f) \subseteq X$ and taking values in Y.

Partial order:

$$f\sqsubseteq g \quad \text{iff} \quad dom(f)\subseteq dom(g) \text{ and } \\ \forall x\in dom(f). \ f(x)=g(x) \\ \text{iff} \quad graph(f)\subseteq graph(g)$$

Lub of chain $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ is the partial function f with $dom(f) = \bigcup_{n \geq 0} dom(f_n)$ and

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in dom(f_n), \text{ some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Least element \perp is the totally undefined partial function.

Some properties of lubs of chains

Let D be a cpo.

- 1. For $d \in D$, $\bigsqcup_n d = d$.
- 2. For every chain $d_0 \sqsubseteq d_1 \sqsubseteq \ldots \sqsubseteq d_n \sqsubseteq \ldots$ in D,

$$\bigsqcup_{n} d_{n} = \bigsqcup_{n} d_{N+n}$$

for all $N \in \mathbb{N}$.

3. For every pair of chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots \sqsubseteq d_n \sqsubseteq \ldots$ and $e_0 \sqsubseteq e_1 \sqsubseteq \ldots \sqsubseteq e_n \sqsubseteq \ldots$ in D, if $d_n \sqsubseteq e_n$ for all $n \in \mathbb{N}$ then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

$$\frac{\forall n \ge 0 . x_n \sqsubseteq y_n}{| |_n x_n \sqsubseteq |_n y_n} \quad (\langle x_n \rangle \text{ and } \langle y_n \rangle \text{ chains})$$

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family of elements $d_{m,n} \in D$ $(m,n \ge 0)$ satisfies

$$m \le m' \& n \le n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}.$$
 (†)

Then

$$\bigsqcup_{n\geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{2,n} \sqsubseteq \ldots$$

and

$$\bigsqcup_{m\geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,3} \sqsubseteq \ldots$$

Moreover

$$\bigsqcup_{m\geq 0} \left(\bigsqcup_{n\geq 0} d_{m,n}\right) = \bigsqcup_{k\geq 0} d_{k,k} = \bigsqcup_{n\geq 0} \left(\bigsqcup_{m\geq 0} d_{m,n}\right) .$$

Continuity and strictness

- If D and E are cpo's, the function f is continuous iff
 - 1. it is monotone, and
 - 2. it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D, it is the case that

$$f(\bigsqcup_{n\geq 0} d_n) = \bigsqcup_{n\geq 0} f(d_n) \quad \text{in } E.$$

• If D and E have least elements, then the function f is strict iff $f(\bot) = \bot$.

Tarski's Fixed Point Theorem

Let $f: D \to D$ be a continuous function on a domain D. Then

f possesses a least pre-fixed point, given by

$$fix(f) = \coprod_{n>0} f^n(\bot).$$

• Moreover, fix(f) is a fixed point of f, *i.e.* satisfies f(fix(f)) = fix(f), and hence is the least fixed point of f.

$\llbracket \mathbf{while} \ B \ \mathbf{do} \ C rbracket$

while $B \operatorname{\mathbf{do}} C$ $= fix(f_{\llbracket B \rrbracket, \llbracket C \rrbracket})$ $= \bigsqcup_{n>0} f_{\llbracket B \rrbracket, \llbracket C \rrbracket}^{n} (\bot)$ $= \lambda s \in State.$