Denotational Semantics

8–12 lectures for Part II CST 2010/11

Marcelo Fiore

Course web page:
http://www.cl.cam.ac.uk/teaching/1011/DenotSem/
Lecture 1

Introduction
What is this course about?

• General area.

 Formal methods: Mathematical techniques for the specification, development, and verification of software and hardware systems.

• Specific area.

 Formal semantics: Mathematical theories for ascribing meanings to computer languages.
Why do we care?

- Rigour.
 - specification of programming languages
 - justification of program transformations

- Insight.
 - generalisations of notions computability
 - higher-order functions
 - data structures
• Feedback into language design.
 ... continuations
 ... monads

• Reasoning principles.
 ... Scott induction
 ... Logical relations
 ... Co-induction
Styles of formal semantics

Operational.
Meanings for program phrases defined in terms of the *steps of computation* they can take during program execution.

Axiomatic.
Meanings for program phrases defined indirectly via the *axioms and rules* of some logic of program properties.

Denotational.
Concerned with giving *mathematical models* of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.
Basic idea of denotational semantics

Syntax $\ground{-}$ Semantics

Recursive program \mapsto Partial recursive function

Boolean circuit \mapsto Boolean function

$P \mapsto \ground{P}$

Concerns:

- Abstract models (i.e. implementation/machine independent).
 \leadsto Lectures 2, 3 and 4.

- Compositionality.
 \leadsto Lectures 5 and 6.

- Relationship to computation (e.g. operational semantics).
 \leadsto Lectures 7 and 8.
Characteristic features of a denotational semantics

- Each phrase (= part of a program), P, is given a denotation, $[P]$ — a mathematical object representing the contribution of P to the meaning of any complete program in which it occurs.

- The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is compositional).
Basic example of denotational semantics (I)

IMP⁻ syntax

Arithmetic expressions

\[A \in \text{Aexp} ::= n \mid L \mid A + A \mid \ldots \]

where \(n \) ranges over integers and \(L \) over a specified set of locations \(\mathbb{L} \)

Boolean expressions

\[B \in \text{Bexp} ::= \text{true} \mid \text{false} \mid A = A \mid \ldots \]

\[\mid \lnot B \mid \ldots \]

Commands

\[C \in \text{Comm} ::= \text{skip} \mid L := A \mid C; C \]

\[\mid \text{if } B \text{ then } C \text{ else } C \]
Basic example of denotational semantics (II)

Semantic functions

\[A : \text{Aexp} \rightarrow (\text{State} \rightarrow \mathbb{Z}) \]
\[B : \text{Bexp} \rightarrow (\text{State} \rightarrow \mathbb{B}) \]
\[C : \text{Comm} \rightarrow (\text{State} \rightarrow \text{State}) \]

where

\[\mathbb{Z} = \{ \ldots, -1, 0, 1, \ldots \} \]
\[\mathbb{B} = \{ \text{true, false} \} \]
\[\text{State} = (\mathbb{L} \rightarrow \mathbb{Z}) \]
Basic example of denotational semantics (III)

Semantic function \mathcal{A}

$\mathcal{A}[n] = \lambda s \in State. \ n$

$\mathcal{A}[L] = \lambda s \in State. \ s(L)$

$\mathcal{A}[A_1 + A_2] = \lambda s \in State. \ \mathcal{A}[A_1](s) + \mathcal{A}[A_2](s)$
Basic example of denotational semantics (IV)

Semantic function \mathcal{B}

$\mathcal{B}[true] = \lambda s \in State. true$

$\mathcal{B}[false] = \lambda s \in State. false$

$\mathcal{B}[A_1 = A_2] = \lambda s \in State. eq(\mathcal{A}[A_1](s), \mathcal{A}[A_2](s))$

where $eq(a, a') = \begin{cases}
 true & \text{if } a = a' \\
 false & \text{if } a \neq a'
\end{cases}$
Basic example of denotational semantics (V)

Semantic function C

$$[ext{skip}] = \lambda s \in \text{State}. s$$

NB: From now on the names of semantic functions are omitted!
A simple example of compositionality

Given partial functions \([C], [C'] : State \rightarrow State\) and a function \([B] : State \rightarrow \{true, false\}\), we can define

\[
[\text{if } B \text{ then } C \text{ else } C'] = \\
\lambda s \in State. \text{if} \ ([B](s), [C](s), [C'](s))
\]

where

\[
\text{if} (b, x, x') = \begin{cases}
 x & \text{if } b = \text{true} \\
 x' & \text{if } b = \text{false}
\end{cases}
\]
Basic example of denotational semantics (VI)

Semantic function C

$$\left[L := A \right] = \lambda s \in State. \lambda \ell \in L. \text{if } (\ell = L, [A](s), s(\ell))$$
Denotational semantics of sequential composition

Denotation of sequential composition $C; C'$ of two commands

$$ [C; C'] = [C'] \circ [C] = \lambda s \in \text{State}. [C']([C](s)) $$

given by composition of the partial functions from states to states $[C], [C'] : \text{State} \rightarrow \text{State}$ which are the denotations of the commands.

Cf. operational semantics of sequential composition:

$$ C, s \Downarrow s' \quad C', s' \Downarrow s'' \quad \therefore C; C', s \Downarrow s'' $$
Fixed point property of

\[[\text{while } B \text{ do } C]\]

\[[\text{while } B \text{ do } C] = f_{[B],[C]}(\text{[[while } B \text{ do } C]])\]

where, for each \(b : \text{State} \rightarrow \{\text{true, false}\}\) and \(c : \text{State} \rightarrow \text{State}\), we define

\(f_{b,c} : (\text{State} \rightarrow \text{State}) \rightarrow (\text{State} \rightarrow \text{State})\)

as

\(f_{b,c} = \lambda w \in (\text{State} \rightarrow \text{State}). \lambda s \in \text{State}. \text{if } (b(s), w(c(s)), s)\).

- Why does \(w = f_{[B],[C]}(w)\) have a solution?
- What if it has several solutions—which one do we take to be \(\text{[[while } B \text{ do } C]\)?
Approximating \(\text{while } B \text{ do } C \)
\[D \ definition \ (State \rightarrow State) \]

- **Partial order \(\sqsubseteq \) on \(D \):**

 \[w \sqsubseteq w' \]
 if and only if for all \(s \in State \), if \(w \) is defined at \(s \) then so is \(w' \) and moreover \(w(s) = w'(s) \).

 if and only if the graph of \(w \) is included in the graph of \(w' \).

- **Least element \(\bot \) \in D w.r.t. \(\sqsubseteq \):**

 \(\bot = \) totally undefined partial function

 \[= \) partial function with empty graph

 (satisfies \(\bot \sqsubseteq w \), for all \(w \in D \)).