Denotational Semantics

8-12 lectures for Part II CST 2010/11

Marcelo Fiore

Course web page:

http://www.cl.cam.ac.uk/teaching/1011/DenotSem/

Lecture 1

Introduction

What is this course about?

General area.

Formal methods: Mathematical techniques for the specification, development, and verification of software and hardware systems.

Specific area.

Formal semantics: Mathematical theories for ascribing meanings to computer languages.

Why do we care?

- Rigour.
 - ... specification of programming languages
 - ... justification of program transformations
- Insight.
 - ... generalisations of notions computability
 - ... higher-order functions
 - ... data structures

- Feedback into language design.
 - ... continuations
 - ... monads
- Reasoning principles.
 - ... Scott induction
 - ... Logical relations
 - ... Co-induction

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the *steps* of *computation* they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the *axioms and rules* of some logic of program properties.

Denotational.

Concerned with giving *mathematical models* of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

Basic idea of denotational semantics

Concerns:

- Abstract models (i.e. implementation/machine independent).
- Compositionality.
- Relationship to computation (e.g. operational semantics).
 - \sim Lectures 7 and 8.

Characteristic features of a denotational semantics

- Each phrase (= part of a program), P, is given a denotation,
 [P] a mathematical object representing the contribution of P to the meaning of any complete program in which it occurs.
- The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is compositional).

Basic example of denotational semantics (I)

Arithmetic expressions

$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A+A \mid \dots$$
 where n ranges over *integers* and L over a specified set of *locations* $\mathbb L$

Boolean expressions

$$B \in \mathbf{Bexp} ::= \mathbf{true} \mid \mathbf{false} \mid A = A \mid \dots$$

Commands

$$C \in \mathbf{Comm}$$
 ::= $\mathbf{skip} \mid L := A \mid C; C$
| $\mathbf{if} \ B \ \mathbf{then} \ C \ \mathbf{else} \ C$

Basic example of denotational semantics (II)

Semantic functions

```
\mathcal{A}: \mathbf{Aexp} \to (State \to \mathbb{Z})
```

 $\mathcal{B}: \mathbf{Bexp} \to (State \to \mathbb{B})$

 $C: \mathbf{Comm} \to (State \to State)$

where

$$\mathbb{Z} = \{ \dots, -1, 0, 1, \dots \}$$

$$\mathbb{B} = \{ true, false \}$$

$$State = (\mathbb{L} \to \mathbb{Z})$$

Basic example of denotational semantics (III)

Semantic function A

$$\mathcal{A}[\![\underline{n}]\!] = \lambda s \in State. n$$

$$\mathcal{A}[\![L]\!] = \lambda s \in State. s(L)$$

$$\mathcal{A}[\![A_1 + A_2]\!] = \lambda s \in State. \mathcal{A}[\![A_1]\!](s) + \mathcal{A}[\![A_2]\!](s)$$

Basic example of denotational semantics (IV)

Semantic function \mathcal{B}

$$\mathcal{B}[\![\mathbf{true}]\!] = \lambda s \in State.\ true$$
 $\mathcal{B}[\![\mathbf{false}]\!] = \lambda s \in State.\ false$
 $\mathcal{B}[\![A_1 = A_2]\!] = \lambda s \in State.\ eq(\mathcal{A}[\![A_1]\!](s), \mathcal{A}[\![A_2]\!](s))$
where $eq(a, a') = \begin{cases} true & \text{if } a = a' \\ false & \text{if } a \neq a' \end{cases}$

Basic example of denotational semantics (V)

Semantic function \mathcal{C}

$$\llbracket \mathbf{skip} \rrbracket = \lambda s \in State.s$$

NB: From now on the names of semantic functions are omitted!

A simple example of compositionality

Given partial functions $\llbracket C \rrbracket$, $\llbracket C' \rrbracket$: $State \rightarrow State$ and a function $\llbracket B \rrbracket$: $State \rightarrow \{true, false\}$, we can define

[if B then C else
$$C'$$
] = $\lambda s \in State. if([B](s), [C](s), [C'](s))$

where

$$if(b, x, x') = \begin{cases} x & \text{if } b = true \\ x' & \text{if } b = false \end{cases}$$

Basic example of denotational semantics (VI)

Semantic function \mathcal{C}

$$\llbracket L := A \rrbracket = \lambda s \in State. \lambda \ell \in \mathbb{L}. if (\ell = L, \llbracket A \rrbracket(s), s(\ell))$$

Denotational semantics of sequential composition

Denotation of sequential composition C; C' of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in State. \llbracket C' \rrbracket \big(\llbracket C \rrbracket (s) \big)$$

given by composition of the partial functions from states to states $[\![C]\!], [\![C']\!]: State \longrightarrow State$ which are the denotations of the commands.

Cf. operational semantics of sequential composition:

$$\frac{C, s \Downarrow s' \quad C', s' \Downarrow s''}{C; C', s \Downarrow s''}$$

Fixed point property of

while $B \operatorname{\mathbf{do}} C$

$$[\![\mathbf{while}\ B\ \mathbf{do}\ C]\!] = f_{[\![B]\!],[\![C]\!]}([\![\mathbf{while}\ B\ \mathbf{do}\ C]\!])$$
 where, for each $b: State \to \{true, false\}$ and $c: State \to State$, we define

$$f_{b,c}: (State \rightarrow State) \rightarrow (State \rightarrow State)$$

as

$$f_{b,c} = \lambda w \in (State \rightharpoonup State). \ \lambda s \in State. \ if (b(s), w(c(s)), s).$$

- Why does $w = f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(w)$ have a solution?
- What if it has several solutions—which one do we take to be $\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket$?

Approximating $\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket$

```
\begin{split} f_{\llbracket B \rrbracket, \llbracket C \rrbracket}^n(\bot) \\ &= \ \lambda s \in State. \\ & \left\{ \begin{array}{l} \llbracket C \rrbracket^k(s) & \text{if } \exists \ 0 \leq k < n. \ \llbracket B \rrbracket (\llbracket C \rrbracket^k(s)) = false \\ & \text{and } \forall \ 0 \leq i < k. \ \llbracket B \rrbracket (\llbracket C \rrbracket^i(s)) = true \end{array} \right. \\ & \uparrow & \text{if } \forall \ 0 \leq i < n. \ \llbracket B \rrbracket (\llbracket C \rrbracket^i(s)) = true \end{split}
```

$$D \stackrel{\mathrm{def}}{=} (State \rightharpoonup State)$$

Partial order ⊆ on D:

```
w\sqsubseteq w' iff for all s\in State, if w is defined at s then so is w' and moreover w(s)=w'(s). iff the graph of w is included in the graph of w'.
```

- Least element $\bot \in D$ w.r.t. \sqsubseteq :
 - \perp = totally undefined partial function
 - = partial function with empty graph

(satisfies $\perp \sqsubseteq w$, for all $w \in D$).