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Lecture 05 : Functional Dependencies (FDs)

Outline
@ ERis for top-down and informal (but rigorous) design
@ FDs are used for bottom-up and formal design and analysis
@ update anomalies
@ Reasoning about Functional Dependencies
@ Heath'’s rule
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Update anomalies

Big Table

sid | name | college course part | term_name
yy88 | Yoni | New Hall | Algorithms | | IA Easter
uu99 | Uri King's | Algorithms | | IA Easter

bb44 | Bin | New Hall | Databases | IB Lent
bb44 | Bin | New Hall | Algorithms Il | IB | Michaelmas
zz70 | Zip Trinity Databases | IB Lent

zz70 | Zip Trinity | Algorithms Il | IB | Michaelmas

@ How can we tell if an insert record is consistent with current
records?

@ Can we record data about a course before students enroll?

@ Will we wipe out information about a college when last student
associated with the college is deleted?
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Redundancy implies more locking ...

... at least for correct transactions!
Big Table

sid | name | college course part | term_name
yy88 | Yoni | New Hall | Algorithms | | IA Easter
uu99 | Uri King’s | Algorithms | | IA Easter

bb44 | Bin | New Hall | Databases | IB Lent
bb44 | Bin | New Hall | Algorithms Il | IB | Michaelmas
zz70 | Zip Trinity Databases | IB Lent

zz70 | Zip Trinity | Algorithms Il | IB | Michaelmas

@ Change New Hall to Murray Edwards College

» Conceptually simple update
» May require locking entire table.
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Redundancy is the root of (almost) all database evils

@ It may not be obvious, but redundancy is also the cause of update
anomalies.
@ By redundancy we do not mean that some values occur many
times in the database!
» A foreign key value may be have millions of copies!

@ But then, what do we mean?
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Functional Dependency

Functional Dependency (FD)

Let R(X) be a relational schema and Y C X, Z C X be two attribute
sets. We say Y functionally determines Z, written Y — Z, if for any two
tuples v and v in an instance of R(X) we have

uY=vY—-suZ=v.2Z.

We call Y — Z a functional dependency.

A functional dependency is a semantic assertion. It represents a rule
that should always hold in any instance of schema R(X).
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Example FDs

Big Table

sid | name | college course part | term_name
yy88 | Yoni | New Hall | Algorithms | | IA Easter
uu99 | Uri King’s | Algorithms | | IA Easter

bb44 | Bin | New Hall | Databases | IB Lent
bb44 | Bin | New Hall | Algorithms Il | IB | Michaelmas
zz70 | Zip Trinity Databases | IB Lent

zz70 | Zip Trinity | Algorithms Il | IB | Michaelmas

@ sid — name

@ sid — college

@ course — part

@ course — term_name
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Keys, revisited

Candidate Key

Let R(X) be a relational schema and Y C X. Y is a candidate key if
@ TheFDY — X holds, and
© for no proper subset Z C Y does Z — X hold.

Prime and Non-prime attributes

An attribute A is prime for R(X) if it is a member of some candidate key

for R. Otherwise, A is non-prime.

Database redundancy roughly means the existence of non-key
functional dependencies!
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Closure

By soundness and completeness

closure(F, X) ={A|F-FX - A} ={A|X > AcF"}

Claim 2 (from previous lecture)
Y - W e FTif and only if W C closure(F, Y).

If we had an algorithm for closure(F, X), then we would have a (brute

force!) algorithm for enumerating F:

F+

@ for every subset Y C atts(F)
for every subset Z C closure(F, Y),
outputY — Z

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011

Attribute Closure Algorithm

@ Input : a set of FDs F and a set of attributes X.
@ Output : Y = closure(F, X)

@Y =X
©@ while thereissomeS - Tc FwithSCYandTZ Y, then
Y =YUT.
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An Example (UW1997, Exercise 3.6.1)

R(A, B, C, D) with F made up of the FDs

AB—C
C—D
D— A

What is F™7?

Brute force!
Let’s just consider all possible nonempty sets X — there are only 15...
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Example (cont.)

F={AB—~C, C—~D, D— A}
For the single attributes we have

e {A}T = {A},
e {B}T = {Bj},
e {C}*={A C, D},
(cy £ 1c, by E4 (A C, D}
e {D}* ={A D}

{D} Z£ (A, D}

The only new dependency we get with a single attribute on the left is
C — A
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Example (cont.)

F={AB—~C, C—~D, D— A}
Now consider pairs of attributes.

e {A B}t ={A B, C, D},

so A, B — D is a new dependency
° {A C}"={A C D},

so A, C — D is a new dependency
e {A D}" ={A, Dj,

so nothing new.
e {B, Cl* ={A, B, C, D},

so B,C — A, D is a new dependency
e {B, D}* ={A, B, C, D},

so B,D — A, C is a new dependency
e {C, D}*={A C, D},

so C,D — Ais a new dependency

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 13/52

Example (cont.)

F={AAB—~C, C—~D, D— A}
For the triples of attributes:

e {A C, D}t ={A C, D},
e {A B, D}* ={A, B, C, D},

so A,B,D — C is a new dependency
e {A B, C}t={A, B, C, D},

so A, B, C — D is a new dependency
@ {B, C, D}t ={A, B, C, D},

so B,C,D — Ais a new dependency

And since {A, B, C, D}+ = {A, B, C, D}, we get no new
dependencies with four attributes.
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Example (cont.)

We generated 11 new FDs:

— A AB — D
AC — D B.C — A
B.C — D B.D — A
B.D — C c,D — A
ABC — D ABD — C
B.C,D — A

Can you see the Key?
{A, B}, {B, C}, and {B, D} are keys.

Note: this schema is already in 3NF! Why?
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Semantic Closure

Notation
FEY—~Z

means that any database instance that that satisfies every FD of F,
must also satisfy Y — Z.

The semantic closure of F, denoted F, is defined to be
Fr={Y -Z|YUZCatts(Fland\NF =Y — Z}.

The membership problem is to determine if Y — Z ¢ F+.
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Reasoning about Functional Dependencies

We write F =Y — Z when Y — Z can be derived from F via the
following rules.
Armstrong’s Axioms
Reflexivity IfZ C Y, then FFY — Z.
Augmentation f FFY —Zthen F-FY,W — 2 W.
Transitivity If FFY -Zand F=Z — W,then F-FY — W.
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Logical Closure (of a set of attributes)

Notation
closure(F, X)={A| FF X — A}
Claim 1
IfY - We FandY C closure(F, X), then W C closure(F, X).

Claim 2
Y -+ W e F*if and only if W C closure(F, Y).
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Soundness and Completeness

Soundness
Flri = delz"

Completeness

feFt — Frf
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Proof of Completeness (soundness left as an exercise)

Show —~(F +f) = —(F = f):
@ Suppose —(F Y — Z) for R(X).
@ Let Y© =closure(F, Y).
@ dBcZ withB&Z Y.
@

Construct an instance of R with just two records, u and v, that
agreeon Y* but noton X — Y.

@ By construction, this instance does not satisfy Y — Z.
@ But it does satisfy F! Why?

» let S — T be any FD in F, with u.[S] = v.[S].

» SOSCY+.andsoTC Y+ byclaim 1,

» and so u.[T] = v.[T]
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Consequences of Armstrong’s Axioms

Union FF=Y >Zand FEY - W, then Fl=Y — W, Z.

Pseudo-transitivity If F=Y —2Zand F =U,Z — W, then
FEY,U—->W.

Decomposition f F=Y -ZandW CZ, then F=Y — W.

Exercise : Prove these using Armstrong’s axioms!
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Proof of the Union Rule

Suppose we have

FEY—2Z
FEY—W.
By augmentation we have
FEY,Y—Y,Z
that is,
FEY—Y,Z

Also using augmentation we obtain
FEY,Z—-W,Z

Therefore, by transitivity we obtain

FEY > W,Z
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Example application of functional reasoning.

Heath’s Rule

Suppose R(A, B, C) is a relational schema with functional
dependency A — B, then

R = maB(R) xamac(R).
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Proof of Heath’s Rule

We first show that R C w4 g(R) x4 ma,c(R).
@ Ifu=(a, b, ¢)e R then uy = (a, b) € map(R) and
up = (a, c) € mac(R).
@ Since {(a, b)} xa {(a, ¢)} ={(a, b, c)} we know
u € map(R) xa mac(R).

In the other direction we must show R’ = 74 g(R) xa ma.c(R) C R.
@ Ifu=(a, b, c) € R, then there must exist tuples
ui = (a, b) e map(R)and ux = (&, ¢) € mac(R).
@ This means that there must exist a v/ = (a, b/, ¢) € R such that
up =macl{(a b, c)}).
@ However, the functional dependency tells us that b = b/, so
u=(a, b, c) € R.
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Closure Example

R(A, B, C, D, D, F) with
AB—C
B,.C—D
D— E
C.,F—B

What is the closure of {A, B}?

{A B} "= (A B C)
B,C—D
2P 1A B, C, D)
28 (A B, C, D, E)

So {A, B}*={A, B, C., D, E}and A,B— C.,D,E.
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Lecture 06 : Normal Forms

Outline

@ First Normal Form (1NF)

@ Second Normal Form (2NF)

@ 3NF and BCNF

@ Multi-valued dependencies (MVDs)
~ @ Fourth Normal Form
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First Normal Form (1NF)

We will assume every schema is in 1NF.

1NF

A schema R(A1: Sy, A2 : So, ---, Ap: Sp)isin First Normal Form
(1NF) if the domains S; are elementary — their values are atomic.

name
Timothy George Giriffin

first_ name | middle_name | last_name
Timothy | George | Giriffin
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Second Normal Form (2NF)

Second Normal Form (2CNF)

A relational schema R is in 2NF if for every functional dependency
X — Aeither

@ Ac X or

@ Xis a superkey for R, or

@ Ais a member of some key, or

@ Xis not a proper subset of any key.
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3NF and BCNF

Third Normal Form (3CNF)

A relational schema R is in 3NF if for every functional dependency
X — Aeither

@ Ac X or
@ Xis a superkey for R, or
@ Ais a member of some key.

Boyce-Codd Normal Form (BCNF)

A relational schema R is in BCNF if for every functional dependency
X — Aeither

@ Ac X or
@ Xis a superkey for R.

|s something missing?
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Another look at Heath’s Rule

Given R(Z, W, Y) with FDs F
IfZ - W e FT, the

R = WZ’W(R) X ﬂ'z,y(R)

What about an implication in the other direction? That is, suppose we
have
R = mzw(R) x mzy(R).

Q Can we conclude anything about FDs on R? In particular,
is it true that Z — W holds?

A No!
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We just need one counter example ...

R = WA’B(FI’) X WA,C(FI’)
Al B|C Al B Al C
a b1 Cq ?b—1 ?0—1
albs| o al bo alo
a b1 Co
a bg C1

Clearly A — Bis not an FD of R.
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A concrete example

course_name | lecturer text
Databases Tim Ullman and Widom
Databases Fatima Date
Databases Tim Date
Databases Fatima | Ullman and Widom

Assuming that texts and lecturers are assigned to courses
independently, then a better representation would in two tables:

course_name \ lecturer course_nhame \ text
Databases Tim Databases Ullman and Wido
Databases Fatima Databases Date
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Time for a definition! MVDs

Multivalued Dependencies (MVDs)

Let R(Z, W. Y) be a relational schema. A multivalued dependency,
denoted Z — W, holds if whenever t and u are two records that agree
on the attributes of Z, then there must be some tuple v such that

@ v agrees with both t and u on the attributes of Z,
@ v agrees with t on the attributes of W,
© v agrees with u on the attributes of Y.
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A few observations

Note 1
Every functional dependency is multivalued dependency,

(Z—W) = (Z—W).

To see this, just let v = u in the above definition.

Note 2
Let R(Z, W. Y) be a relational schema, then

(2> W) = (ZY),

by symmetry of the definition.
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MVDs and lossless-join decompositions

Fun Fun Fact

Let R(Z, W. Y) be a relational schema. The decomposition R{(Z, W),
R>(Z, Y) is a lossless-join decomposition of R if and only if the MVD
z — W holds.
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Proof of Fun Fun Fact

Proof of (Z —» W) — R = 7Tz7w(R) X Wzvy(R)

@ Suppose Z — W.

@ We know (from proof of Heath’s rule) that R C mz w(R) x mzvy(R).
So we only need to show mzw(R) x mzy(R) C R.

@ Suppose r € rzw(R) x 7z y(R).

@ Sothere mustbe at e Rand u e R with
{r} =mzw({t}) x mzy({u}).

@ In other words, there mustbe at € Rand u € R with t.Z = u.Z.

@ So the MVD tells us that then there must be some tuple v € R
such that
@ v agrees with both t and u on the attributes of Z,
@ v agrees with t on the attributes of W,
© v agrees with u on the attributes of Y.

@ This v mustbethesameasr,sor € R.
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Proof of Fun Fun Fact (cont.)

Proof of R = Wz’w(R) X Wz’y(R) - (Z —» W)
@ Suppose R = mzw(R) x mzv(R).
@ Let t and u be any records in R with t.Z = u.Z.
@ Let v be defined by {v} = mzw({f}) x mzy({u}) (and we know
v € R by the assumption).
@ Note that by construction we have
@ vzZ=tZ=uZ

Q vW=1tWw,
© vY=uY.

@ Therefore, Z — W holds.
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Fourth Normal Form

Trivial MVD

The MVD Z — W is trivial for relational schema R(Z, W, Y) if
@ ZNW#£{}, or
Q@ Y={L

4ANF

A relational schema R(Z, W, Y) is in 4NF if for every MVD Z — W
either

@ Z— Wis a trivial MVD, or
@ Zis a superkey for R.

Note : 4NF € BCNF C 3NF C 2NF
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Summary

We always want the lossless-join property. What are our options?

3NF | BCNF | 4NF
Preserves FDs Yes | Maybe | Maybe
Preserves MVDs || Maybe | Maybe | Maybe
Eliminates FD-redundancy || Maybe | Yes Yes
Eliminates MVD-redundancy No No Yes
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Inclusions

Clearly BCNF C 3NF C 2NF. These are proper inclusions:

In 2NF, but not 3NF
R(A, B, C), with F = {A— B, B— C}.

In SNF, but not BCNF
R(A, B, C), with F = {A,B — C, C — B}.

@ This is in 3NF since AB and AC are keys, so there are no
non-prime attributes

@ But not in BCNF since C is not a key and we have C — B.
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The Plan

Given a relational schema R(X) with FDs F :
@ Reason about FDs
Is F missing FDs that are logically implied by those in F?

@ Decompose each R(X) into smaller R{(Xy), Rao(X2), --- Rk(Xk),
where each R;(X;) is in the desired Normal Form.

Are some decompositions better than others?
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Desired properties of any decomposition

Lossless-join decomposition

A decomposition of schema R(X) to S(YuZ)and T(YU (X —2Z))is a
lossless-join decomposition if for every database instances we have
R=SxT.

Dependency preserving decomposition

A decomposition of schema R(X)to S(YuZ) and T(YU (X —2)) is
dependency preserving, if enforcing FDs on S and T individually has
the same effect as enforcing all FDson S x T.

We will see that it is not always possible to achieve both of these goals.

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 42 /52



Lecture 07 : Schema Decomposition

Outline
@ General Decomposition Method (GDM)
@ The lossless-join condition is guaranteed by GDM
@ The GDM does not always preserve dependencies!
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General Decomposition Method (GDM)

GDM
@ Understand your FDs F (compute F),

@ find R(X) = R(Z, W, Y) (sets Z, W and Y are disjoint) with FD
Z — W c F violating a condition of desired NF,

@ split R into two tables R4(Z, W) and R»(Z, Y)
© wash, rinse, repeat

Reminder

ForZ — W, if we assume ZN W = {}, then the conditions are
@ Zis a superkey for R (2NF, 3NF, BCNF)
@ W is a subset of some key (2NF, 3NF)
© Zis not a proper subset of any key (2NF)
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The lossless-join condition is guaranteed by GDM

@ This method will produce a lossless-join decomposition because
of (repeated applications of) Heath’s Rule!

@ That is, each time we replace an S by §; and Sy, we will always
be able to recover S as Sy x S..

@ Note that in GDM step 3, the FD Z — W may represent a key
constraint for R;.

But does the method always terminate? Please think about this ....
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General Decomposition Method Revisited

GDM++

@ Understand your FDs and MVDs F (compute FT),

@ find R(X) = R(Z, W, Y) (sets Z, W and Y are disjoint) with either
FDZ ~Wc FmorMVD Z — W < FT violating a condition of
desired NF,

@ split R into two tables Ry(Z, W) and Rx(Z, Y)
© wash, rinse, repeat
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Return to Example — Decompose to BCNF

R(A, B, C, D)
F={AB-C, C—D, DA

Which FDs in F* violate BCNF?

cC — A
cC —- D
D — A
AC — D
c,D —- A
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Return to Example — Decompose to BCNF

Decompose R(A, B, C, D) to BCNF
Use C — D to obtain

@ Ry(C, D). This is in BCNF. Done.
@ R>(A, B, C) This is notin BCNF. Why? A, B and B, C are the only
keys, and C — Ais a FD for R;. So use C — A to obtain

R> 1(A, C). This is in BCNF. Done.
R>>(B, C). This is in BCNF. Done.

Exercise : Try starting with any of the other BCNF violations and see
where you end up.
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The GDM does not always preserve dependencies!

R(A, B, C, D, E)

~

o>
WM ®
114
DO O

e {A B}t ={A B, C, D},
@ soAB— C,D,
@ and {A, B, E} is a key.

e {B, E}*={B, C, D, E},
@ soB,E— C,D,
@ and {A, B, E} is a key (again)

Let’s try for a BCNF decomposition ...
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Decomposition 1

Decompose R(A, B, C, D, E)using A,B— C,D:
@ Ry(A, B, C, D). Decompose this using B — D:
Ry.1(B, D). Done.
Ry 2(A, B, C). Done.

@ R>(A, B, E). Done.

But in this decomposition, how will we enforce this dependency?

D E—C
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Decomposition 2

Decompose R(A, B, C, D, E)using B,E — C,D:
@ Rs(B, C, D, E). Decompose this using D, E — C

Rs.1(C, D, E). Done.
Rs; (B, D, E). Decompose this using B — D:

Rs2.1(B, D). Done.
Rs22(B, E). Done.

@ R4(A, B, E). Done.

But in this decomposition, how will we enforce this dependency?

AB—C
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Summary

@ It always is possible to obtain BCNF that has the lossless-join
property (using GDM)
But the result may not preserve all dependencies.
@ Itis always possible to obtain 3NF that preserves dependencies
and has the lossless-join property.
Using methods based on “minimal covers” (for example, see
EN2000).
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