Lecture 05 : Functional Dependencies (FDs)

Outline
- ER is for top-down and informal (but rigorous) design
- FDs are used for bottom-up and formal design and analysis
- Update anomalies
- Reasoning about Functional Dependencies
- Heath's rule
Update anomalies

Big Table

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>college</th>
<th>course</th>
<th>part</th>
<th>term_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>yy88</td>
<td>Yoni</td>
<td>New Hall</td>
<td>Algorithms I</td>
<td>IA</td>
<td>Easter</td>
</tr>
<tr>
<td>uu99</td>
<td>Uri</td>
<td>King’s</td>
<td>Algorithms I</td>
<td>IA</td>
<td>Easter</td>
</tr>
<tr>
<td>bb44</td>
<td>Bin</td>
<td>New Hall</td>
<td>Databases</td>
<td>IB</td>
<td>Lent</td>
</tr>
<tr>
<td>bb44</td>
<td>Bin</td>
<td>New Hall</td>
<td>Algorithms II</td>
<td>IB</td>
<td>Michaelmas</td>
</tr>
<tr>
<td>zz70</td>
<td>Zip</td>
<td>Trinity</td>
<td>Databases</td>
<td>IB</td>
<td>Lent</td>
</tr>
<tr>
<td>zz70</td>
<td>Zip</td>
<td>Trinity</td>
<td>Algorithms II</td>
<td>IB</td>
<td>Michaelmas</td>
</tr>
</tbody>
</table>

- How can we tell if an insert record is consistent with current records?
- Can we record data about a course before students enroll?
- Will we wipe out information about a college when last student associated with the college is deleted?

Redundancy implies more locking ...

... at least for correct transactions!

Big Table

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>college</th>
<th>course</th>
<th>part</th>
<th>term_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>yy88</td>
<td>Yoni</td>
<td>New Hall</td>
<td>Algorithms I</td>
<td>IA</td>
<td>Easter</td>
</tr>
<tr>
<td>uu99</td>
<td>Uri</td>
<td>King’s</td>
<td>Algorithms I</td>
<td>IA</td>
<td>Easter</td>
</tr>
<tr>
<td>bb44</td>
<td>Bin</td>
<td>New Hall</td>
<td>Databases</td>
<td>IB</td>
<td>Lent</td>
</tr>
<tr>
<td>bb44</td>
<td>Bin</td>
<td>New Hall</td>
<td>Algorithms II</td>
<td>IB</td>
<td>Michaelmas</td>
</tr>
<tr>
<td>zz70</td>
<td>Zip</td>
<td>Trinity</td>
<td>Databases</td>
<td>IB</td>
<td>Lent</td>
</tr>
<tr>
<td>zz70</td>
<td>Zip</td>
<td>Trinity</td>
<td>Algorithms II</td>
<td>IB</td>
<td>Michaelmas</td>
</tr>
</tbody>
</table>

- Change **New Hall** to **Murray Edwards College**
 - Conceptually simple update
 - May require locking entire table.
Redundancy is the root of (almost) all database evils

- It may not be obvious, but redundancy is also the cause of update anomalies.
- By redundancy we do not mean that some values occur many times in the database!
 - A foreign key value may be have millions of copies!
- But then, what do we mean?

Functional Dependency

Functional Dependency (FD)

Let $R(X)$ be a relational schema and $Y \subseteq X$, $Z \subseteq X$ be two attribute sets. We say Y functionally determines Z, written $Y \rightarrow Z$, if for any two tuples u and v in an instance of $R(X)$ we have

$$u.Y = v.Y \rightarrow u.Z = v.Z.$$

We call $Y \rightarrow Z$ a functional dependency.

A functional dependency is a semantic assertion. It represents a rule that should always hold in any instance of schema $R(X)$.
Example FDs

Big Table

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>college</th>
<th>course</th>
<th>part</th>
<th>term_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>yy88</td>
<td>Yoni</td>
<td>New Hall</td>
<td>Algorithms I</td>
<td>IA</td>
<td>Easter</td>
</tr>
<tr>
<td>uu99</td>
<td>Uri</td>
<td>King’s</td>
<td>Algorithms I</td>
<td>IA</td>
<td>Easter</td>
</tr>
<tr>
<td>bb44</td>
<td>Bin</td>
<td>New Hall</td>
<td>Databases</td>
<td>IB</td>
<td>Lent</td>
</tr>
<tr>
<td>bb44</td>
<td>Bin</td>
<td>New Hall</td>
<td>Algorithms II</td>
<td>IB</td>
<td>Michaelmas</td>
</tr>
<tr>
<td>zz70</td>
<td>Zip</td>
<td>Trinity</td>
<td>Databases</td>
<td>IB</td>
<td>Lent</td>
</tr>
<tr>
<td>zz70</td>
<td>Zip</td>
<td>Trinity</td>
<td>Algorithms II</td>
<td>IB</td>
<td>Michaelmas</td>
</tr>
</tbody>
</table>

- sid → name
- sid → college
- course → part
- course → term_name

Keys, revisited

Candidate Key
Let $R(X)$ be a relational schema and $Y \subseteq X$. Y is a candidate key if
- The FD $Y \rightarrow X$ holds, and
- for no proper subset $Z \subset Y$ does $Z \rightarrow X$ hold.

Prime and Non-prime attributes
An attribute A is prime for $R(X)$ if it is a member of some candidate key for R. Otherwise, A is non-prime.

Database redundancy roughly means the existence of non-key functional dependencies!
Closure

By soundness and completeness

\[
\text{closure}(F, X) = \{ A \mid F \vdash X \rightarrow A \} = \{ A \mid X \rightarrow A \in F^+ \}
\]

Claim 2 (from previous lecture)

\[Y \rightarrow W \in F^+ \text{ if and only if } W \subseteq \text{closure}(F, Y). \]

If we had an algorithm for closure\((F, X)\), then we would have a (brute force!) algorithm for enumerating \(F^+\):

\[F^+ \]

- for every subset \(Y \subseteq \text{atts}(F)\)
 - for every subset \(Z \subseteq \text{closure}(F, Y)\),
 - output \(Y \rightarrow Z\)

Attribute Closure Algorithm

- Input: a set of FDs \(F\) and a set of attributes \(X\).
- Output: \(Y = \text{closure}(F, X)\)

1. \(Y := X\)
2. while there is some \(S \rightarrow T \in F\) with \(S \subseteq Y\) and \(T \not\subseteq Y\), then \(Y := Y \cup T\).
An Example (UW1997, Exercise 3.6.1)

$R(A, B, C, D)$ with F made up of the FDs

$$
A, B \rightarrow C \\
C \rightarrow D \\
D \rightarrow A
$$

What is F^+?

Brute force!

Let’s just consider all possible nonempty sets X — there are only 15...

Example (cont.)

$$F = \{A, B \rightarrow C, \ C \rightarrow D, \ D \rightarrow A\}$$

For the single attributes we have

- $\{A\}^+ = \{A\}$,
- $\{B\}^+ = \{B\}$,
- $\{C\}^+ = \{A, C, D\}$,
 - $\{C\} \xrightarrow{C \rightarrow D} \{C, D\} \xrightarrow{D \rightarrow A} \{A, C, D\}$
- $\{D\}^+ = \{A, D\}$
 - $\{D\} \xrightarrow{D \rightarrow A} \{A, D\}$

The only new dependency we get with a single attribute on the left is $C \rightarrow A$.
Example (cont.)

\[F = \{ A, B \rightarrow C, \ C \rightarrow D, \ D \rightarrow A \} \]

Now consider pairs of attributes.

- \(\{ A, B \}^+ = \{ A, B, C, D \} \),
 - so \(A, B \rightarrow D \) is a new dependency
- \(\{ A, C \}^+ = \{ A, C, D \} \),
 - so \(A, C \rightarrow D \) is a new dependency
- \(\{ A, D \}^+ = \{ A, D \} \),
 - so nothing new.
- \(\{ B, C \}^+ = \{ A, B, C, D \} \),
 - so \(B, C \rightarrow A, D \) is a new dependency
- \(\{ B, D \}^+ = \{ A, B, C, D \} \),
 - so \(B, D \rightarrow A, C \) is a new dependency
- \(\{ C, D \}^+ = \{ A, C, D \} \),
 - so \(C, D \rightarrow A \) is a new dependency

Example (cont.)

\[F = \{ A, B \rightarrow C, \ C \rightarrow D, \ D \rightarrow A \} \]

For the triples of attributes:

- \(\{ A, C, D \}^+ = \{ A, C, D \} \),
- \(\{ A, B, D \}^+ = \{ A, B, C, D \} \),
 - so \(A, B, D \rightarrow C \) is a new dependency
- \(\{ A, B, C \}^+ = \{ A, B, C, D \} \),
 - so \(A, B, C \rightarrow D \) is a new dependency
- \(\{ B, C, D \}^+ = \{ A, B, C, D \} \),
 - so \(B, C, D \rightarrow A \) is a new dependency

And since \(\{ A, B, C, D \}^+ = \{ A, B, C, D \} \), we get no new dependencies with four attributes.
We generated 11 new FDs:

\[
\begin{align*}
 C & \rightarrow A & A, B & \rightarrow D \\
 A, C & \rightarrow D & B, C & \rightarrow A \\
 B, C & \rightarrow D & B, D & \rightarrow A \\
 B, D & \rightarrow C & C, D & \rightarrow A \\
 A, B, C & \rightarrow D & A, B, D & \rightarrow C \\
 B, C, D & \rightarrow A
\end{align*}
\]

Can you see the Key?

\{A, B\}, \{B, C\}, and \{B, D\} are keys.

Note: this schema is already in 3NF! Why?

Semantic Closure

Notation

\[F \models Y \rightarrow Z \]

means that any database instance that that satisfies every FD of \(F \), must also satisfy \(Y \rightarrow Z \).

The **semantic closure** of \(F \), denoted \(F^+ \), is defined to be

\[
F^+ = \{ Y \rightarrow Z \mid Y \cup Z \subseteq \text{atts}(F) \text{ and } \models F \rightarrow Y \rightarrow Z \}.
\]

The **membership problem** is to determine if \(Y \rightarrow Z \in F^+ \).
Reasoning about Functional Dependencies

We write $F \vdash Y \rightarrow Z$ when $Y \rightarrow Z$ can be derived from F via the following rules.

Armstrong’s Axioms

- **Reflexivity** If $Z \subseteq Y$, then $F \vdash Y \rightarrow Z$.
- **Augmentation** If $F \vdash Y \rightarrow Z$ then $F \vdash Y, W \rightarrow Z, W$.
- **Transitivity** If $F \vdash Y \rightarrow Z$ and $F \models Z \rightarrow W$, then $F \vdash Y \rightarrow W$.

Logical Closure (of a set of attributes)

Notation

$$\text{closure}(F, X) = \{ A \mid F \vdash X \rightarrow A \}$$

Claim 1

If $Y \rightarrow W \in F$ and $Y \subseteq \text{closure}(F, X)$, then $W \subseteq \text{closure}(F, X)$.

Claim 2

$Y \rightarrow W \in F^+$ if and only if $W \subseteq \text{closure}(F, Y)$.
Soundness and Completeness

Soundness

\[F \vdash f \iff f \in F^+ \]

Completeness

\[f \in F^+ \implies F \vdash f \]

Proof of Completeness (soundness left as an exercise)

Show \(- (F \vdash f) \implies \neg (F \models f)\):

- Suppose \(- (F \vdash Y \rightarrow Z)\) for \(R(X)\).
- Let \(Y^+ = \text{closure}(F, Y)\).
- \(\exists B \in Z, \text{ with } B \notin Y^+\).
- Construct an instance of \(R\) with just two records, \(u\) and \(v\), that agree on \(Y^+\) but not on \(X - Y^+\).
- By construction, this instance does not satisfy \(Y \rightarrow Z\).
- But it does satisfy \(F\)! Why?
 - Let \(S \rightarrow T\) be any FD in \(F\), with \(u.S = v.S\).
 - So \(S \subseteq Y^+\), and so \(T \subseteq Y^+\) by claim 1,
 - and so \(u.T = v.T\)
Consequences of Armstrong’s Axioms

Union If \(F \models Y \rightarrow Z \) and \(F \models Y \rightarrow W \), then \(F \models Y \rightarrow W, Z \).

Pseudo-transitivity If \(F \models Y \rightarrow Z \) and \(F \models U, Z \rightarrow W \), then
\(F \models Y, U \rightarrow W \).

Decomposition If \(F \models Y \rightarrow Z \) and \(W \subseteq Z \), then \(F \models Y \rightarrow W \).

Exercise: Prove these using Armstrong’s axioms!

Proof of the Union Rule

Suppose we have
\[
F \models Y \rightarrow Z,
F \models Y \rightarrow W.
\]

By augmentation we have
\[
F \models Y, Y \rightarrow Y, Z,
\]
that is,
\[
F \models Y \rightarrow Y, Z.
\]

Also using augmentation we obtain
\[
F \models Y, Z \rightarrow W, Z.
\]

Therefore, by transitivity we obtain
\[
F \models Y \rightarrow W, Z.
\]
Example application of functional reasoning.

Heath’s Rule

Suppose $R(A, B, C)$ is a relational schema with functional dependency $A \rightarrow B$, then

$$R = \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R).$$

Proof of Heath’s Rule

We first show that $R \subseteq \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R)$.

- If $u = (a, b, c) \in R$, then $u_1 = (a, b) \in \pi_{A,B}(R)$ and $u_2 = (a, c) \in \pi_{A,C}(R)$.
- Since $\{(a, b)\} \bowtie_A \{(a, c)\} = \{(a, b, c)\}$ we know $u \in \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R)$.

In the other direction we must show $R' = \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R) \subseteq R$.

- If $u = (a, b, c) \in R'$, then there must exist tuples $u_1 = (a, b) \in \pi_{A,B}(R)$ and $u_2 = (a, c) \in \pi_{A,C}(R)$.
- This means that there must exist a $u' = (a, b', c) \in R$ such that $u_2 = \pi_{A,C}((a, b', c))$.
- However, the functional dependency tells us that $b = b'$, so $u = (a, b, c) \in R$.

Closure Example

$R(A, B, C, D, D, F)$ with

- $A, B \rightarrow C$
- $B, C \rightarrow D$
- $D \rightarrow E$
- $C, F \rightarrow B$

What is the closure of $\{A, B\}$?

$\{A, B\}$

$\xrightarrow{AB \rightarrow C} \{A, B, C\}$

$\xrightarrow{B, C \rightarrow D} \{A, B, C, D\}$

$\xrightarrow{D \rightarrow E} \{A, B, C, D, E\}$

So $\{A, B\}^+ = \{A, B, C, D, E\}$ and $A, B \rightarrow C, D, E$.

Lecture 06 : Normal Forms

Outline

- First Normal Form (1NF)
- Second Normal Form (2NF)
- 3NF and BCNF
- Multi-valued dependencies (MVDs)
- Fourth Normal Form
First Normal Form (1NF)

We will assume every schema is in 1NF.

1NF

A schema \(R(A_1 : S_1, A_2 : S_2, \ldots, A_n : S_n) \) is in First Normal Form (1NF) if the domains \(S_i \) are elementary — their values are atomic.

<table>
<thead>
<tr>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timothy George Griffin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>first_name</th>
<th>middle_name</th>
<th>last_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timothy</td>
<td>George</td>
<td>Griffin</td>
</tr>
</tbody>
</table>

Second Normal Form (2NF)

Second Normal Form (2CNF)

A relational schema \(R \) is in 2NF if for every functional dependency \(X \rightarrow A \) either
- \(A \in X \), or
- \(X \) is a superkey for \(R \), or
- \(A \) is a member of some key, or
- \(X \) is not a proper subset of any key.
3NF and BCNF

Third Normal Form (3CNF)
A relational schema \(R \) is in 3NF if for every functional dependency \(X \rightarrow A \) either
- \(A \in X \), or
- \(X \) is a superkey for \(R \), or
- \(A \) is a member of some key.

Boyce-Codd Normal Form (BCNF)
A relational schema \(R \) is in BCNF if for every functional dependency \(X \rightarrow A \) either
- \(A \in X \), or
- \(X \) is a superkey for \(R \).

Is something missing?

Another look at Heath’s Rule

Given \(R(Z, W, Y) \) with FDs \(F \)
If \(Z \rightarrow W \in F^+ \), the
\[
R = \pi_{Z,W}(R) \bowtie \pi_{Z,Y}(R)
\]

What about an implication in the other direction? That is, suppose we have
\[
R = \pi_{Z,W}(R) \bowtie \pi_{Z,Y}(R).
\]

Q Can we conclude anything about FDs on \(R \)? In particular, is it true that \(Z \rightarrow W \) holds?
A No!
We just need one counter example ...

\[R = \pi_{A,B}(R) \times \pi_{A,C}(R) \]

\[
\begin{array}{ccc}
A & B & C \\
\hline
a & b_1 & c_1 \\
a & b_2 & c_2 \\
a & b_1 & c_2 \\
a & b_2 & c_1 \\
\end{array}
\quad
\begin{array}{ccc}
A & B \\
\hline
a & b_1 \\
a & b_2 \\
a & a \\
\end{array}
\quad
\begin{array}{ccc}
A & C \\
\hline
a & c_1 \\
a & c_2 \\
a & a \\
\end{array}
\]

Clearly \(A \rightarrow B \) is not an FD of \(R \).

A concrete example

<table>
<thead>
<tr>
<th>course_name</th>
<th>lecturer</th>
<th>text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Databases</td>
<td>Tim</td>
<td>Ullman and Widom</td>
</tr>
<tr>
<td>Databases</td>
<td>Fatima</td>
<td>Date</td>
</tr>
<tr>
<td>Databases</td>
<td>Tim</td>
<td>Date</td>
</tr>
<tr>
<td>Databases</td>
<td>Fatima</td>
<td>Ullman and Widom</td>
</tr>
</tbody>
</table>

Assuming that texts and lecturers are assigned to courses independently, then a better representation would in two tables:

<table>
<thead>
<tr>
<th>course_name</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Databases</td>
<td>Tim</td>
</tr>
<tr>
<td>Databases</td>
<td>Fatima</td>
</tr>
<tr>
<td>course_name</td>
<td>text</td>
</tr>
<tr>
<td>Databases</td>
<td></td>
</tr>
<tr>
<td>Databases</td>
<td>Ullman and Widom</td>
</tr>
<tr>
<td>Databases</td>
<td>Date</td>
</tr>
</tbody>
</table>
Time for a definition! MVDs

Multivalued Dependencies (MVDs)

Let \(R(Z, W, Y) \) be a relational schema. A multivalued dependency, denoted \(Z \rightarrow W \), holds if whenever \(t \) and \(u \) are two records that agree on the attributes of \(Z \), then there must be some tuple \(\nu \) such that

1. \(\nu \) agrees with both \(t \) and \(u \) on the attributes of \(Z \),
2. \(\nu \) agrees with \(t \) on the attributes of \(W \),
3. \(\nu \) agrees with \(u \) on the attributes of \(Y \).

A few observations

Note 1

Every functional dependency is multivalued dependency,

\[
(Z \rightarrow W) \implies (Z \rightarrow W).
\]

To see this, just let \(\nu = u \) in the above definition.

Note 2

Let \(R(Z, W, Y) \) be a relational schema, then

\[
(Z \rightarrow W) \iff (Z \rightarrow Y),
\]

by symmetry of the definition.
MVDs and lossless-join decompositions

Fun Fun Fact
Let \(R(Z, W, Y) \) be a relational schema. The decomposition \(R_1(Z, W), R_2(Z, Y) \) is a lossless-join decomposition of \(R \) if and only if the MVD \(Z \rightarrow W \) holds.

Proof of Fun Fun Fact

Proof of \((Z \rightarrow W) \iff R = \pi_{Z,W}(R) \bowtie \pi_{Z,Y}(R) \)

- Suppose \(Z \rightarrow W \).
- We know (from proof of Heath’s rule) that \(R \subseteq \pi_{Z,W}(R) \bowtie \pi_{Z,Y}(R) \).
- So we only need to show \(\pi_{Z,W}(R) \bowtie \pi_{Z,Y}(R) \subseteq R \).
- Suppose \(r \in \pi_{Z,W}(R) \bowtie \pi_{Z,Y}(R) \).
- So there must be a \(t \in R \) and \(u \in R \) with
 \[\{r\} = \pi_{Z,W}([t]) \bowtie \pi_{Z,Y}([u]). \]
- In other words, there must be a \(t \in R \) and \(u \in R \) with \(t.Z = u.Z \).
- So the MVD tells us that then there must be some tuple \(v \in R \) such that
 - \(v \) agrees with both \(t \) and \(u \) on the attributes of \(Z \),
 - \(v \) agrees with \(t \) on the attributes of \(W \),
 - \(v \) agrees with \(u \) on the attributes of \(Y \).
- This \(v \) must be the same as \(r \), so \(r \in R \).
Proof of Fun Fun Fact (cont.)

Proof of $R = \pi_{Z,W}(R) \times \pi_{Z,Y}(R) \rightarrowtail (Z \rightarrow W)$

- Suppose $R = \pi_{Z,W}(R) \times \pi_{Z,Y}(R)$.
- Let t and u be any records in R with $t.Z = u.Z$.
- Let v be defined by $\{v\} = \pi_{Z,W}(\{t\}) \times \pi_{Z,Y}(\{u\})$ (and we know $v \in R$ by the assumption).
- Note that by construction we have:
 1. $v.Z = t.Z = u.Z$,
 2. $v.W = t.W$,
- Therefore, $Z \rightarrow W$ holds.

Fourth Normal Form

Trivial MVD

The MVD $Z \rightarrow W$ is **trivial** for relational schema $R(Z, W, Y)$ if

- $Z \cap W \neq \{\}$, or
- $Y = \{\}$.

4NF

A relational schema $R(Z, W, Y)$ is in 4NF if for every MVD $Z \rightarrow W$ either

- $Z \rightarrow W$ is a trivial MVD, or
- Z is a superkey for R.

Note: $4NF \subset BCNF \subset 3NF \subset 2NF$
We always want the lossless-join property. What are our options?

<table>
<thead>
<tr>
<th></th>
<th>3NF</th>
<th>BCNF</th>
<th>4NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preserves FDs</td>
<td>Yes</td>
<td>Maybe</td>
<td>Maybe</td>
</tr>
<tr>
<td>Preserves MVDs</td>
<td>Maybe</td>
<td>Maybe</td>
<td>Maybe</td>
</tr>
<tr>
<td>Eliminates FD-redundancy</td>
<td>Maybe</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Eliminates MVD-redundancy</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Inclusions

Clearly BCNF \subseteq 3NF \subseteq 2NF. These are proper inclusions:

In 2NF, but not 3NF

$R(A, B, C)$, with $F = \{A \rightarrow B, B \rightarrow C\}$.

In 3NF, but not BCNF

$R(A, B, C)$, with $F = \{A, B \rightarrow C, C \rightarrow B\}$.

- This is in 3NF since AB and AC are keys, so there are no non-prime attributes
- But not in BCNF since C is not a key and we have $C \rightarrow B$.

The Plan

Given a relational schema $R(X)$ with FDs F:

- Reason about FDs
 - Is F missing FDs that are logically implied by those in F?
- Decompose each $R(X)$ into smaller $R_1(X_1)$, $R_2(X_2)$, \ldots $R_k(X_k)$, where each $R_i(X_i)$ is in the desired Normal Form.

Are some decompositions better than others?

Desired properties of any decomposition

Lossless-join decomposition

A decomposition of schema $R(X)$ to $S(Y \cup Z)$ and $T(Y \cup (X - Z))$ is a lossless-join decomposition if for every database instances we have $R = S \times T$.

Dependency preserving decomposition

A decomposition of schema $R(X)$ to $S(Y \cup Z)$ and $T(Y \cup (X - Z))$ is dependency preserving, if enforcing FDs on S and T individually has the same effect as enforcing all FDs on $S \times T$.

We will see that it is not always possible to achieve both of these goals.
Lecture 07: Schema Decomposition

Outline
- General Decomposition Method (GDM)
- The lossless-join condition is guaranteed by GDM
- The GDM does not always preserve dependencies!

General Decomposition Method (GDM)

GDM
1. Understand your FDs F (compute F^+),
2. find $R(X) = R(Z \cup W \cup Y)$ (sets Z, W and Y are disjoint) with FD $Z \rightarrow W \in F^+$ violating a condition of desired NF,
3. split R into two tables $R_1(Z, W)$ and $R_2(Z, Y)$
4. wash, rinse, repeat

Reminder
For $Z \rightarrow W$, if we assume $Z \cap W = \emptyset$, then the conditions are
1. Z is a superkey for R (2NF, 3NF, BCNF)
2. W is a subset of some key (2NF, 3NF)
3. Z is not a proper subset of any key (2NF)
The lossless-join condition is guaranteed by GDM

- This method will produce a lossless-join decomposition because of (repeated applications of) Heath’s Rule!
- That is, each time we replace an S by S_1 and S_2, we will always be able to recover S as $S_1 \bowtie S_2$.
- Note that in GDM step 3, the FD $Z \rightarrow W$ may represent a key constraint for R_1.

But does the method always terminate? Please think about this....

General Decomposition Method Revisited

GDM++

- Understand your FDs and MVDs F (compute F^+),
- find $R(X) = R(Z, W, Y)$ (sets Z, W and Y are disjoint) with either FD $Z \rightarrow W \in F^+$ or MVD $Z \rightarrow W \in F^+$ violating a condition of desired NF,
- split R into two tables $R_1(Z, W)$ and $R_2(Z, Y)$
- wash, rinse, repeat
Return to Example — Decompose to BCNF

\[R(A, B, C, D) \]

\[F = \{ A, B \rightarrow C, \ C \rightarrow D, \ D \rightarrow A \} \]

Which FDs in \(F^+ \) violate BCNF?

\[
\begin{align*}
C & \rightarrow A \\
C & \rightarrow D \\
D & \rightarrow A \\
A, C & \rightarrow D \\
C, D & \rightarrow A
\end{align*}
\]

Decompose \(R(A, B, C, D) \) to BCNF

Use \(C \rightarrow D \) to obtain

\(R_1(C, D) \). This is in BCNF. Done.

\(R_2(A, B, C) \) This is not in BCNF. Why? \(A, B \) and \(B, C \) are the only keys, and \(C \rightarrow A \) is a FD for \(R_1 \). So use \(C \rightarrow A \) to obtain

\(R_{2.1}(A, C) \). This is in BCNF. Done.

\(R_{2.2}(B, C) \). This is in BCNF. Done.

Exercise: Try starting with any of the other BCNF violations and see where you end up.
The GDM does not always preserve dependencies!

\[
R(A, B, C, D, E)
\]

\[
\begin{align*}
A, B & \rightarrow C \\
D, E & \rightarrow C \\
B & \rightarrow D
\end{align*}
\]

- \(\{A, B\}^+ = \{A, B, C, D\}\),
- so \(A, B \rightarrow C, D\),
- and \(\{A, B, E\}\) is a key.

- \(\{B, E\}^+ = \{B, C, D, E\}\),
- so \(B, E \rightarrow C, D\),
- and \(\{A, B, E\}\) is a key (again)

Let’s try for a BCNF decomposition ...

Decomposition 1

Decompose \(R(A, B, C, D, E)\) using \(A, B \rightarrow C, D\):

- \(R_1(A, B, C, D)\). Decompose this using \(B \rightarrow D\):
 - \(R_{1,1}(B, D)\). Done.
 - \(R_{1,2}(A, B, C)\). Done.
- \(R_2(A, B, E)\). Done.

But in this decomposition, how will we enforce this dependency?

\[D, E \rightarrow C\]
Decomposition 2

Decompose $R(A, B, C, D, E)$ using $B, E \rightarrow C, D$:

- $R_3(B, C, D, E)$. Decompose this using $D, E \rightarrow C$
 - $R_{3.1}(C, D, E)$. Done.
 - $R_{3.2}(B, D, E)$. Decompose this using $B \rightarrow D$:
 - $R_{3.2.1}(B, D)$. Done.
 - $R_{3.2.2}(B, E)$. Done.
- $R_4(A, B, E)$. Done.

But in this decomposition, how will we enforce this dependency?

$$A, B \rightarrow C$$

Summary

- It always is possible to obtain BCNF that has the lossless-join property (using GDM)
 - But the result may not preserve all dependencies.
- It is always possible to obtain 3NF that preserves dependencies and has the lossless-join property.
 - Using methods based on “minimal covers” (for example, see EN2000).