Databases 2011 Lectures 05 — 07

Timothy G. Griffin

Computer Laboratory University of Cambridge, UK

Databases, Easter 2011

4□ > 4 @ > 4 \(\bar{a}\) > \(\bar{a}\) = \(\O \) \(\O \) \(\D \) = \(\O \) \(\O \

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

/52

Lecture 05 : Functional Dependencies (FDs)

Outline

- ER is for top-down and informal (but rigorous) design
- FDs are used for bottom-up and formal design and analysis
- update anomalies
- Reasoning about Functional Dependencies
- Heath's rule

Update anomalies

Big Table					
sid	name	college	course	part	term_name
yy88	Yoni	New Hall	Algorithms I	IA	Easter
uu99	Uri	King's	Algorithms I	IA	Easter
bb44	Bin	New Hall	Databases	IB	Lent
bb44	Bin	New Hall	Algorithms II	IB	Michaelmas
zz70	Zip	Trinity	Databases	IB	Lent
zz70	Zip	Trinity	Algorithms II	IB	Michaelmas

- How can we tell if an insert record is consistent with current records?
- Can we record data about a course before students enroll?
- Will we wipe out information about a college when last student associated with the college is deleted?

T. Griffin (cl.cam.ac.uk) Databases 2011 Lectures 05 — 07 DB 2011 3 / 52

Redundancy implies more locking ...

... at least for correct transactions!

Big Table					
sid	name	college	course	part	term_name
yy88	Yoni	New Hall	Algorithms I	ΙA	Easter
uu99	Uri	King's	Algorithms I	IA	Easter
bb44	Bin	New Hall	Databases	IB	Lent
bb44	Bin	New Hall	Algorithms II	IB	Michaelmas
zz70	Zip	Trinity	Databases	ΙB	Lent
zz70	Zip	Trinity	Algorithms II	ΙB	Michaelmas

- Change New Hall to Murray Edwards College
 - Conceptually simple update
 - May require locking entire table.

Redundancy is the root of (almost) all database evils

- It may not be obvious, but redundancy is also the cause of update anomalies.
- By redundancy we do not mean that some values occur many times in the database!
 - A foreign key value may be have millions of copies!
- But then, what do we mean?

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 - 07

DB 2011

5/52

Functional Dependency

Functional Dependency (FD)

Let R(X) be a relational schema and $Y \subseteq X$, $Z \subseteq X$ be two attribute sets. We say Y functionally determines Z, written $Y \to Z$, if for any two tuples u and v in an instance of R(X) we have

$$u.\mathbf{Y} = v.\mathbf{Y} \rightarrow u.\mathbf{Z} = v.\mathbf{Z}.$$

We call $Y \rightarrow Z$ a functional dependency.

A functional dependency is a <u>semantic</u> assertion. It represents a rule that should always hold in any instance of schema $R(\mathbf{X})$.

◆ロト ◆御 ▶ ◆ 恵 ▶ ◆ 恵 ▶ りへぐ

Example FDs

Big Table					
sid	name	college	course	part	term_name
yy88	Yoni	New Hall	Algorithms I	IA	Easter
uu99	Uri	King's	Algorithms I	IA	Easter
bb44	Bin	New Hall	Databases	IB	Lent
bb44	Bin	New Hall	Algorithms II	IB	Michaelmas
zz70	Zip	Trinity	Databases	IB	Lent
zz70	Zip	Trinity	Algorithms II	IB	Michaelmas

- ullet sid \rightarrow name
- ullet sid o college
- course → part
- ullet course o term_name

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

/ 52

Keys, revisited

Candidate Key

Let R(X) be a relational schema and $Y \subseteq X$. Y is a candidate key if

- The FD $Y \rightarrow X$ holds, and
- ② for no proper subset $Z \subset Y$ does $Z \to X$ hold.

Prime and Non-prime attributes

An attribute A is prime for $R(\mathbf{X})$ if it is a member of some candidate key for R. Otherwise, A is non-prime.

Database redundancy roughly means the existence of non-key functional dependencies!

Closure

By soundness and completeness

$$\mathsf{closure}(F, \ \mathbf{X}) = \{A \mid F \vdash \mathbf{X} \to A\} = \{A \mid \mathbf{X} \to A \in F^+\}$$

Claim 2 (from previous lecture)

$$\mathbf{Y} \to \mathbf{W} \in F^+$$
 if and only if $\mathbf{W} \subseteq \mathsf{closure}(F, \ \mathbf{Y})$.

If we had an algorithm for closure(F, X), then we would have a (brute force!) algorithm for enumerating F^+ :

F⁺

- for every subset $\mathbf{Y} \subseteq \operatorname{atts}(F)$
 - ▶ for every subset $\mathbf{Z} \subseteq \operatorname{closure}(F, \mathbf{Y})$,
 - \star output $\mathbf{Y} \to \mathbf{Z}$

◆□▶◆□▶◆■▶◆■
◆□▶◆□▶◆■
◆□▶◆□▶◆■
◆□▶◆□▶◆□
◆□▶◆□
◆□▶◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

9/52

Attribute Closure Algorithm

- Input: a set of FDs F and a set of attributes X.
- Output : $\mathbf{Y} = \operatorname{closure}(F, \mathbf{X})$
- while there is some $S \to T \in F$ with $S \subseteq Y$ and $T \not\subseteq Y$, then $Y := Y \cup T$.

An Example (UW1997, Exercise 3.6.1)

R(A, B, C, D) with F made up of the FDs

$$A, B \rightarrow C$$

$$C \rightarrow D$$

$$D \rightarrow A$$

What is F^+ ?

Brute force!

Let's just consider all possible nonempty sets X — there are only 15...

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

1/52

Example (cont.)

$$F = \{A, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$$

For the single attributes we have

- $\{B\}^+ = \{B\},$
- $\{C\}^+ = \{A, C, D\},$

- $\{D\}^+ = \{A, D\}$
 - $P \{D\} \stackrel{D \to A}{\Longrightarrow} \{A, D\}$

The only new dependency we get with a single attribute on the left is $C \rightarrow A$.

◆□▶◆□▶◆≣▶◆≣▶ ■ か900

Example (cont.)

$$F = \{A, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$$

Now consider pairs of attributes.

- $\{A, B\}^+ = \{A, B, C, D\},$ • so $A, B \rightarrow D$ is a new dependency
- $\{A, C\}^+ = \{A, C, D\},$ • so $A, C \rightarrow D$ is a new dependency
- {A, D}⁺ = {A, D},
 so nothing new.
- $\{B, C\}^+ = \{A, B, C, D\},$ • so $B, C \rightarrow A, D$ is a new dependency
- $\{B, D\}^+ = \{A, B, C, D\},$ • so $B, D \to A, C$ is a new dependency
- $\{C, D\}^+ = \{A, C, D\},$ • so $C, D \rightarrow A$ is a new dependency

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

13/52

Example (cont.)

$$F = \{A, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$$

For the triples of attributes:

- $\{A, C, D\}^+ = \{A, C, D\},\$
- $\{A, B, D\}^+ = \{A, B, C, D\},\$
 - ▶ so $A, B, D \rightarrow C$ is a new dependency
- $\{A, B, C\}^+ = \{A, B, C, D\},\$
 - so $A, B, C \rightarrow D$ is a new dependency
- $\{B, C, D\}^+ = \{A, B, C, D\},\$
 - so $B, C, D \rightarrow A$ is a new dependency

And since $\{A, B, C, D\} + = \{A, B, C, D\}$, we get no new dependencies with four attributes.

Example (cont.)

We generated 11 new FDs:

$$egin{array}{ccccccccc} C &
ightarrow & A & A,B &
ightarrow & D \ A,C &
ightarrow & D & B,C &
ightarrow & A \ B,C &
ightarrow & D & B,D &
ightarrow & A \ B,D &
ightarrow & C,D &
ightarrow & A \ A,B,C &
ightarrow & D & A,B,D &
ightarrow & C \ B,C,D &
ightarrow & A \ \end{array}$$

Can you see the Key?

 $\{A, B\}, \{B, C\}, \text{ and } \{B, D\} \text{ are keys.}$

Note: this schema is already in 3NF! Why?

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

15 / 52

Semantic Closure

Notation

$$F \models \mathbf{Y} \rightarrow \mathbf{Z}$$

means that any database instance that that satisfies every FD of F, must also satisfy $\mathbf{Y} \to \mathbf{Z}$.

The semantic closure of F, denoted F^+ , is defined to be

$$F^+ = \{ \mathbf{Y} \to \mathbf{Z} \mid \mathbf{Y} \cup \mathbf{Z} \subseteq \mathsf{atts}(F) \text{ and } \land F \models \mathbf{Y} \to \mathbf{Z} \}.$$

The membership problem is to determine if $\mathbf{Y} \to \mathbf{Z} \in F^+$.

Reasoning about Functional Dependencies

We write $F \vdash \mathbf{Y} \to \mathbf{Z}$ when $\mathbf{Y} \to \mathbf{Z}$ can be derived from F via the following rules.

Armstrong's Axioms

Reflexivity If $\mathbf{Z} \subseteq \mathbf{Y}$, then $F \vdash \mathbf{Y} \rightarrow \mathbf{Z}$.

Augmentation If $F \vdash Y \rightarrow Z$ then $F \vdash Y, W \rightarrow Z, W$.

Transitivity If $F \vdash Y \rightarrow Z$ and $F \models Z \rightarrow W$, then $F \vdash Y \rightarrow W$.

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

7/52

Logical Closure (of a set of attributes)

Notation

$$closure(F, \mathbf{X}) = \{A \mid F \vdash \mathbf{X} \rightarrow A\}$$

Claim 1

If $Y \to W \in F$ and $Y \subseteq closure(F, X)$, then $W \subseteq closure(F, X)$.

Claim 2

 $\mathbf{Y} \to \mathbf{W} \in F^+$ if and only if $\mathbf{W} \subset \operatorname{closure}(F, \mathbf{Y})$.

Soundness and Completeness

Soundness

$$F \vdash f \implies f \in F^+$$

Completeness

$$f \in F^+ \implies F \vdash f$$

◆□▶◆□▶◆■▶ ■ り90

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 - 07

DB 2011

19 / 52

Proof of Completeness (soundness left as an exercise)

Show $\neg (F \vdash f) \implies \neg (F \models f)$:

- Suppose $\neg (F \vdash \mathbf{Y} \rightarrow \mathbf{Z})$ for $R(\mathbf{X})$.
- Let $\mathbf{Y}^+ = \operatorname{closure}(F, \mathbf{Y})$.
- $\exists B \in \mathbf{Z}$, with $B \notin \mathbf{Y}^+$.
- Construct an instance of R with just two records, u and v, that agree on \mathbf{Y}^+ but not on $\mathbf{X} \mathbf{Y}^+$.
- By construction, this instance does not satisfy $Y \rightarrow Z$.
- But it does satisfy F! Why?
 - ▶ let $S \rightarrow T$ be any FD in F, with u.[S] = v.[S].
 - ▶ So $\mathbf{S} \subseteq \mathbf{Y}+$. and so $\mathbf{T} \subseteq \mathbf{Y}+$ by claim 1,
 - ▶ and so u.[T] = v.[T]

Consequences of Armstrong's Axioms

Union If $F \models \mathbf{Y} \to \mathbf{Z}$ and $F \models \mathbf{Y} \to \mathbf{W}$, then $F \models \mathbf{Y} \to \mathbf{W}, \mathbf{Z}$.

Pseudo-transitivity If $F \models Y \rightarrow Z$ and $F \models U, Z \rightarrow W$, then $F \models Y, U \rightarrow W$.

Decomposition If $F \models Y \rightarrow Z$ and $W \subseteq Z$, then $F \models Y \rightarrow W$.

Exercise: Prove these using Armstrong's axioms!

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

1 / 52

Proof of the Union Rule

Suppose we have

$$F \models \mathbf{Y} \rightarrow \mathbf{Z},$$

 $F \models \mathbf{Y} \rightarrow \mathbf{W}.$

By augmentation we have

$$F \models \mathbf{Y}, \mathbf{Y} \rightarrow \mathbf{Y}, \mathbf{Z},$$

that is,

$$F \models \mathbf{Y} \rightarrow \mathbf{Y}, \mathbf{Z}.$$

Also using augmentation we obtain

$$F \models Y, Z \rightarrow W, Z.$$

Therefore, by transitivity we obtain

$$F \models \mathbf{Y} \rightarrow \mathbf{W}, \mathbf{Z}.$$

9 L P 9 CF P 9 E P 9 E P 7 C

Example application of functional reasoning.

Heath's Rule

Suppose R(A, B, C) is a relational schema with functional dependency $A \rightarrow B$, then

$$R = \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R).$$

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 - 07

DB 2011

23 / 52

Proof of Heath's Rule

We first show that $R \subseteq \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R)$.

- If $u = (a, b, c) \in R$, then $u_1 = (a, b) \in \pi_{A,B}(R)$ and $u_2 = (a, c) \in \pi_{A,C}(R)$.
- Since $\{(a, b)\} \bowtie_A \{(a, c)\} = \{(a, b, c)\}$ we know $u \in \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R)$.

In the other direction we must show $R' = \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R) \subseteq R$.

- If $u = (a, b, c) \in R'$, then there must exist tuples $u_1 = (a, b) \in \pi_{A,B}(R)$ and $u_2 = (a, c) \in \pi_{A,C}(R)$.
- This means that there must exist a $u' = (a, b', c) \in R$ such that $u_2 = \pi_{A,C}(\{(a, b', c)\}).$
- However, the functional dependency tells us that b = b', so $u = (a, b, c) \in R$.

Closure Example

$$R(A, B, C, D, D, F)$$
 with

$$A, B \rightarrow C$$

 $B, C \rightarrow D$
 $D \rightarrow E$
 $C, F \rightarrow B$

What is the closure of $\{A, B\}$?

$$\{A, B\} \stackrel{A,B \to C}{\Longrightarrow} \{A, B, C\}$$

$$\stackrel{B,C \to D}{\Longrightarrow} \{A, B, C, D\}$$

$$\stackrel{D \to E}{\Longrightarrow} \{A, B, C, D, E\}$$

So $\{A, B\}^+ = \{A, B, C, D, E\}$ and $A, B \rightarrow C, D, E$.

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

25 / 52

Lecture 06: Normal Forms

Outline

- First Normal Form (1NF)
- Second Normal Form (2NF)
- 3NF and BCNF
- Multi-valued dependencies (MVDs)
- Fourth Normal Form

First Normal Form (1NF)

We will assume every schema is in 1NF.

1NF

A schema $R(A_1 : S_1, A_2 : S_2, \dots, A_n : S_n)$ is in First Normal Form (1NF) if the domains S_1 are elementary — their values are atomic.

name	\Longrightarrow
Timothy George Griffin	

first_name	middle_name	last_name
Timothy	George	Griffin

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 - 07

DB 2011

7 / 52

Second Normal Form (2NF)

Second Normal Form (2CNF)

A relational schema R is in 2NF if for every functional dependency $X \rightarrow A$ either

- $A \in X$, or
- X is a superkey for R, or
- A is a member of some key, or
- X is not a proper subset of any key.

3NF and BCNF

Third Normal Form (3CNF)

A relational schema R is in 3NF if for every functional dependency $X \rightarrow A$ either

- \bullet $A \in X$, or
- X is a superkey for R, or
- A is a member of some key.

Boyce-Codd Normal Form (BCNF)

A relational schema *R* is in BCNF if for every functional dependency

- $\mathbf{X} \rightarrow \mathbf{A}$ either
 - \bullet $A \in X$, or
 - X is a superkey for R.

Is something missing?

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

9 / 52

Another look at Heath's Rule

Given $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ with FDs F

If $\mathbf{Z} \to \mathbf{W} \in F^+$, the

$$R = \pi_{\mathsf{Z},\mathsf{W}}(R) \bowtie \pi_{\mathsf{Z},\mathsf{Y}}(R)$$

What about an implication in the other direction? That is, suppose we have

$$R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R).$$

Q Can we conclude anything about FDs on R? In particular, is it true that $\mathbf{Z} \to \mathbf{W}$ holds?

A No!

We just need one counter example ...

Clearly $A \rightarrow B$ is not an FD of R.

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

31 / 52

A concrete example

course_name	lecturer	text
Databases	Tim	Ullman and Widom
Databases	Fatima	Date
Databases	Tim	Date
Databases	Fatima	Ullman and Widom

Assuming that texts and lecturers are assigned to courses independently, then a better representation would in two tables:

course_name	lecturer	course_name	text
Databases	Tim	Databases	Ullman and Widom
Databases	Fatima	Databases	Date

Time for a definition! MVDs

Multivalued Dependencies (MVDs)

Let $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ be a relational schema. A multivalued dependency, denoted $\mathbf{Z} \rightarrow \mathbf{W}$, holds if whenever t and u are two records that agree on the attributes of \mathbf{Z} , then there must be some tuple v such that

- \bigcirc v agrees with both t and u on the attributes of **Z**,
- 2 v agrees with t on the attributes of \mathbf{W} ,
- \odot v agrees with u on the attributes of **Y**.

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

33 / 52

A few observations

Note 1

Every functional dependency is multivalued dependency,

$$(Z \rightarrow W) \implies (Z \rightarrow W).$$

To see this, just let v = u in the above definition.

Note 2

Let $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ be a relational schema, then

$$(Z \rightarrow W) \iff (Z \rightarrow Y),$$

by symmetry of the definition.

◆ロト ◆御 ▶ ◆ 恵 ▶ ◆ 恵 ▶ りへぐ

MVDs and lossless-join decompositions

Fun Fun Fact

Let $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ be a relational schema. The decomposition $R_1(\mathbf{Z}, \mathbf{W})$, $R_2(\mathbf{Z}, \mathbf{Y})$ is a lossless-join decomposition of R if and only if the MVD $\mathbf{Z} \rightarrow \mathbf{W}$ holds.

◆□▶◆□▶◆■▶◆■▼ かへで

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 - 07

DB 2011

5 / 52

Proof of Fun Fun Fact

Proof of $(\mathbf{Z} \rightarrow \mathbf{W}) \implies R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R)$

- Suppose Z → W.
- We know (from proof of Heath's rule) that $R \subseteq \pi_{Z,W}(R) \bowtie \pi_{Z,Y}(R)$. So we only need to show $\pi_{Z,W}(R) \bowtie \pi_{Z,Y}(R) \subseteq R$.
- Suppose $r \in \pi_{Z,W}(R) \bowtie \pi_{Z,Y}(R)$.
- So there must be a $t \in R$ and $u \in R$ with $\{r\} = \pi_{\mathbf{Z}, \mathbf{W}}(\{t\}) \bowtie \pi_{\mathbf{Z}, \mathbf{Y}}(\{u\}).$
- In other words, there must be a $t \in R$ and $u \in R$ with $t.\mathbf{Z} = u.\mathbf{Z}$.
- So the MVD tells us that then there must be some tuple $v \in R$ such that
 - \bigcirc v agrees with both t and u on the attributes of **Z**,
 - v agrees with t on the attributes of **W**,
 - \circ v agrees with u on the attributes of **Y**.
- This v must be the same as r, so $r \in R$.

<ロ > ∢回 > ∢回 > ∢ 亘 > √ 亘 → りへの

Proof of Fun Fun Fact (cont.)

Proof of $R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R) \implies (\mathbf{Z} \twoheadrightarrow \mathbf{W})$

- Suppose $R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R)$.
- Let t and u be any records in R with $t.\mathbf{Z} = u.\mathbf{Z}$.
- Let v be defined by $\{v\} = \pi_{\mathbf{Z},\mathbf{W}}(\{t\}) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(\{u\})$ (and we know $v \in R$ by the assumption).
- Note that by construction we have
 - $\mathbf{0}$ $v.\mathbf{Z} = t.\mathbf{Z} = u.\mathbf{Z}$,
 - v.W = t.W,
 - v.Y = u.Y.
- Therefore, Z → W holds.

◆ロト ◆御 ▶ ◆ 恵 ▶ ◆ 恵 ▶ りぬの

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

37 / 52

Fourth Normal Form

Trivial MVD

The MVD $Z \rightarrow W$ is trivial for relational schema R(Z, W, Y) if

- \bigcirc **Z** \cap **W** \neq {}, or
- $\mathbf{Q} \ \mathbf{Y} = \{\}.$

4NF

A relational schema $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ is in 4NF if for every MVD $\mathbf{Z} \rightarrow \mathbf{W}$ either

- Z → W is a trivial MVD, or
- Z is a superkey for R.

Note : $4NF \subset BCNF \subset 3NF \subset 2NF$

Summary

We always want the lossless-join property. What are our options?

	3NF	BCNF	4NF
Preserves FDs	Yes	Maybe	Maybe
Preserves MVDs	Maybe	Maybe	Maybe
Eliminates FD-redundancy	Maybe	Yes	Yes
Eliminates MVD-redundancy	No	No	Yes

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ◆ □ ◆ ○ へ○

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 - 07

DB 2011

9 / 52

Inclusions

Clearly BCNF \subseteq 3NF \subseteq 2*NF*. These are proper inclusions:

In 2NF, but not 3NF

R(A, B, C), with $F = \{A \rightarrow B, B \rightarrow C\}$.

In 3NF, but not BCNF

R(A, B, C), with $F = \{A, B \rightarrow C, C \rightarrow B\}$.

- This is in 3NF since AB and AC are keys, so there are no non-prime attributes
- But not in BCNF since C is not a key and we have $C \rightarrow B$.

The Plan

Given a relational schema R(X) with FDs F:

- Reason about FDs
 - Is F missing FDs that are logically implied by those in F?
- Decompose each $R(\mathbf{X})$ into smaller $R_1(\mathbf{X}_1), R_2(\mathbf{X}_2), \cdots R_k(\mathbf{X}_k)$, where each $R_i(\mathbf{X}_i)$ is in the desired Normal Form.

Are some decompositions better than others?

□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆○ ○

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

1/52

Desired properties of any decomposition

Lossless-join decomposition

A decomposition of schema $R(\mathbf{X})$ to $S(\mathbf{Y} \cup \mathbf{Z})$ and $T(\mathbf{Y} \cup (\mathbf{X} - \mathbf{Z}))$ is a lossless-join decomposition if for every database instances we have $R = S \bowtie T$.

Dependency preserving decomposition

A decomposition of schema $R(\mathbf{X})$ to $S(\mathbf{Y} \cup \mathbf{Z})$ and $T(\mathbf{Y} \cup (\mathbf{X} - \mathbf{Z}))$ is dependency preserving, if enforcing FDs on S and T individually has the same effect as enforcing all FDs on $S \bowtie T$.

We will see that it is not always possible to achieve both of these goals.

Lecture 07: Schema Decomposition

Outline

- General Decomposition Method (GDM)
- The lossless-join condition is guaranteed by GDM
- The GDM does not always preserve dependencies!

4□ > 4 @ > 4 \(\bar{a}\) > \(\bar{a}\) = \(\O \) \(\O \) \(\D \) = \(\O \) \(\O \

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 - 07

DB 2011

3 / 52

General Decomposition Method (GDM)

GDM

- ① Understand your FDs F (compute F^+),
- ind R(X) = R(Z, W, Y) (sets Z, W and Y are disjoint) with FD $Z \rightarrow W \in F^+$ violating a condition of desired NF,
- **3** split R into two tables $R_1(\mathbf{Z}, \mathbf{W})$ and $R_2(\mathbf{Z}, \mathbf{Y})$
- wash, rinse, repeat

Reminder

For $\mathbf{Z} \to \mathbf{W}$, if we assume $\mathbf{Z} \cap \mathbf{W} = \{\}$, then the conditions are

- **2** is a superkey for *R* (2NF, 3NF, BCNF)
- W is a subset of some key (2NF, 3NF)
- 3 Z is not a proper subset of any key (2NF)

The lossless-join condition is guaranteed by GDM

- This method will produce a lossless-join decomposition because of (repeated applications of) Heath's Rule!
- That is, each time we replace an S by S_1 and S_2 , we will always be able to recover S as $S_1 \bowtie S_2$.
- Note that in GDM step 3, the FD Z → W may represent a key constraint for R₁.

But does the method always terminate? Please think about this

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

5 / 52

General Decomposition Method Revisited

GDM++

- ① Understand your FDs and MVDs F (compute F^+),
- ind R(X) = R(Z, W, Y) (sets Z, W and Y are disjoint) with either $FD Z \rightarrow W \in F^+$ or MVD $Z \rightarrow W \in F^+$ violating a condition of desired NF,
- **3** split R into two tables $R_1(\mathbf{Z}, \mathbf{W})$ and $R_2(\mathbf{Z}, \mathbf{Y})$
- wash, rinse, repeat

Return to Example — Decompose to BCNF

$$F = \{A, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$$

Which FDs in F^+ violate BCNF?

$$egin{array}{cccc} C &
ightarrow & A \ C &
ightarrow & D \ D &
ightarrow & A \ A, C &
ightarrow & D \ C, D &
ightarrow & A \end{array}$$

4□ → 4□ → 4 = → 4 = → 9 < 0</p>

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

47 / 52

Return to Example — Decompose to BCNF

Decompose R(A, B, C, D) to BCNF

Use $C \rightarrow D$ to obtain

- $R_1(C, D)$. This is in BCNF. Done.
- $R_2(A, B, C)$ This is not in BCNF. Why? A, B and B, C are the only keys, and $C \to A$ is a FD for R_1 . So use $C \to A$ to obtain
 - $R_{2.1}(A, C)$. This is in BCNF. Done.
 - $R_{2,2}(B, C)$. This is in BCNF. Done.

Exercise: Try starting with any of the other BCNF violations and see where you end up.

The GDM does not always preserve dependencies!

$$\begin{array}{ccc}
A,B & \rightarrow & C \\
D,E & \rightarrow & C \\
B & \rightarrow & D
\end{array}$$

- $\{A, B\}^+ = \{A, B, C, D\},$
- so $A, B \rightarrow C, D$,
- and $\{A, B, E\}$ is a key.
- $\{B, E\}^+ = \{B, C, D, E\}$,
- so $B, E \rightarrow C, D$,
- and {A, B, E} is a key (again)

Let's try for a BCNF decomposition ...

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 — 07

DB 2011

9 / 52

Decomposition 1

Decompose R(A, B, C, D, E) using $A, B \rightarrow C, D$:

- $R_1(A, B, C, D)$. Decompose this using $B \to D$:
 - $R_{1,1}(B, D)$. Done.
 - \triangleright $R_{1,2}(A, B, C)$. Done.
- \bullet $R_2(A, B, E)$. Done.

But in this decomposition, how will we enforce this dependency?

$$D, E \rightarrow C$$

Decomposition 2

Decompose R(A, B, C, D, E) using $B, E \rightarrow C, D$:

- $R_3(B, C, D, E)$. Decompose this using $D, E \rightarrow C$
 - $R_{3.1}(C, D, E)$. Done.
 - $ightharpoonup R_{3.2}(B, D, E)$. Decompose this using $B \to D$:
 - $\star R_{3,2,1}(B, D)$. Done.
 - \star $R_{3.2.2}(B, E)$. Done.
- $R_4(A, B, E)$. Done.

But in this decomposition, how will we enforce this dependency?

$$A, B \rightarrow C$$

◆□▶◆□▶◆■▶◆■
◆□▶◆□▶◆■
◆□▶◆□▶◆■
◆□▶◆□▶◆□
◆□▶◆□
◆□▶◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□
◆□

T. Griffin (cl.cam.ac.uk)

Databases 2011 Lectures 05 - 07

DB 2011

1/52

Summary

- It always is possible to obtain BCNF that has the lossless-join property (using GDM)
 - But the result may not preserve all dependencies.
- It is always possible to obtain 3NF that preserves dependencies and has the lossless-join property.
 - Using methods based on "minimal covers" (for example, see EN2000).