Prime Numbers

Consider the decision problem \textsc{Prime}:

Given a number \(x\), is it prime?

This problem is in \textsc{co-NP}.

\[
\forall y (y < x \rightarrow (y = 1 \vee \neg \text{div}(y, x)))
\]

Note again, the algorithm that checks for all numbers up to \(\sqrt{n}\) whether any of them divides \(n\), is not polynomial, as \(\sqrt{n}\) is not polynomial in the size of the input string, which is \(\log n\).

Primality

In 2002, Agrawal, Kayal and Saxena showed that \textsc{Prime} is in \textsc{P}.

If \(a\) is co-prime to \(p\),

\[
(x - a)^p \equiv (x^p - a) \pmod{p}
\]

if, and only if, \(p\) is a prime.

Checking this equivalence would take too long. Instead, the equivalence is checked \textit{modulo} a polynomial \(x^r - 1\), for “suitable” \(r\).

The existence of suitable small \(r\) relies on deep results in number theory.

Factors

Consider the language \textsc{Factor}

\[
\{(x, k) \mid x\ has\ a\ factor\ y\ with\ 1 < y < k\}
\]

\textsc{Factor} \(\in\ \text{NP} \cap \text{co-NP}\)

\textit{Certificate of membership}—a factor of \(x\) less than \(k\).

\textit{Certificate of disqualification}—the prime factorisation of \(x\).
Optimisation

The Travelling Salesman Problem was originally conceived of as an optimisation problem to find a minimum cost tour.

We forced it into the mould of a decision problem – TSP – in order to fit it into our theory of NP-completeness.

Similar arguments can be made about the problems CLIQUE and IND.

Function Problems

Still, there is something interesting to be said for function problems arising from NP problems.

Suppose

\[L = \{ x \mid \exists y R(x, y) \} \]

where \(R \) is a polynomially-balanced, polynomial time decidable relation.

A witness function for \(L \) is any function \(f \) such that:

- if \(x \in L \), then \(f(x) = y \) for some \(y \) such that \(R(x, y) \);
- \(f(x) = \text{“no”} \) otherwise.

The class FNP is the collection of all witness functions for languages in NP.

FNP and FP

A function which, for any given Boolean expression \(\phi \), gives a satisfying truth assignment if \(\phi \) is satisfiable, and returns “no” otherwise, is a witness function for SAT.

If any witness function for SAT is computable in polynomial time, then \(P = NP \).

If \(P = NP \), then for every language in NP, some witness function is computable in polynomial time, by a binary search algorithm.

\[P = NP \text{ if, and only if, FNP = FP} \]

Under a suitable definition of reduction, the witness functions for SAT are FNP-complete.
Factorisation

The *factorisation* function maps a number \(n \) to its prime factorisation:

\[2^{k_1}3^{k_2} \cdots p_m^{k_m}. \]

This function is in \(\text{FNP} \).

The corresponding decision problem (for which it is a witness function) is trivial - it is the set of all numbers.

Still, it is not known whether this function can be computed in polynomial time.

Cryptography

Alice wishes to communicate with Bob without Eve eavesdropping.

Private Key

In a private key system, there are two secret keys

- \(e \) – the encryption key
- \(d \) – the decryption key

and two functions \(D \) and \(E \) such that:

for any \(x \),

\[D(E(x, e), d) = x \]

For instance, taking \(d = e \) and both \(D \) and \(E \) as *exclusive or*, we have the *one time pad*:

\[(x \oplus e) \oplus e = x \]

One Time Pad

The one time pad is provably secure, in that the only way Eve can decode a message is by knowing the key.

If the original message \(x \) and the encrypted message \(y \) are known, then so is the key:

\[e = x \oplus y \]
Public Key

In public key cryptography, the encryption key e is public, and the decryption key d is private.

We still have,

$$D(E(x, e), d) = x$$

If E is polynomial time computable (and it must be if communication is not to be painfully slow), then the function that takes $y = E(x, e)$ to x (without knowing d), must be in FNP.

Thus, public key cryptography is not provably secure in the way that the one time pad is. It relies on the existence of functions in $\text{FNP} - \text{FP}$.