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Problem: Traffic Routing 
• Suppose you are in charge of transportation.  

What do you do to reduce congestion? 

– Congestion is caused by traffic demand exceeding 
the capacity of transport resource 

– To build more roads (to increase capacity)?  

– To raise toll (to reduce demand)?  

– Or to optimize the traffic routes and schedules 
(from algorithmic design)? 

• Here is a radical idea – “random routing”: 

1. A passenger wants to travel from a source to a destination 

2. Take a passenger from the source to a “random” location  

3. Then take the passenger from the “random” location to 
the destination 

• Does this reduce congestion in transport networks?  

• But this works in computer networks and 
telecommunication networks 
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Random Routing in Tech Nets 
• Technological networks are interconnections of 

many nodes of systems and machines 

• High-performance supercomputers require 
intense communications among computing 
nodes (CPUs, GPUs, storage units)  

• Telecommunications need to forward numerous 
calls and data packets across places 

• The connections are often sparse (as to reduce 
connection costs) 

• Require multihop relaying from nodes to nodes 

• The nodes and links have limited I/O capacity 

• Unprocessed data are buffered in queues 

• Congestion is caused by traffic demand exceeding 
network capacity at relays and links 

• Random routing is implemented in these networks 
to reduce congestion and improve performance 
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Valient Load Balancing 
• Many Internet backbone networks are massively over-

provisioned to provide reliable services  

• Hence,  the links are vastly underutilized 

• How can we minimize the resource provision with 
satisfactory reliability?  

• Valient load balancing:  

• The core backbone network is a full-meshed network  

• Instead of the direct route between the source and 
destination, the route has to traverse a random 
intermediate router (i.e., random routing) 

• This balances the traffic among all routers in the core 
backbone network and averages out the utilization 

Verio  

AT&T 

Sprint 

80% utilization: 0.0003% 

67% utilization: 1.1% 

80% utilization: 0.00008% 

67% utilization: 0.09% 

80% utilization: 0.0009%  

67% utilization: 0.026% 

Core backbone network 
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Parallel Routing in Hypercube 
• Hypercube is an interconnection topology for 

supercomputers and peer-to-peer networks 

• There are 𝑁 = 2𝑛 nodes, each labelled by an n-bit 

coordinate 

• There is a link between every pair of nodes with 1 bit 
difference in their coordinates 

• Each link can transmit one packet at one time, and 
excessive packets will be buffered at nodes 

• Assume that each node i has a destination d(i), which 

may not necessarily be a neighbour (hence requiring 
multihop forwarding and buffering at relays) 

• What is the minimum schedule of parallel routing (i.e., a 
sequence of sets of activated links) to forward the 
traffic from all the sources to destinations? 

• Any simple algorithms? Computationally hard to find 
the minimum schedule by deterministic algorithms 
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Bit-fixing Routing in Hypercube 
• A simple routing algorithm is oblivious to other flows --  

find the shortest path between source and destination 

• Bit-fixing routing is to find a path (i1, i2, …, d(i1)), where 
– (it, it+1) differ in only one bit for all t 

– if (it-1, it) differ in the k-th leftmost bit and (it, it+1) differ 
 in the l-th leftmost bit, then k < l 

• There exists a configuration of sources and destinations  

that requires at least 2𝑛/2/2 steps by bit-fixing routing 

• Consider n is even, for every source i = (li ri), we assign  
the destination to be d(i) = (ri li) (i.e., d(i) is a  
transpose permutation of i) 

• Then for source i = (?...?1 0...00) and its destination d(i) 
 = (0...00 ?...?1) (i.e., li is odd and ri is zero), it must  
traverse (0...01 0...00) by bit-fixing routing 

• There are 2𝑛/2/2 nodes with address (?...?1 0...00)  

• Only one source can traverse (0...01 0...00) at one step 

• At least 2𝑛/2/2 steps needed for relaying from these nodes 
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Random Routing in Hypercube 
• For deterministic bit-fix routing, the worst case requires 

at least 2𝑛/2/2 steps (exponential in n)  

• But for random bit-fix routing, it requires O(n) steps 
with high probability (i.e., using more than O(n) steps 

has a vanishing probability converging to 0, as n0) 

• Random bit-fix routing has two stages: 
1. Pick a random node r(i) in the hypercube independently, and 

use bit-fixing routing from i to r(i) 

2. Use bit-fixing routing from r(i) to d(i) 

• Obviously, longer paths are needed for random bit-fix 
routing. Then why is this better? 

• The intuition is that random routing can average out the 
worst case configuration from deterministic routing 

• The probability that a randomly generated configuration 
is the worst case is very low, and is vanishing for large n 

• This intuition is behind many randomized algorithms 
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Principle of Random Routing  

• It suffices to show that it requires O(n) steps with high probability for the 

first stage of random bit-fixing routing  

• For each source i, let Pi be the random path to a random node 

• We observe a property of bit-fixing routing: 

– If Pi and Pj intersect, then there is  

only one subpath of intersection 

– Pi and Pj cannot intersect at multiple  

disjoint subpaths, as there is a unique  
path between any pair of nodes  

• Let 𝟏(𝑃𝑖 , 𝑃𝑗) be the indicator function for testing if Pi and Pj intersect 

• The delay for source i is bounded by: delay𝑖 ≤  𝟏(𝑃𝑖 , 𝑃𝑗)
2𝑛

𝑗=1  

• Hence, the expected delay:  

  𝔼[delay𝑖] ≤ 𝔼  𝟏 𝑃𝑖 , 𝑃𝑗
2𝑛

𝑗=1:𝑗≠𝑖 =  𝔼 𝟏 𝑃𝑖 , 𝑃𝑗
2𝑛

𝑗=1:𝑗≠𝑖 ≤   ℙ 𝑒 ∈ 𝑃𝑗
2𝑛

𝑗=1:𝑗≠𝑖𝑒∈𝑃𝑖 
 

where 𝑒 ∈ 𝑃𝑗 denotes that e is a link in the path Pj  

010 

Pi 

 

 

100 

110 111 

Pj Not possible 

Continue in 
the next slide 
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Principle of Random Routing  

• Note that there are 𝑛2𝑛−1 links in a hypercube and 2𝑛 paths by bit-fixing, 
where each path has at most n links 

• Thus, the expected number  of paths including a particular link 𝑒 is 2: 

 ℙ 𝑒 ∈ 𝑃𝑗
2𝑛

𝑗=1 = 2. Note that Pj contains at most n links  

• Therefore, 𝔼[delay𝑖] ≤  𝔼 𝟏 𝑃𝑖 , 𝑃𝑗
2𝑛

𝑗=1:𝑗≠𝑖 ≤ 2𝑛 

• Our aim is to show that ℙ  𝟏 𝑃𝑖 , 𝑃𝑗
2𝑛

𝑗=1:𝑗≠𝑖 ≥ 𝑐𝑛  ≤
1

2𝑛
  for some c 

• Hence, ℙ delay𝑖 ≥ 𝑐𝑛  ≤
1

2𝑛
 (i.e., it takes O(n) steps with high probability) 

• We note that Pi and Pj are independent random variables (because r(i) 
and r(j) are picked independently) 

• So 𝟏 𝑃𝑖, 𝑃𝑗  and 𝟏 𝑃𝑖 , 𝑃𝑘  are independent random variables for 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑖 

• Let 𝑋𝑗 ≜ 𝟏 𝑃𝑖, 𝑃𝑗  be a Bernoulli random variable: ℙ 𝑋𝑗 = 1 = 𝔼 𝑋𝑗 ≤
𝑛

𝑛2𝑛−1
 

• Obtaining the distribution of sum of independent Bernoulli random 

variables, ℙ  𝑋𝑗
𝑁
𝑗=1 ≥ 𝑥 , requires the famous Chernoff Bound 

 

Follow from 
the last slide 
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Chernoff Bound 
• We are interested in ℙ  𝑋𝑗

𝑁
𝑗=1 ≥ 𝑥 , which is called tail distribution  

• First, we use Markov inequality, ℙ 𝑋 ≥ 𝑥 ≤
𝔼 𝑋

𝑥
 for positive x. Hence 

 ℙ  𝑋𝑗
𝑁
𝑗=1 ≥ 𝑥  ≤

𝑁𝔼 𝑋𝑗

𝑥
≤
𝑛

𝑥
 which is not sufficiently small when x =cn   

• But we can strengthen Markov Inequality by: ℙ 𝑋 ≥ 𝑥 = ℙ 𝑒𝑡𝑋 ≥ 𝑒𝑡𝑥 ≤
𝔼 𝑒𝑡𝑋

𝑒𝑡𝑥
  

for any positive t,  

• Hence ℙ 𝑋 ≥ 𝑥 ≤ min
𝑡>0

𝔼 𝑒𝑡𝑋

𝑒𝑡𝑥
  (a.k.a. Chernoff Bound) 

• When X is a sum of independent Bernoulli random variables,  

𝔼 𝑒𝑡𝑋 = 𝔼 𝑒𝑡  𝑋𝑗
𝑁
𝑗=1 = 𝔼 𝑒𝑡𝑋𝑗

𝑁

𝑗=1
= 𝔼 𝑒𝑡𝑋𝑗

𝑁
= (𝑝𝑒𝑡+ 1−𝑝 )𝑁= (1+𝑝(𝑒𝑡−1))𝑁 

• Note that 1 + 𝑦 ≤ 𝑒𝑦, thus we have  𝔼 𝑒𝑡𝑋 ≤ 𝑒(𝑒
𝑡−1)𝑁𝔼 𝑋𝑗   

• Next , we obtain ℙ  𝑋𝑗𝑁
𝑗=1 ≥ 𝑥 ≤ min

𝑡>0

𝑒
(𝑒𝑡−1)𝑁𝔼 𝑋𝑗

𝑒𝑡𝑥
  and we let 𝑡 = ln(1 + 𝛿) 

• ℙ  𝑋𝑗
𝑁
𝑗=1 ≥ (1 + 𝛿)𝑁𝔼 𝑋𝑗  ≤

𝑒𝛿

(1+𝛿)1+𝛿

𝑁𝔼 𝑋𝑗

 

• If we let  be sufficiently large, then ℙ  𝑋𝑗
𝑁
𝑗=1 ≥ 𝑐𝑁𝔼 𝑋𝑗  ≤

1

2

𝑁𝔼 𝑋𝑗
 

• Hence, for random bit-fixing routing, ℙ delay𝑖 ≥ 𝑐′𝑛  ≤
1

2𝑛
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Summary 

• Random routing takes a detour to a random intermediate node 
before reaching the destination 

• Random routing can average out the worst case traffic patterns 
to deterministic routing algorithms  

• Random routing has been implemented in telecommunication 
networks (Valient load balancing) and in supercomputer 
architecture (parallel routing in hypercube) 

• A key tool to prove the effectiveness of random routing is based 
on the Chernoff bound which estimates the exponential tail 
distribution of a sum of independent Bernoulli random variables  

• Hence, the probability that routing random deviates from the 
expected value is exponentially small in the size of network 
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