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Why Randomized Algorithms? 

• Randomized Algorithms are algorithms that make 
“random choices” during the execution 

• We also make lots of random choices everyday, because 

• Lack of information 

• Convenience and simplicity 

• To diversify risk and try luck! 

• These reasons apply to algorithmic design 

• But unscrupulous random choices may end with useless 
results 

• Question: How do we make smart random choices?  

• In practice:  
Simple random choices often work amazingly well 

• In theory:  
Simple maths can justify these simple random choices 
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Applications of Randomized Algorithms 
• Randomized algorithms are especially useful for 

applications with  

• Large data set and insufficient memory 

• Limited computational power 

• Uninformed knowledge 

• Minor fault tolerability  

• A long list of applications include 

• Information retrieval, databases, 
bioinformatics  (e.g. Google, DNA matching) 

• Networking, telecommunications (e.g. AT&T)  

• Optimization, data prediction, financial trading  

• Artificial intelligence, machine learning 

• Graphics, multi-media, computer games  

• Information security, and a lot more … 

? 
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A Key Example: Hashing 
• Hashing enables large-scale, fast data processing 

• Expedite the performance of large data/file systems 
in search engines (Google, Bing) 

• Enable fast response time in small low-power  
devices (iPhone, iPad) 

• Hashing is a random sampling/projection of  
some more complicated data objects (e.g. strings,  
graphs, functions, sets, data structures) 

• E.g. String-based hashing maps a input string to a 
shorter hash (string) by a hash function 

• Assuming that a hash function is selected randomly 
(without a priori knowledge) from a large class of  
hash functions 

• Hence, when we do not specify the detailed 
implementation of a particular hash function, the 
behaviour of hashing appears probabilistic 

0A 084 ffe2 5908 d3e 

string-based hashing for 
address book 
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Balls and Bins Model 
• A generic model for hashing is balls-and-bins model 

• Throw m balls into n bins, such that each ball is 

uniformly randomly distributed among the bins 

• Interpretations of the model 

• Balls = data objects, Bins = hashes 

• (Coupon Collector Problem) Balls = coupons, Bins = 
types of coupons 

• (Birthday Attack Prob.) Balls = people, Bins = birthdates 

• Key questions 

• Efficiency: How many non-empty bins?  

• Performance: What is the maximum number of balls 
in all the bins? 

• Balls-and-bins model is a random model 

• Its behaviour is naturally analysed by probability 
theory  

… 

n bins 

m balls 

0A 084 ffe2 5908 d3e 
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Poisson Approximation 

• The probability that bin i has r balls follows binominal distribution 

• ℙ 𝑋𝑖 = 𝑟 = 𝑚
𝑟

1

𝑛

𝑟
1 −

1

𝑛

𝑚−𝑟
=

1

𝑟!

𝑚 𝑚−1 … 𝑚−𝑟+1

𝑛𝑟
1 −

1

𝑛

𝑚−𝑟
  

• But the expression can be too unwieldy   

• When m and n are very large, we can approximate by 

•
𝑚 𝑚−1 … 𝑚−𝑟+1

𝑛𝑟
≈

𝑚

𝑛

𝑟
 and  1 −

1

𝑛

𝑚−𝑟
≈ 𝑒

−𝑚

𝑛  

• Hence, ℙ 𝑋𝑖 = 𝑟 ≈
𝑒
−𝑚
𝑛

𝑚

𝑛

𝑟

𝑟!
 

• This is known as Poisson distribution Po(𝑟) =
𝑒−𝜇 𝜇 𝑟

𝑟!
   

• The mean of Poisson distribution is 𝜇 =
𝑚

𝑛
 

• The probability of a non-empty bin is  

      ℙ 𝑋𝑖 ≠ 0 ≈ 1 − Po 0 = 1 − 𝑒−𝜇 

Po(𝑟) =
𝑒−𝜇 𝜇 𝑟

𝑟!
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Maximum Load 

• Recall a well-known technique called Union Bound 

• ℙ 𝑋1 ≥ 𝑟 or…or 𝑋𝑛 ≥ 𝑟 ≤ ℙ 𝑋1 ≥ 𝑟 +⋯+ ℙ 𝑋𝑛 ≥ 𝑟  

• The probability that all bins have less than M  balls is 

• 1 − ℙ max
𝑖=1,…,𝑛

𝑋𝑖 ≥ 𝑀 ≤ 1 − 𝑛 ℙ 𝑋𝑖 ≥ 𝑀  

• If  𝑀 > 𝜇 =
𝑚

𝑛
, then ℙ 𝑋𝑖 ≥ 𝑀 ≤

𝑒−𝜇 𝑒 𝜇 𝑀

𝑀𝑀
    

• (Shown by Chernoff Bound in homework)  

• If m = n (hence  = 1) and 𝑀 =
3ln 𝑛

ln ln 𝑛
 , then  

•  ℙ 𝑋𝑖 ≥
3ln 𝑛

ln ln 𝑛
≤
𝑒−1𝑒𝑀

𝑀𝑀 =
e ln ln 𝑛

3 ln 𝑛

3ln 𝑛
ln ln 𝑛

𝑒
≤

ln ln 𝑛

ln 𝑛

3ln 𝑛
ln ln 𝑛

𝑒
 = 
𝑒
(ln ln ln 𝑛  − ln ln 𝑛)

3ln 𝑛
ln ln 𝑛

𝑒
 

• 1 − ℙ max
𝑖=1,…,𝑛

𝑋𝑖 ≥
3ln 𝑛

ln ln 𝑛
≤ 1 − 𝑛 

𝑒
(ln ln ln 𝑛  − ln ln 𝑛)

3ln 𝑛
ln ln 𝑛

𝑒
≤ 1 −

1

𝑒𝑛
 

• Therefore , the maximum load is larger than 
3ln 𝑛

ln ln 𝑛
 has a vanishing probability 

(i.e. , ℙ max
𝑖=1,…,𝑛

𝑋𝑖 ≥
3ln 𝑛

ln ln 𝑛
⟶ 0 , as n  ) 

• Or we say that the maximum load is less than 
3ln 𝑛

ln ln 𝑛
 with high probability. 
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Bloom Filter 
• Instead of hashing from a string, we also consider more 

complicated objects 

• A Bloom filter maps a “set” of strings to a n-bit string 

• There are k hash functions, each hash function hk maps a 
string to a value in {1,..,n} 

• We initially set the Bloom filter to be an n-bit zero string 

• If we include a string s in the Bloom filter, we set the  
hk(s)-th bit in the Bloom filter to be one for every k 

• To validate whether a string s is a member of a Bloom 
filter, we check if the hk(s)-th bit in the Bloom filter is one 
for every k 

• A string belonging to a Bloom filter will be confirmed as a 
member by the validation (i.e., there is no false negative) 

• However, it is possible that a string not belonging to a 
Bloom filter will also be confirmed as a member by the 
validation (i.e., there can be false positive) 

K. G. Smith 
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A. Williams B. Roberts 

C. Phillips 

1 0 0 0 1 1 1 

1 0 0 0 1 1 1 

H. Morrison 

(Not a member) 

n-bit string 

Bloom filter 

1 0 0 0 1 1 1 

A. Clarke 

(False positive) 
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Do we have any 
common items 

Applications of Bloom Filter 
• Bloom filter is a compact representation of a set of strings 

• Useful to applications with minor fault tolerance to false positives: 

1) Spell and password checkers with a set unsuitable words 

2) Distributed database query 

3) Content distribution and web cache 

4) Peer-to-peer networks 

5) Packet filtering and measurement of pre-defined flows 

6) Information security, computer graphics, etc. 
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Peer-to-peer networks 
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Optimization of Bloom Filter 
• We want to minimize the number of false positives 

• There are m strings to be included in an n-bit string Bloom filter 

• There are k hash functions, each hash function hk maps a string to a value in {1,..,n} 

• The probability that a particular bit in the Bloom filter becomes one after 
including m strings is 

• 1 − 1 −
1

𝑛

𝑘𝑚
≈ 1 −  𝑒

−𝑘𝑚

𝑛  , assuming that n and m are very large 

• Consider validating if a random string is included in the Bloom filter or not 

• The probability that the validation succeeds is 

• 1 − 1 −
1

𝑛

𝑘𝑚 𝑘

≈ 1 − 𝑒
−𝑘𝑚

𝑛

𝑘

≜ 𝑓𝑚,𝑛(𝑘) 

• 𝑓𝑚,𝑛(𝑘) is also the probability of a false positive. Hence, we want to 
minimize 𝑓𝑚,𝑛 𝑘  with respect to k 

•
𝑑 ln 𝑓𝑚,𝑛(𝑘)  

𝑑𝑘
= ln(1 − 𝑒−𝑘𝑚/𝑛) +

𝑘𝑚

𝑛

𝑒−𝑘𝑚/𝑛

1−𝑒−𝑘𝑚/𝑛
 

• Hence, 
𝑑 ln 𝑓𝑚,𝑛(𝑘)  

𝑑𝑘
= 0 ⇒ 𝑘 = ln 2 

𝑛

𝑚
  and  𝑓𝑚,𝑛 𝑘 =

1

2𝑘
= 0.612 𝑛/𝑚  

• For instance, if m =100 and 𝑓𝑚,𝑛 𝑘 = 0.01, then n = 938 and k = 7 
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Heavy Hitter Problem 
• Find the most frequent items in a stream 

• In a network, find the users who consume the most 
bandwidth by observing a stream of packets 

• In a search engine, find the most queried phrases 

• From the transactions of a supermarket, find the most 
purchased items 

• Heavy hitter problem 
• There is a stream of items with multiple occurrences 

• We want to find the items with the most occurrences,  
when observing the stream continuously 

• We do not know the number of distinct items in a prior 
manner 

• We are only allowed to use storage space much less 
than the number of items in the stream 

• Algorithms that process a stream of data with tight 
space consumption are called streaming algorithms   
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Count-min Sketch 
• We use an approach similar to the Bloom filter called 

count-min sketch 

• A sketch is an array of k×m/k counters, *𝐶𝑖,𝑗 + 

• There are k hash functions, each hash function hi maps 
an item to a value in {1,..,m/k} 

• Initially set all counters to be zero (𝐶𝑖,𝑗 = 0) 

• When we observe an item s in the stream, increase the 

hi(s)-th counter (𝐶𝑖,ℎ𝑖(𝑠) = 𝐶𝑖,ℎ𝑖(𝑠)+1) for every i 

• At the end, we obtain the number of occurrences of an 
item s by the minimum of all the counters that are 

mapped by s as 𝑁 𝑠 = min *𝐶𝑖,ℎ𝑖(𝑠): 𝑖 = 1, … , 𝑘+ 

• N(s) is of course an overestimate of the true number 

of occurrences, because multiple items can be mapped 
to the same counter by a hash function 

• However, N(s) is not far from the true value 
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Principle of Count-min Sketch 
• Let the true number of occurrences of item s be T(s)  

• Let the total number of occurrences of all items be T 

• The probability that N(s) ≥ T(s)+T is at most 
𝑘

𝑚𝜀

𝑘
, where  ≤ 1 

• Let Xt be the random item at time t=1,…,T 

• Then the counter  𝐶𝑖,ℎ𝑖(𝑠) =  𝟏,ℎ𝑖 𝑋𝑡 = ℎ𝑖 𝑠 -
𝑇
𝑡=1   and is a random variable, 

where 𝟏,∙- is an indicator function 

• We obtain the expected deviation of 𝐶𝑖,ℎ𝑖(𝑠) from T(s) by 

•      𝔼,𝐶𝑖,ℎ𝑖(𝑠) − 𝑇(𝑠)- = 𝔼, 𝟏,ℎ𝑖 𝑋𝑡 = ℎ𝑖 𝑠 --
𝑇
𝑡=1:𝑋𝑡≠𝑠

 

  =  𝔼 𝟏 ℎ𝑖 𝑋𝑡 = ℎ𝑖 𝑠
𝑇
𝑡=1:𝑋𝑡≠𝑠

=  ℙ ℎ𝑖 𝑋𝑡 = ℎ𝑖 𝑠
𝑇
𝑡=1:𝑋𝑡≠𝑠

 

‖ ≤ 𝑇 ℙ ℎ𝑖 𝑋𝑡 = ℎ𝑖 𝑠 =
𝑘𝑇

𝑚
 

• Recall Markov inequality: ℙ 𝑋 ≥ 𝑥 ≤
𝔼 𝑋

𝑥
, for positive x 

•  0 ∙ ℙ 𝑋 < 𝑥 + 𝑥 ℙ 𝑋 ≥ 𝑥 ≤  𝑦 ℙ 𝑋 = 𝑦𝑦 = 𝔼 𝑋   

• Hence, ℙ*𝐶𝑖,ℎ𝑖(𝑠) − 𝑇(𝑠) ≥ 𝜀𝑇+ ≤
𝔼 𝐶𝑖,ℎ𝑖 𝑠

−𝑇(𝑠)

𝜀𝑇
 = 𝑘

𝜀𝑚
 Continue in 

the next slide 
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Principle of Count-min Sketch 

• Since ℙ*𝐶𝑖,ℎ𝑖(𝑠) − 𝑇(𝑠) ≥ 𝜀𝑇+ ≤
𝑘

𝜀𝑚
 , ℙ* min

𝑖=1,..,𝑘
 *𝐶𝑖,ℎ𝑖(𝑠)+ ≥ 𝑇 𝑠 + 𝜀𝑇+ ≤ 𝑘

𝜀𝑚

𝑘
 

• If we minimize 𝑘

𝜀𝑚

𝑘
 with respect to k, then  

• 𝑘 = 𝑚 𝜀/𝑒, 𝑘

𝜀𝑚

𝑘
 = 𝑒−𝑚𝜀/𝑒, and  ℙ*𝑁(𝑠) ≥ 𝑇 𝑠 + 𝜀𝑇+ ≤ 𝑒−𝑚𝜀/𝑒 

• If we let 𝑘 = ln
1

𝛿
  and 𝑚 = ln

1

𝛿
∙
𝑒

𝜀
, then ℙ*𝑁(𝑠) ≥ 𝑇 𝑠 + 𝜀𝑇+ ≤ 𝛿 

• Therefore,  is a tolerance threshold that bounds the deviation of N(s) from 
count-min sketch, and  is an error probability that bounds the probability of 
 N(s) deviating for the at most T 

• For example, if we set  = 0.1 and  = 0.01, then the number of counters we 
need is m = 125  and the number of hash functions is k = 5 (note that both 
m and k are independent of the number of items in the stream) 

• Streaming algorithms can do much more powerful tasks than finding the most 
frequent items, such as the distributions, correlations and other statistics in a 
stream of items in a continuous fashion 

 

Follow from 
the last slide 
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Summary 

• Randomized algorithms are algorithms that make smart random 
choices during execution 

• Hashing is a key example that enables large-scale and fast data 
processing  

• A simple balls-and-bins model can characterize the probabilistic 
properties of hashing (e.g. maximum load) 

• A Bloom filter is an example that generates a hash to determine 
the membership of a set of strings 

• Streaming algorithms use a random compact data structure 
(sketches) to determine the statistics of a stream of items in 
continuous fashions  

• Hashing can be regarded as a random projection from a high 
dimensional space of data to a low dimensional space of hashes 
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