
1 Sid C-K Chau

Part 1: Hashing and Its Many Applications

Sid C-K Chau
Chi-Kin.Chau@cl.cam.ac.uk
http://www.cl.cam.ac.uk/~ckc25/teaching

2 Sid C-K Chau

Why Randomized Algorithms?

• Randomized Algorithms are algorithms that make
“random choices” during the execution

• We also make lots of random choices everyday, because

• Lack of information

• Convenience and simplicity

• To diversify risk and try luck!

• These reasons apply to algorithmic design

• But unscrupulous random choices may end with useless
results

• Question: How do we make smart random choices?

• In practice:
Simple random choices often work amazingly well

• In theory:
Simple maths can justify these simple random choices

3 Sid C-K Chau

Applications of Randomized Algorithms
• Randomized algorithms are especially useful for

applications with

• Large data set and insufficient memory

• Limited computational power

• Uninformed knowledge

• Minor fault tolerability

• A long list of applications include

• Information retrieval, databases,
bioinformatics (e.g. Google, DNA matching)

• Networking, telecommunications (e.g. AT&T)

• Optimization, data prediction, financial trading

• Artificial intelligence, machine learning

• Graphics, multi-media, computer games

• Information security, and a lot more …

?

4 Sid C-K Chau

A Key Example: Hashing
• Hashing enables large-scale, fast data processing

• Expedite the performance of large data/file systems
in search engines (Google, Bing)

• Enable fast response time in small low-power
devices (iPhone, iPad)

• Hashing is a random sampling/projection of
some more complicated data objects (e.g. strings,
graphs, functions, sets, data structures)

• E.g. String-based hashing maps a input string to a
shorter hash (string) by a hash function

• Assuming that a hash function is selected randomly
(without a priori knowledge) from a large class of
hash functions

• Hence, when we do not specify the detailed
implementation of a particular hash function, the
behaviour of hashing appears probabilistic

0A 084 ffe2 5908 d3e

string-based hashing for
address book

5 Sid C-K Chau

Balls and Bins Model
• A generic model for hashing is balls-and-bins model

• Throw m balls into n bins, such that each ball is

uniformly randomly distributed among the bins

• Interpretations of the model

• Balls = data objects, Bins = hashes

• (Coupon Collector Problem) Balls = coupons, Bins =
types of coupons

• (Birthday Attack Prob.) Balls = people, Bins = birthdates

• Key questions

• Efficiency: How many non-empty bins?

• Performance: What is the maximum number of balls
in all the bins?

• Balls-and-bins model is a random model

• Its behaviour is naturally analysed by probability
theory

…

n bins

m balls

0A 084 ffe2 5908 d3e

6 Sid C-K Chau

Poisson Approximation

• The probability that bin i has r balls follows binominal distribution

• ℙ 𝑋𝑖 = 𝑟 = 𝑚
𝑟

1

𝑛

𝑟
1 −

1

𝑛

𝑚−𝑟
=

1

𝑟!

𝑚 𝑚−1 … 𝑚−𝑟+1

𝑛𝑟
1 −

1

𝑛

𝑚−𝑟

• But the expression can be too unwieldy

• When m and n are very large, we can approximate by

•
𝑚 𝑚−1 … 𝑚−𝑟+1

𝑛𝑟
≈

𝑚

𝑛

𝑟
 and 1 −

1

𝑛

𝑚−𝑟
≈ 𝑒

−𝑚

𝑛

• Hence, ℙ 𝑋𝑖 = 𝑟 ≈
𝑒
−𝑚
𝑛

𝑚

𝑛

𝑟

𝑟!

• This is known as Poisson distribution Po(𝑟) =
𝑒−𝜇 𝜇 𝑟

𝑟!

• The mean of Poisson distribution is 𝜇 =
𝑚

𝑛

• The probability of a non-empty bin is

 ℙ 𝑋𝑖 ≠ 0 ≈ 1 − Po 0 = 1 − 𝑒−𝜇

Po(𝑟) =
𝑒−𝜇 𝜇 𝑟

𝑟!

7 Sid C-K Chau

Maximum Load

• Recall a well-known technique called Union Bound

• ℙ 𝑋1 ≥ 𝑟 or…or 𝑋𝑛 ≥ 𝑟 ≤ ℙ 𝑋1 ≥ 𝑟 +⋯+ ℙ 𝑋𝑛 ≥ 𝑟

• The probability that all bins have less than M balls is

• 1 − ℙ max
𝑖=1,…,𝑛

𝑋𝑖 ≥ 𝑀 ≤ 1 − 𝑛 ℙ 𝑋𝑖 ≥ 𝑀

• If 𝑀 > 𝜇 =
𝑚

𝑛
, then ℙ 𝑋𝑖 ≥ 𝑀 ≤

𝑒−𝜇 𝑒 𝜇 𝑀

𝑀𝑀

• (Shown by Chernoff Bound in homework)

• If m = n (hence  = 1) and 𝑀 =
3ln 𝑛

ln ln 𝑛
 , then

• ℙ 𝑋𝑖 ≥
3ln 𝑛

ln ln 𝑛
≤
𝑒−1𝑒𝑀

𝑀𝑀 =
e ln ln 𝑛

3 ln 𝑛

3ln 𝑛
ln ln 𝑛

𝑒
≤

ln ln 𝑛

ln 𝑛

3ln 𝑛
ln ln 𝑛

𝑒
 =
𝑒
(ln ln ln 𝑛 − ln ln 𝑛)

3ln 𝑛
ln ln 𝑛

𝑒

• 1 − ℙ max
𝑖=1,…,𝑛

𝑋𝑖 ≥
3ln 𝑛

ln ln 𝑛
≤ 1 − 𝑛

𝑒
(ln ln ln 𝑛 − ln ln 𝑛)

3ln 𝑛
ln ln 𝑛

𝑒
≤ 1 −

1

𝑒𝑛

• Therefore , the maximum load is larger than
3ln 𝑛

ln ln 𝑛
 has a vanishing probability

(i.e. , ℙ max
𝑖=1,…,𝑛

𝑋𝑖 ≥
3ln 𝑛

ln ln 𝑛
⟶ 0 , as n  )

• Or we say that the maximum load is less than
3ln 𝑛

ln ln 𝑛
 with high probability.

200 400 600 800 1000
8

10

12

14

16

18

20

3ln 𝑛

ln ln 𝑛

3ln 𝑛

8 Sid C-K Chau

Bloom Filter
• Instead of hashing from a string, we also consider more

complicated objects

• A Bloom filter maps a “set” of strings to a n-bit string

• There are k hash functions, each hash function hk maps a
string to a value in {1,..,n}

• We initially set the Bloom filter to be an n-bit zero string

• If we include a string s in the Bloom filter, we set the
hk(s)-th bit in the Bloom filter to be one for every k

• To validate whether a string s is a member of a Bloom
filter, we check if the hk(s)-th bit in the Bloom filter is one
for every k

• A string belonging to a Bloom filter will be confirmed as a
member by the validation (i.e., there is no false negative)

• However, it is possible that a string not belonging to a
Bloom filter will also be confirmed as a member by the
validation (i.e., there can be false positive)

K. G. Smith

D. Johnson

A. Williams B. Roberts

C. Phillips

1 0 0 0 1 1 1

1 0 0 0 1 1 1

H. Morrison

(Not a member)

n-bit string

Bloom filter

1 0 0 0 1 1 1

A. Clarke

(False positive)

9 Sid C-K Chau

Do we have any
common items

Applications of Bloom Filter
• Bloom filter is a compact representation of a set of strings

• Useful to applications with minor fault tolerance to false positives:

1) Spell and password checkers with a set unsuitable words

2) Distributed database query

3) Content distribution and web cache

4) Peer-to-peer networks

5) Packet filtering and measurement of pre-defined flows

6) Information security, computer graphics, etc.

K. G. Smith

B. Roberts

C. Phillips

…
 K. G. Smith

D. Johnson

A. Williams

…

I want to know
who has

C. Edwards,

K. Johnson,

and …… ?

Distributed database query

…….

Do we have any
common items?

1 0 0 0 1 1 1

1 0 0 0 1 1 1

K. G. Smith

D. Johnson

A. Williams

…
 K. G. Smith

B. Roberts

C. Phillips

…

Peer-to-peer networks

10 Sid C-K Chau

Optimization of Bloom Filter
• We want to minimize the number of false positives

• There are m strings to be included in an n-bit string Bloom filter

• There are k hash functions, each hash function hk maps a string to a value in {1,..,n}

• The probability that a particular bit in the Bloom filter becomes one after
including m strings is

• 1 − 1 −
1

𝑛

𝑘𝑚
≈ 1 − 𝑒

−𝑘𝑚

𝑛 , assuming that n and m are very large

• Consider validating if a random string is included in the Bloom filter or not

• The probability that the validation succeeds is

• 1 − 1 −
1

𝑛

𝑘𝑚 𝑘

≈ 1 − 𝑒
−𝑘𝑚

𝑛

𝑘

≜ 𝑓𝑚,𝑛(𝑘)

• 𝑓𝑚,𝑛(𝑘) is also the probability of a false positive. Hence, we want to
minimize 𝑓𝑚,𝑛 𝑘 with respect to k

•
𝑑 ln 𝑓𝑚,𝑛(𝑘)

𝑑𝑘
= ln(1 − 𝑒−𝑘𝑚/𝑛) +

𝑘𝑚

𝑛

𝑒−𝑘𝑚/𝑛

1−𝑒−𝑘𝑚/𝑛

• Hence,
𝑑 ln 𝑓𝑚,𝑛(𝑘)

𝑑𝑘
= 0 ⇒ 𝑘 = ln 2

𝑛

𝑚
 and 𝑓𝑚,𝑛 𝑘 =

1

2𝑘
= 0.612 𝑛/𝑚

• For instance, if m =100 and 𝑓𝑚,𝑛 𝑘 = 0.01, then n = 938 and k = 7

11 Sid C-K Chau

Heavy Hitter Problem
• Find the most frequent items in a stream

• In a network, find the users who consume the most
bandwidth by observing a stream of packets

• In a search engine, find the most queried phrases

• From the transactions of a supermarket, find the most
purchased items

• Heavy hitter problem
• There is a stream of items with multiple occurrences

• We want to find the items with the most occurrences,
when observing the stream continuously

• We do not know the number of distinct items in a prior
manner

• We are only allowed to use storage space much less
than the number of items in the stream

• Algorithms that process a stream of data with tight
space consumption are called streaming algorithms

b d c d a a d

b

A stream of items with
multiple occurrences

b b

b b
b a a

a
c c c d

b

12 Sid C-K Chau

Count-min Sketch
• We use an approach similar to the Bloom filter called

count-min sketch

• A sketch is an array of k×m/k counters, *𝐶𝑖,𝑗 +

• There are k hash functions, each hash function hi maps
an item to a value in {1,..,m/k}

• Initially set all counters to be zero (𝐶𝑖,𝑗 = 0)

• When we observe an item s in the stream, increase the

hi(s)-th counter (𝐶𝑖,ℎ𝑖(𝑠) = 𝐶𝑖,ℎ𝑖(𝑠)+1) for every i

• At the end, we obtain the number of occurrences of an
item s by the minimum of all the counters that are

mapped by s as 𝑁 𝑠 = min *𝐶𝑖,ℎ𝑖(𝑠): 𝑖 = 1, … , 𝑘+

• N(s) is of course an overestimate of the true number

of occurrences, because multiple items can be mapped
to the same counter by a hash function

• However, N(s) is not far from the true value

12 30 3 0 …

20 12 32 50 …

33 12 90 54 …

15 30 11 20
…

…

…

+1

+1

+1

+1

m/k columns of counters

k
ro

w
s

o
f

co
u

n
te

rs
 (

h
as

h
 f

u
n

cs
.)

b d c d a a d

b

13 Sid C-K Chau

Principle of Count-min Sketch
• Let the true number of occurrences of item s be T(s)

• Let the total number of occurrences of all items be T

• The probability that N(s) ≥ T(s)+T is at most
𝑘

𝑚𝜀

𝑘
, where  ≤ 1

• Let Xt be the random item at time t=1,…,T

• Then the counter 𝐶𝑖,ℎ𝑖(𝑠) = 𝟏,ℎ𝑖 𝑋𝑡 = ℎ𝑖 𝑠 -
𝑇
𝑡=1 and is a random variable,

where 𝟏,∙- is an indicator function

• We obtain the expected deviation of 𝐶𝑖,ℎ𝑖(𝑠) from T(s) by

• 𝔼,𝐶𝑖,ℎ𝑖(𝑠) − 𝑇(𝑠)- = 𝔼, 𝟏,ℎ𝑖 𝑋𝑡 = ℎ𝑖 𝑠 --
𝑇
𝑡=1:𝑋𝑡≠𝑠

  = 𝔼 𝟏 ℎ𝑖 𝑋𝑡 = ℎ𝑖 𝑠
𝑇
𝑡=1:𝑋𝑡≠𝑠

= ℙ ℎ𝑖 𝑋𝑡 = ℎ𝑖 𝑠
𝑇
𝑡=1:𝑋𝑡≠𝑠

‖ ≤ 𝑇 ℙ ℎ𝑖 𝑋𝑡 = ℎ𝑖 𝑠 =
𝑘𝑇

𝑚

• Recall Markov inequality: ℙ 𝑋 ≥ 𝑥 ≤
𝔼 𝑋

𝑥
, for positive x

• 0 ∙ ℙ 𝑋 < 𝑥 + 𝑥 ℙ 𝑋 ≥ 𝑥 ≤ 𝑦 ℙ 𝑋 = 𝑦𝑦 = 𝔼 𝑋

• Hence, ℙ*𝐶𝑖,ℎ𝑖(𝑠) − 𝑇(𝑠) ≥ 𝜀𝑇+ ≤
𝔼 𝐶𝑖,ℎ𝑖 𝑠

−𝑇(𝑠)

𝜀𝑇
 = 𝑘

𝜀𝑚
 Continue in

the next slide

14 Sid C-K Chau

Principle of Count-min Sketch

• Since ℙ*𝐶𝑖,ℎ𝑖(𝑠) − 𝑇(𝑠) ≥ 𝜀𝑇+ ≤
𝑘

𝜀𝑚
 , ℙ* min

𝑖=1,..,𝑘
 *𝐶𝑖,ℎ𝑖(𝑠)+ ≥ 𝑇 𝑠 + 𝜀𝑇+ ≤ 𝑘

𝜀𝑚

𝑘

• If we minimize 𝑘

𝜀𝑚

𝑘
 with respect to k, then

• 𝑘 = 𝑚 𝜀/𝑒, 𝑘

𝜀𝑚

𝑘
 = 𝑒−𝑚𝜀/𝑒, and ℙ*𝑁(𝑠) ≥ 𝑇 𝑠 + 𝜀𝑇+ ≤ 𝑒−𝑚𝜀/𝑒

• If we let 𝑘 = ln
1

𝛿
 and 𝑚 = ln

1

𝛿
∙
𝑒

𝜀
, then ℙ*𝑁(𝑠) ≥ 𝑇 𝑠 + 𝜀𝑇+ ≤ 𝛿

• Therefore,  is a tolerance threshold that bounds the deviation of N(s) from
count-min sketch, and  is an error probability that bounds the probability of
 N(s) deviating for the at most T

• For example, if we set  = 0.1 and  = 0.01, then the number of counters we
need is m = 125 and the number of hash functions is k = 5 (note that both
m and k are independent of the number of items in the stream)

• Streaming algorithms can do much more powerful tasks than finding the most
frequent items, such as the distributions, correlations and other statistics in a
stream of items in a continuous fashion

Follow from
the last slide

15 Sid C-K Chau

Summary

• Randomized algorithms are algorithms that make smart random
choices during execution

• Hashing is a key example that enables large-scale and fast data
processing

• A simple balls-and-bins model can characterize the probabilistic
properties of hashing (e.g. maximum load)

• A Bloom filter is an example that generates a hash to determine
the membership of a set of strings

• Streaming algorithms use a random compact data structure
(sketches) to determine the statistics of a stream of items in
continuous fashions

• Hashing can be regarded as a random projection from a high
dimensional space of data to a low dimensional space of hashes

16 Sid C-K Chau

References

• Main reference: Mitzenmacher and Upfal book, “Probability and
Computing: Randomized Algorithms and Probabilistic Analysis”

• Chapter 5.2-5.3: Balls-and-Bins model, Poisson distribution

• Chapter 5.5.4: Bloom filter

• Chapter 13.4: Count-min sketch

• Additional references

• Broder and Mitzenmacher, “Network Applications of Bloom
Filters: A Survey”, Internet Mathematics 1 (4), pp485–509

• Cormode and Hadjieleftheriou, “Finding the frequent items in
streams of data”, Communications of the ACM, Oct 2009,
pp97-105

• More related materials are available at

  http://www.cl.cam.ac.uk/~ckc25/teaching

