
1

Distributed Systems - Overview

• some systems background/context
• some legal/social context
• development of technology – DS evolution
• ** DS fundamental characteristics **
• software structure for a node
• model/architecture/engineering for a DS
• architectures for large-scale DS

federated administration domains
integrated domain-independent services
detached, ad-hoc groups

Introduction & Overview

Life is grim.

2Introduction & Overview

3

Costly Failures in Large-Scale Systems

• UK Stock Exchange - share trading system
- abandoned 1993, cost £400M

• US tax system modernisation
- scrapped 1997, cost $4B

• UK ASSIST, statistics on welfare benefits
- terminated 1994, cost £3.5M

• London Ambulance Service Computer Aided Despatching
(LASCAD) scrapped 1992, cost £7.5M, 20 lives lost in 2 days

This may seem very 1990s but things haven't improved
 NHS National Programme for IT, “the world's biggest civil

information technology programme”

Introduction & Overview

4

Why high public expectation?

Web applications work OK
e.g. information services: trains, postcodes, phone numbers
e.g. online banking
e.g. airline reservation
e.g. conference management
e.g. online shopping and auction
e.g. Facebook, Twitter, flickr, ...

Properties: often read mostly, server model, client-server
paradigm, closely coupled, synchronous interaction (request-
reply), single-purpose, (often) private sector

Introduction & Overview

5

Public-Sector Systems
healthcare, police, social services, immigration, passports,

DVLA (driver + vehicle licensing), court-case workflow, tax,
independent living for the aged and disabled, …

• bespoke and complex
• large scale
• many types of client, meaning many roles
• web portal interface, but often not web-service model
• long timescale, high cost
• ubiquitous and mobile computing – still under research (!)
• former policy of competition and independent procurement
• current policy requiring interoperation...which changes, of

course
• legislation and government policy

Introduction & Overview

6

Some Legal/Policy Requirements - 1

“patients may specify who may see, and not see, their
electronic health records (EHRs)” - exclusions

“only the doctor with whom the patient is registered (for
treatment) may e.g. prescribe drugs, read the patient’s
EHR, etc.” - relationships

“the existence of certain sensitive components of EHRs must
be invisible, except to explicitly authorised roles”

Introduction & Overview

7

Some Legal/Policy Requirements - 2

“buses should run to time and bus operators will be punished
if published timetables are not met.”

so bus operators may refuse to cooperate in traffic
monitoring, even though monitoring could show that delay
is often not their fault.

Introduction & Overview

8

Data Protection Legislation et al.
Gathered data that identifies individuals must not be stored:

CCTV cameras: software must not recognise people and store
identities with images
(thermal imaging (infra-red) - just monitor/count)

Vehicle number plate recognition: must not be associated with
people then stored with identities
(only police allowed to look up)

Police records: accusations that are not upheld?
Sally Geeson murder - previous army records of LC Atkinson
Soham murders – previous police records of Huntley;

Govt. now require interaction between counties

UK Freedom of Information Act
Introduction & Overview

9

Rapidly Developing and New Technology
• can’t ever design a “second system”, it’s always possible to do more next

time so you face dangerously-shifting goalposts

• rapid obsolescence - incremental growth usually not sustainable long-term
(unlike e.g. telephone system)
- a current software engineering research area

• but big-bang deployment is a bad idea, so have to design for incremental
deployment

 mobile workers in healthcare, police, utilities etc.: integration of wired and
wireless networks

• ubiquitous computing: integration of camera and sensor data

Introduction & Overview

10

DS history: technology-driven evolution
• Fast, reliable (interconnected) LANs (e.g. Ethernet,

Cambridge Ring) made DS possible in 1980s

• Early research was on distribution of OS functionality
1. terminals + multiaccess systems
2. terminals + pool of processors + dedicated servers

(Cambridge CDCS)
3. Diskless workstations + servers (Stanford)
4. Workstations + servers (Xerox PARC)

Introduction & Overview

11

mainframe mainframe

terminal
concentrator

terminal
concentrator

LAN

LAN S D
S

S

S
D S

W

D

W

D

. . . .
LAN S D

S

S

S
D S

W W. . . .

3 diskless workstations + servers 4 workstations + servers

1. LAN as terminal switch to multiaccess systems
2 terminals + processor pool + servers

terminal
concentrator

terminal
concentrator

LAN

processor pool resource
managerP P P P P

S D
S

S

S
D S

Introduction &
Overview

12

Technology-driven evolution – comms.
• WANs quickly became as high bandwidth and reliable as LANs

• Distributed database research such as data-shipping vs. query-
shipping became obsolete in the 1990s

• Web services created new problems such as flash crowds

• Bandwidth had become high but latency was and remains a
problem, due to end-system processing time for huge numbers of
clients

• We shall return to this...

Introduction & Overview

13

How to think about Distributed Systems

• fundamental characteristics
• software structure for a node
• model/architecture/engineering for a system

Introduction & Overview

14

DS fundamental characteristics
1. Concurrent execution of components
2. Independent failure modes
3. Transmission delay
4. No global time

Implications:
2, 3 - can’t know why there’s no reply – node/comms. failure

and/or node/comms. congestion
4 - can’t use locally generated timestamps for ordering

distributed events
1, 3 - inconsistent views of state/data when it’s distributed
1 - can’t wait for quiescence to resolve inconsistencies

Introduction & Overview

15

single node - software structure
Support for distributed software may be:

directly by OS in a cluster (distributed OS design) – not the focus of this
course
by a software layer (middleware) above potentially heterogeneous OS

components of
distributed software

middleware layer

OS
functions

homogeneous interface
above heterogeneous OS

OS interface

network

comms.
subsystem

Introduction & Overview

16

Distributed application structure – email, news, ftp

client’s email
interface (MUA)

SMTP
simple mail

transfer protocol

OS comms. interface

unique names required: see lecture DS-5
clients: jmb25@cl.cam.ac.uk
messages: messageID

specific application protocol

standard comms. supporting
all applications

Introduction & Overview

mailto:jmb25@cl.cam.ac.uk�

17

Distributed application structure – web documents

client’s WWW
interface

HTTP
hypertext

transfer protocol

OS comms. interface

unique names required: originally for documents
URLs
http://www.cl.cam.ac.uk/...
built above DNS naming, see lecture DS-5

specific application protocol

standard comms. supporting
all applications

A browser interface came to be used for general distributed applications

W3C standards for Web Services – see lectures DS-4, DS-7

Introduction & Overview

http://www.cl.cam.ac.uk/�

18

Distributed application structure – general support example

component of
distributed
application

RPC
Remote

Procedure Call

OS comms. interface

unique names required:
interfaces, procedures, (later – objects)

an early example of a general
application-level protocol

standard comms. supporting
all applications

RPC is an early example of a protocol above which distributed applications
may be developed. RPC examples: ISO-ODP, OSF-DCE
A middleware also includes services above the RPC layer

Introduction & Overview

19

Open and proprietary middleware

• Open: evolution is controlled by standards bodies (e.g. ISO, NIST)
or consortia (e.g. OMG, W3C). Requests for proposals (RFPs) are
issued, draft specifications published with RFCs (requests for
comments). Compromise is common.

• Closed, proprietary: can be changed by the owner (clients need to
buy a new release). Consistency across versions is not guaranteed.
Plus “embrace, enhance, extinguish”; yachtware.

Related issues:
• single/multi language: can components be written in different

languages and interoperate?
• open interoperability: is desirable across middlewares (including

different implementations of the same middleware)

Introduction & Overview

20

DS Design: model, architecture, engineering
Programming model of distributed computation:

• What are the named entities? objects, components, services,..

• How is communication achieved?
- synchronous/blocking (request-response) invocation

e.g. client-server model
- asynchronous messages e.g. event notification model
- one-to-one, one-to-many?

• Are the communicating entities closely or loosely coupled?
- must they share a programming context?
- must they be running at the same time?

Introduction & Overview

21

System architecture: the framework within which the entities in
the model interoperate

• Naming
• Location of named objects
• Security of communication, as required by applications
• Authentication of participants
• Access control / authorisation
• Replication to meet requirements for reliability, availability

May be defined within administration domains
Need to consider multi-domain systems and interoperation

within and between domains

Introduction & Overview

22

System engineering: implementation decisions

• Placement of functionality: client libraries, user agents,
servers, wrappers/interception

• Replication for failure tolerance, performance, load balancing
–> consistency issues

• Optimisations e.g. caching, batching
• Selection of standards e.g. XML, X.509
• What “transparencies” to provide at what level:

(transparent = hidden from application developer: needn’t be
programmed for, can’t be detected when running).
distribution transparency: location? failure? migration?

may not be achievable or may be too costly

Introduction & Overview

23

Architectures for Large-Scale, Networked Systems

Individual user using globally available service

Single administration domain

Federated administration domains

Independent, external services - to be integrated

Detached, ad-hoc, anonymous groups;
anonymous principals, issues of trust and risk

Introduction & Overview

24

Federated administration domains: Examples

• national healthcare services:
many hospitals, clinics, primary care practices

• national police services:
many county police forces

• global company:
branches in London, Tokyo, New York, Berlin, Paris...

• transport
County Councils responsible for cities, some roads

• active city:
fire, police, ambulance, healthcare services.
mobile workers
sensor networks e.g. for traffic/pollution monitoring

Introduction & Overview

25

Federated domains - characteristics
• names: administered per domain (users, roles, services,

data-types, messages, sensors, ...)

• authentication: users administered within a domain

• communication: needed within and between domains

• security: per-domain firewall protection

• policies: specified per domain e.g. for communication,
access control intra and inter-domain, plus some
external policies to satisfy government, legal, and
institutional requirements

• high trust and accountability within a domain,
known trust between domains

Introduction & Overview

26

Independent, External Services - Examples
• commercial web-based services

e.g. online banking, airline booking etc.

• national services used by police and others
e.g. DVLA, court-case workflow

• national health services
e.g. national Electronic Health Record (EHR) service

• e-science (grid) databases and generic services
e.g. astronomical, transport, medical databases
for computation or storage

• e-science may support “virtual organisations” –
collaborating groups across several domains

Introduction & Overview

27

Independent, external services - characteristics
• naming and authentication

may be of individuals via trusted third parties (TTPs)
and/or via home domain of client

• access control policies
related to client roles in domains and/or individuals
support for “virtual organisations” spanning domains

• need for: accounting, charging, audit
these may be done by trusted third parties
a basis for mutual trust (service done, client paid)

• trust
based on evidence of behaviour
clients exchange experiences, services monitor and record
assume full connectivity, e.g. TTPs can authenticate/identify

Introduction & Overview

28

Examples of detached ad hoc groups
and the need for trust

• Commuters regularly play cards on the train
• Auctions – build up trust of an ID through small honoured

purchases, then default on a big one
• E-purse purchases – trust in system
• Recommendations: e.g. in a tourist scenario - restaurants,

places to visit. Recommendations of people and their skills.
• Wireless routing via peers:

routing of messages P2P rather than by dedicated brokers –
reliability, confidentiality, altruism

• Trust has a context – skills may not transfer
e.g. drivers of cars, trains, planes ...

Introduction & Overview

29

Detached, ad-hoc, anonymous groups
• e.g. connected by wireless
• can’t assume trusted third-parties (CAs) accessible
• can’t assume knowledge of names and roles, identity likely to be by

key/pseudonym
• new identities can be generated (by detected villains)

• parties need to decide whether to interact
• each has a trust policy and a trust engine
• each computes whether to proceed – policy is based on:

- accumulated trust information
(from recommendations and evidence from monitoring)

- risk (resource-cost) and likelihood of possible outcomes

Introduction & Overview

30

Promising Approaches for Large-Scale Systems

• Roles for scalability
• Parametrised roles for expressiveness, scalability, simplicity
• RBAC for services, service-managed objects, including the

communication service
• Policy specification and change management
• Policy-driven system management

• Asynchronous, loosely-coupled communication
publish/subscribe for scalability
event-driven paradigm for ubiquitous computing

• Database integration – how best to achieve it?

And don’t forget:
• Mobile users
• Sensor network integration

Introduction & Overview

31

Opera Group – research themes
(objects policy events roles access control)

• Access Control (OASIS RBAC)
Open Architecture for Securely Interworking Services

• Policy expression and management
• Event-driven systems (CEA, Hermes)

EDSAC21: event-driven, secure application control for the 21st Century
• Trust and risk in global computing (EU SECURE)

secure collaboration among ubiquitous roaming entities
• TIME: Traffic Information Monitoring Environment

TIME-EACM event architecture and context management
• CareGrid: dynamic trust domains for healthcare applications
• SmartFlow: Extendable event-based middleware
• PAL: personal and social communications services for health and lifestyle

monitoring.
see: www.cl.cam.ac.uk/research/srg/opera
for people, projects, publications for download

Introduction & Overview

http://www.cl.cam.ac.uk/research/srg/opera�

32

Mini Erlang review (from last term)
Erlang is a functional, declarative language with the following properties:

1. single assignment – a value can be assigned to a variable only once, after which the
variable is immutable

2. Erlang processes are lightweight (language-level, not OS) and share no common resources.
New processes can be forked (spawned), and execute in parallel with the creator:

Pid = spawn (Module, FunctionName, ArgumentList)
returns immediately – doesn’t wait for function to be evaluated
process terminates when function evaluation completes
Pid returned is known only to calling process (basis of security)
Pid is a first class value that can be put into data structures and passed in messages

3. asynchronous message passing is the only supported communication between processes.
Pid ! Message

! means send
Pid is the identifier of the destination process
Message can be any valid Erlang term

Erlang came from Ericsson and was developed for telecommunications applications.
It is becoming increasingly popular and more widely used (e.g., ejabberd, RabbitMQ).

Cross address-space IPC

33

Erlang – 2: receiving messages

The syntax for receiving messages is:
receive

Message1 (when Guard1) ->
Actions1 ;

Message2 (when Guard2) ->
Actions2 ;

..........
end

Each process has a mailbox – messages are stored in it in arrival order.
Message1 and Message2 above are patterns that are matched against messages in the process
mailbox. A process executing receive is blocked until a message is matched.
When a matching MessageN is found and the corresponding GuardN succeeds, the message is
removed from the mailbox, the corresponding ActionsN are evaluated and receive returns
the value of the last expression evaluated in ActionsN.
Programmers are responsible for making sure that the system does not fill up

with unmatched messages.
Messages can be received from a specific process if the sender includes its Pid

in the pattern to be matched: Pid ! {self(), abc}
receive {Pid, Msg}

Cross address-space IPC

34

Erlang – 3: example fragment

Client:
PidBufferManager ! { self (), put, <data> }
PidBufferManager ! { self (), get, <pointer for returned data> }

Buffer Manager:
receive {PidClient, put, <data> } (buffer not full)

insert item into buffer and return

{PidClient, get, <pointer for returned data> } (buffer not empty)
remove item from buffer and return it to client

Cross address-space IPC

35

Erlang - 4: further information and examples

Part 1 of Concurrent Programming in Erlang is available for download from
http://erlang.org/download/erlang-book-part1.pdf

The first part develops the language and includes many small programs, including
distributed programs, e.g. page 89 (page 100 in pdf) has the server and client code,
with discussion, for an ATM machine.

The second part contains worked examples of applications, not available free.

A free version of Erlang is easy to find.

Erlang, most importantly, is distributed. This course won't teach you to be an Erlang
master, but regularly it will be used in examples.

Cross address-space IPC

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35

