Review of constraint satisfaction problems (CSPs)

We have:

e A set of n variables V;,V,, ..., V,.

e For each V; a domain D; specifying the values that V; can take.

e A set of m constraints C;,Cy, ..., Cy.
BElach constraint C; involves a set of variables and specifies an allowable
collection of values.

e A state 1s an assignment of specific values to some or all of the variables.

e An assignment i1s consistent if it violates no constraints.

e An assignment 1s complete if i1t gives a value to every variable.

A solution 1s a consistent and complete assignment.



Example

We will use the problem of colouring the nodes of a graph as a running

\\\5/6

78

Elach node corresponds to a variable. We have three colours and directly
connected nodes should have different colours.

Caution required: later on, edges will have a different meaning.



Example

This translates easily to a CSP formulation:

e The variables are the nodes
Vi, = node i
e The domain for each variable contains the values black, red and cyan

Di — {Ba R) C}

e The constraints enforce the idea that directly connected nodes must
have different colours. For example, for variables V; and V, the con-
straints specify

(B,R), (B, C),(R,B),(R,C),(C,B),(C,R)

e Variable Vj is unconstrained.



Different kinds of CSP

This 1s an example of the simplest kind of CSP: it 1s discrete with finite
domains. We will concentrate on these.

We will also concentrate on binary constraints; that is, constraints be-
tween pairs of variables.

e Constraints on single variables—unary constraints—can be handled by
adjusting the variable’s domain. For example, if we don’t want V; to be
red, then we just remove that possibility from D;.

e Higher-order constraints applying to three or more variables can cer-
tainly be considered, but...

e ...when dealing with finite domains they can always be converted to sets
of binary constraints by introducing extra auziliary variables.

How does that work?



The state-variable representation

Another planning language: the state-variable representation.

Things of interest such as people, places, objects etc are divided into do-
mMains:

D; ={climberi, climber?2}
D, = {home, jokeShop, hardwareStore, pavement, spire, hospital}
D3 = {rope, inflatableGorilla}

Part of the specification of a planning problem involves stating which
domain a particular item is in. For example

Di(climberi)
and so on.

Relations and functions have arguments chosen from unions of these do-
mains.
above(x,y) C D3*°" x D3"ove

is a relation. The D2"°"® are unions of one or more D;.



The state-variable representation

The relation above is in fact a rigid relation (RR), as it is unchanging: it
does not depend upon state. (Remember fluents in situation calculus?)

Similarly, we have functions
at(x1,s): Di* x S — D",

Here, at(x,s) is a state-variable. The domain D7* and range D*" are
unions of one or more D;. In general these can have multiple parameters

SV(X1,...yXn,S) : D} X -+ x DY x S — D,
A state-variable denotes assertions such as
at(gorilla,s) = jokeShop
where s denotes a state and the set S of all states will be defined later.

The state variable allows things such as locations to change—again, much
like fluents in the situation calculus.

Variables appearing in relations and functions are considered to be typed.



The state-variable representation

Note:

e For properties such as a location a function might be considerably more
suitable than a relation.

e For locations, everything has to be somewhere and it can only be in
one place at a time.

So a function is perfect and immediately solves some of the problems seen
earlier.



The state-variable representation

Actions as usual, have a name, a set of preconditions and a set of effects.

e Names are unique, and followed by a list of variables involved in the
action.

e Preconditions are expressions involving state variables and relations.

e Fffects are assignments to state variables.

For example:

buy(x,y, 1)

Preconditions | at(x,s) =1
sells(l,y)
has(y,s) =1

Effects has(y,s) = x




The state-variable representation

Goals are sets of expressions involving state variables.

For example:

Goal:

at(climber,s) = home
has(rope, s) = climber
at(gorilla,s) = spire

From now on we will generally suppress the state s when writing state
variables.



The state-variable representation

We can essentially regard a state as just a statement of what values the
state variables take at a given time.

Formally:

e For each state variable sv we can consider all ground instances such
as—sv(climber, rope)—with arguments that are consistent with the
rigid relations.

Define X to be the set of all such ground instances.

e A state s is then just a set
s={(v=c)lve X}

where c 1s in the range of v.

This allows us to define the effect of an action.

A planning problem also needs a start state sy, which can be defined in
this way.

10



The state-variable representation

Considering all the ground actions consistent with the rigid relations:

e An action is applicable 1n s if all expressions v=c appearing in the set
of preconditions also appear in s.

Finally, there is a function v that maps a state and an action to a new state
v(s,a) =s’
Specifically, we have
Y(s,a) ={(v=cllv e X}

where either c is specified in an effect of a, or otherwise v = c is a member
of s.

Note: the definition of v implicitly solves the frame problem.

11



The state-variable representation

A solution to a planning problem is a sequence (ao, ay,..., a,) of actions
such that...
® ) is applicable in sy and for each i, a; is applicable in s; = y(si_1, ai_1).
e For each goal g we have
g € Y(sn, an).
What we need now is a method for transforming a problem described in

this language into a CSP.

We'll once again do this for a fixed upper limit T on the number of steps
in the plan.

12



Converting to a CSP

Step 1: encode actions as CSP wvariables.
For each time step t where 0 <t < T — 1, the CSP has a variable
action'
with domain
paction’ _ {ala is the ground instance of an action} U {none}

Ezxample: at some point in searching for a plan we might attempt to find
the solution to the corresponding CSP involving

action® = attach(inflatableGorilla, spire)

WARNING: be careful in what follows to distinguish between state vari-
ables, actions etc in the planning problem and wvariables in the CSP.

13



Converting to a CSP

Step 2: encode ground state variables as CSP variables, with a complete
copy of all the state variables for each time step.

So, for each t where 0 <t < T we have a CSP variable
svi(Ciy...,Cn)

with domain D*"i. (That is, the domain of the CSP variable is the range
of the state variable.)

Ezxzample: at some point in searching for a plan we might attempt to find
the solution to the corresponding CSP involving

location®(climber1l) = hospital.

14



Converting to a CSP

Step 3: encode the preconditions for actions in the planning problem
as constraints in the CSP problem.

For each time step t and for each ground action a(c;, ..., c,) with arguments
consistent with the rigid relations in 1ts preconditions:

For a precondition of the form sv; = v include constraint pairs

(action' =al(cy,...,cn),

svi = V)

Ezample: consider the action buy(x,y,l) introduced above, and having
the preconditions at(x) =1, sells(l,y) and has(y) = 1.

Assume sells(y,l) is only true for
l = jokeShop

and
Yy = inflatableGorilla

(it's a very strange town) so we only consider these values for | and vy.
Then for each time step t we have the constraints...

15



Converting to a CSP

action' = buy(climberl, inflatableGorilla, jokeShop)
paired with
at'(climber1) = jokeShop

action' = buy(climberl, inflatableGorilla, jokeShop)
paired with
has'(inflatableGorilla) = jokeShop

action' = buy(climber2, inflatableGorilla, jokeShop)
paired with
at'(climber2) = jokeShop

action' = buy(climber2, inflatableGorilla, jokeShop)
paired with
has'(inflatableGorilla) = jokeShop

and so on...

16




Converting to a CSP

Step 4: encode the effects of actions in the planning problem as con-
straints in the CSP problem.

For each time step t and for each ground action a(c;, ..., c,) with arguments
consistent with the rigid relations in 1ts preconditions:

For an effect of the form sv; = v include constraint pairs

(action' = al(cy,...,cn),

V’_C-H

i =V

S

Ezxzample: continuing with the previous example, we will include con-
straints

action' = buy(climberl, inflatableGorilla, jokeShop)
paired with
has't!(inflatableGorilla) = climberl
action' = buy(climber2, inflatableGorilla, jokeShop)
paired with
has't!(inflatableGorilla) = climber?2
and so on...

17



Converting to a CSP

Step 5: encode the frame azrioms as constraints in the CSP problem.
An action must not change things not appearing in its effects. So:

For:

1. Each time step t.

2. Bach ground action a(cy,...,c,) with arguments consistent with the
rigid relations in 1ts preconditions.

3. BEach sv; that does not appear in the effects of a, and each v € D"

include in the CSP the ternary constraint

(action' =al(cy,...,cn),

t __
SVi =V,
L

i =V

SV

18



Finding a plan

Finally, having encoded a planning problem into a CSP, we solve the CSP.
The scheme has the following property:

A solution to the planning problem with at most T steps exists if and
only 1f there 1s a a solution to the corresponding CSP.

Assume the CSP has a solution.

Then we can extract a plan simply by looking at the values assigned to the
action' variables in the solution of the CSP.

It 1s also the case that;:

There 1s a solution to the planning problem with at most T steps if
and only 1f there 1s a solution to the corresponding CSP from which
the solution can be extracted in this way.

For a proof see:
Automated Planning: Theory and Practice

Malik Ghallab, Dana Nau and Paolo Traverso. Morgan Kaufmann 2004.

19



