
Review of 
onstraint satisfa
tion problems (CSPs)We have:� A set of n variables V1, V2, . . . , Vn.� For ea
h Vi a domain Di spe
ifying the values that Vi 
an take.� A set of m 
onstraints C1, C2, . . . , Cm.Ea
h 
onstraint Ci involves a set of variables and spe
i�es an allowable
olle
tion of values .� A state is an assignment of spe
i�
 values to some or all of the variables.� An assignment is 
onsistent if it violates no 
onstraints.� An assignment is 
omplete if it gives a value to every variable.A solution is a 
onsistent and 
omplete assignment.
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ExampleWe will use the problem of 
olouring the nodes of a graph as a runningexample.
1 2 8

653 4
7 7

5 643
1 2 8

Ea
h node 
orresponds to a variable . We have three 
olours and dire
tly
onne
ted nodes should have di�erent 
olours.Caution required: later on, edges will have a di�erent meaning.
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ExampleThis translates easily to a CSP formulation:� The variables are the nodes

Vi = node i� The domain for ea
h variable 
ontains the values bla
k, red and 
yan
Di = {B, R, C}� The 
onstraints enfor
e the idea that dire
tly 
onne
ted nodes musthave di�erent 
olours. For example, for variables V1 and V2 the 
on-straints spe
ify

(B, R), (B,C), (R, B), (R,C), (C,B), (C, R)� Variable V8 is un
onstrained.
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Di�erent kinds of CSPThis is an example of the simplest kind of CSP: it is dis
rete with �nitedomains . We will 
on
entrate on these.We will also 
on
entrate on binary 
onstraints ; that is, 
onstraints be-tween pairs of variables .� Constraints on single variables|unary 
onstraints|
an be handled byadjusting the variable's domain. For example, if we don't want Vi to bered , then we just remove that possibility from Di.� Higher-order 
onstraints applying to three or more variables 
an 
er-tainly be 
onsidered, but...� ...when dealing with �nite domains they 
an always be 
onverted to setsof binary 
onstraints by introdu
ing extra auxiliary variables .How does that work?
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The state-variable representationAnother planning language: the state-variable representation .Things of interest su
h as people, pla
es, obje
ts et
 are divided into do-mains :

D1 = {climber1, climber2}

D2 = {home, jokeShop, hardwareStore, pavement, spire, hospital}

D3 = {rope, inflatableGorilla}Part of the spe
i�
ation of a planning problem involves stating whi
hdomain a parti
ular item is in. For example
D1(climber1)and so on.Relations and fun
tions have arguments 
hosen from unions of these do-mains.

above(x, y) ⊆ D
above
1 ×D

above
2is a relation. The Dabove

i are unions of one or more Di.
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The state-variable representationThe relation above is in fa
t a rigid relation (RR), as it is un
hanging: itdoes not depend upon state . (Remember 
uents in situation 
al
ulus?)Similarly, we have fun
tions

at(x1, s) : Dat
1 × S → D

at.Here, at(x, s) is a state-variable . The domain Dat
1 and range Dat areunions of one or more Di. In general these 
an have multiple parameters

sv(x1, . . . , xn, s) : Dsv
1 × · · · × D

sv
n × S → D

sv.A state-variable denotes assertions su
h as
at(gorilla, s) = jokeShopwhere s denotes a state and the set S of all states will be de�ned later.The state variable allows things su
h as lo
ations to 
hange|again, mu
hlike 
uents in the situation 
al
ulus.Variables appearing in relations and fun
tions are 
onsidered to be typed .
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The state-variable representationNote:� For properties su
h as a lo
ation a fun
tion might be 
onsiderably moresuitable than a relation.� For lo
ations, everything has to be somewhere and it 
an only be inone pla
e at a time .So a fun
tion is perfe
t and immediately solves some of the problems seenearlier.
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The state-variable representationA
tions as usual, have a name , a set of pre
onditions and a set of e�e
ts .� Names are unique, and followed by a list of variables involved in thea
tion.� Pre
onditions are expressions involving state variables and relations.� E�e
ts are assignments to state variables.For example:

buy(x, y, l)Pre
onditions at(x, s) = l

sells(l, y)

has(y, s) = lE�e
ts has(y, s) = x
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The state-variable representationGoals are sets of expressions involving state variables .For example: Goal:

at(climber, s) = home

has(rope, s) = climber

at(gorilla, s) = spireFrom now on we will generally suppress the state s when writing statevariables.
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The state-variable representationWe 
an essentially regard a state as just a statement of what values thestate variables take at a given time.Formally:� For ea
h state variable sv we 
an 
onsider all ground instan
es su
has|sv(climber, rope)|with arguments that are 
onsistent with therigid relations .De�ne X to be the set of all su
h ground instan
es.� A state s is then just a set
s = {(v = c)|v ∈ X}where c is in the range of v.This allows us to de�ne the e�e
t of an a
tion .A planning problem also needs a start state s0, whi
h 
an be de�ned inthis way.
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The state-variable representationConsidering all the ground a
tions 
onsistent with the rigid relations :� An a
tion is appli
able in s if all expressions v=
 appearing in the setof pre
onditions also appear in s.Finally, there is a fun
tion γ that maps a state and an a
tion to a new state

γ(s, a) = s ′Spe
i�
ally, we have

γ(s, a) = {(v = c)|v ∈ X}where either c is spe
i�ed in an e�e
t of a, or otherwise v = c is a memberof s.Note: the de�nition of γ impli
itly solves the frame problem.
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The state-variable representationA solution to a planning problem is a sequen
e (a0, a1, . . . , an) of a
tionssu
h that...� a0 is appli
able in s0 and for ea
h i, ai is appli
able in si = γ(si−1, ai−1).� For ea
h goal g we have

g ∈ γ(sn, an).What we need now is a method for transforming a problem des
ribed inthis language into a CSP.We'll on
e again do this for a �xed upper limit T on the number of stepsin the plan.
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Converting to a CSPStep 1: en
ode a
tions as CSP variables .For ea
h time step t where 0 ≤ t ≤ T − 1, the CSP has a variable
actiontwith domain

Dactiont

= {a|a is the ground instan
e of an a
tion} ∪ {none}Example: at some point in sear
hing for a plan we might attempt to �ndthe solution to the 
orresponding CSP involving
action5 = attach(inflatableGorilla, spire)

WARNING: be 
areful in what follows to distinguish between state vari-ables, a
tions et
 in the planning problem and variables in the CSP.
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Converting to a CSPStep 2: en
ode ground state variables as CSP variables , with a 
omplete
opy of all the state variables for ea
h time step.So, for ea
h t where 0 ≤ t ≤ T we have a CSP variable
svt

i(c1, . . . , cn)with domain Dsvi. (That is, the domain of the CSP variable is the rangeof the state variable.)Example: at some point in sear
hing for a plan we might attempt to �ndthe solution to the 
orresponding CSP involving
location9(climber1) = hospital.
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Converting to a CSPStep 3: en
ode the pre
onditions for a
tions in the planning problemas 
onstraints in the CSP problem .For ea
h time step t and for ea
h ground a
tion a(c1, . . . , cn) with arguments
onsistent with the rigid relations in its pre
onditions :For a pre
ondition of the form svi = v in
lude 
onstraint pairs
(actiont = a(c1, . . . , cn),

svt
i = v)Example: 
onsider the a
tion buy(x, y, l) introdu
ed above, and havingthe pre
onditions at(x) = l, sells(l, y) and has(y) = l.Assume sells(y, l) is only true for

l = jokeShopand

y = inflatableGorilla(it's a very strange town) so we only 
onsider these values for l and y.Then for ea
h time step t we have the 
onstraints...15



Converting to a CSP

actiont = buy(climber1, inflatableGorilla, jokeShop)paired with

att(climber1) = jokeShop

actiont = buy(climber1, inflatableGorilla, jokeShop)paired with

hast(inflatableGorilla) = jokeShop

actiont = buy(climber2, inflatableGorilla, jokeShop)paired with
att(climber2) = jokeShop

actiont = buy(climber2, inflatableGorilla, jokeShop)paired with
hast(inflatableGorilla) = jokeShopand so on...
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Converting to a CSPStep 4: en
ode the e�e
ts of a
tions in the planning problem as 
on-straints in the CSP problem .For ea
h time step t and for ea
h ground a
tion a(c1, . . . , cn) with arguments
onsistent with the rigid relations in its pre
onditions :For an e�e
t of the form svi = v in
lude 
onstraint pairs
(actiont = a(c1, . . . , cn),

svt+1
i = v)Example: 
ontinuing with the previous example, we will in
lude 
on-straints

actiont = buy(climber1, inflatableGorilla, jokeShop)paired with
hast+1(inflatableGorilla) = climber1

actiont = buy(climber2, inflatableGorilla, jokeShop)paired with
hast+1(inflatableGorilla) = climber2and so on...17



Converting to a CSPStep 5: en
ode the frame axioms as 
onstraints in the CSP problem .An a
tion must not 
hange things not appearing in its e�e
ts. So:For:1. Ea
h time step t.2. Ea
h ground a
tion a(c1, . . . , cn) with arguments 
onsistent with therigid relations in its pre
onditions .3. Ea
h svi that does not appear in the e�e
ts of a, and ea
h v ∈ Dsviin
lude in the CSP the ternary 
onstraint
(actiont = a(c1, . . . , cn),

svt
i = v,

svt+1
i = v)
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Finding a planFinally, having en
oded a planning problem into a CSP, we solve the CSP.The s
heme has the following property:A solution to the planning problem with at most T steps exists if andonly if there is a a solution to the 
orresponding CSP .Assume the CSP has a solution.Then we 
an extra
t a plan simply by looking at the values assigned to the

actiont variables in the solution of the CSP.It is also the 
ase that:There is a solution to the planning problem with at most T steps ifand only if there is a solution to the 
orresponding CSP from whi
hthe solution 
an be extra
ted in this way .For a proof see:Automated Planning: Theory and Pra
ti
eMalik Ghallab, Dana Nau and Paolo Traverso. Morgan Kaufmann 2004.19


