MCMC methods

A simple technique is to introduce a random walk, so

\[w_{i+1} = w_i + \epsilon \]

where \(\epsilon \) is zero mean spherical Gaussian and has small variance. Obviously the sequence \(w_i \) does not have the required distribution. However, we can use the Metropolis algorithm, which does not accept all the steps in the random walk:

1. If \(p(w_{i+1}|y) > p(w_i|y) \) then accept the step.
2. Else accept the step with probability \(\frac{p(w_{i+1}|y)}{p(w_i|y)} \).

In practice, the Metropolis algorithm has several shortcomings, and a great deal of research exists on improved methods, see:

Approximate inference for Bayesian networks

MCMC methods also provide a method for performing *approximate inference* in *Bayesian networks*.

Say a system can be in a state s and moves from state to state in discrete time steps according to a probabilistic transition

$$\Pr(s \rightarrow s')$$

Let $\pi_t(s)$ be the probability distribution for the state after t steps, so

$$\pi_{t+1}(s') = \sum_s \Pr(s \rightarrow s') \pi_t(s)$$

If at some point we obtain $\pi_{t+1}(s) = \pi_t(s)$ for all s then we have reached a *stationary distribution* π. In this case

$$\forall s' \pi(s') = \sum_s \Pr(s \rightarrow s') \pi(s)$$

There is exactly one stationary distribution for a given $\Pr(s \rightarrow s')$ provided the latter obeys some simple conditions.
Approximate inference for Bayesian networks

The condition of *detailed balance*

$$\forall s, s' \pi(s) \Pr(s \rightarrow s') = \pi(s') \Pr(s' \rightarrow s)$$

is sufficient to provide a π that is a stationary distribution. To see this simply sum:

$$\sum_s \pi(s) \Pr(s \rightarrow s') = \sum_s \pi(s') \Pr(s' \rightarrow s)$$

$$= \pi(s') \sum_s \Pr(s' \rightarrow s)$$

$$= \pi(s') \sum_s \Pr(s' \rightarrow s) = 1 = \pi(s')$$

If all this is looking a little familiar, it’s because we now have an excellent application for the material in *Mathematical Methods for Computer Science*. That course used the alternative term *local balance*.
Approximate inference for Bayesian networks

Recalling once again the basic equation for performing probabilistic inference

\[
\Pr(Q|e) = \frac{1}{Z} \Pr(Q \land e) = \frac{1}{Z} \sum_u \Pr(Q, u, e)
\]

where

- Q is the query variable.
- e is the evidence.
- u are the unobserved variables.
- $1/Z$ normalises the distribution.

We are going to consider obtaining samples from the distribution $\Pr(Q, U|e)$.
Approximate inference for Bayesian networks

The evidence is fixed. Let the *state* of our system be a specific set of values for the *query variable and the unobserved variables*

\[s = (q, u_1, u_2, \ldots, u_n) = (s_1, s_2, \ldots, s_{n+1}) \]

and define \(\overline{s}_i \) to be the state vector *with* \(s_i \) *removed*

\[\overline{s}_i = (s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{n+1}) \]

To move from \(s \) to \(s' \) we replace one of its elements, say \(s_i \), with a new value \(s'_i \) sampled according to

\[s'_i \sim \Pr(S_i|\overline{s}_i, e) \]

This has detailed balance, and has \(\Pr(Q, U|e) \) as its stationary distribution.
Approximate inference for Bayesian networks

To see that $\Pr(Q, U | e)$ is the stationary distribution

$$\pi(s)\Pr(s \rightarrow s') = \Pr(s | e)\Pr(s' | \overline{s_i}, e)$$

$$= \Pr(s_i, \overline{s_i} | e)\Pr(s' | \overline{s_i}, e)$$

$$= \Pr(s_i | \overline{s_i}, e)\Pr(s' | \overline{s_i}, e)$$

$$= \Pr(s_i | \overline{s_i}, e)\Pr(s'_i | \overline{s_i}, e)$$

$$= \Pr(s' \rightarrow s)\pi(s')$$

As a further simplification, sampling from $\Pr(S_i | \overline{s_i}, e)$ is equivalent to sampling S_i conditional on its parents, children and children’s parents.
Approximate inference for Bayesian networks

So:

- We successively sample the query variable and the unobserved variables, conditional on their parents, children and children’s parents.
- This gives us a sequence s_1, s_2, \ldots which has been sampled according to $\Pr(Q, U|e)$.

Finally, note that as

$$\Pr(Q|e) = \sum_u \Pr(Q, u|e)$$

we can just ignore the values obtained for the unobserved variables. This gives us q_1, q_2, \ldots with

$$q_i \sim \Pr(Q|e)$$
Approximate inference for Bayesian networks

To see that the final step works, consider what happens when we estimate the expected value of some function of Q.

$$\mathbb{E}[f(Q)] = \sum_q f(q) \Pr(q|e)$$

$$= \sum_q f(q) \sum_u \Pr(q,u|e)$$

$$= \sum_q \sum_u f(q) \Pr(q,u|e)$$

so sampling using $\Pr(q,u|e)$ and ignoring the values for u obtained works exactly as required.