
MCMC methodsA simple te
hnique is to introdu
e a random walk, so
wi+1 = wi + ǫwhere ǫ is zero mean spheri
al Gaussian and has small varian
e. Obviouslythe sequen
e wi does not have the required distribution. However, we 
anuse the Metropolis algorithm , whi
h does not a

ept all the steps in therandom walk:1. If p(wi+1|y) > p(wi|y) then a

ept the step.2. Else a

ept the step with probability p(wi+1|y)

p(wi|y)

.In pra
ti
e, the Metropolis algorithm has several short
omings, and a greatdeal of resear
h exists on improved methods, see:R. Neal, \Probabilisti
 inferen
e using Markov 
hain Monte Carlomethods," University of Toronto, Department of Computer S
ien
eTe
hni
al Report CRG-TR-93-1, 1993.
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Approximate inferen
e for Bayesian networksMCMC methods also provide a method for performing approximate in-feren
e in Bayesian networks .Say a system 
an be in a state s and moves from state to state in dis
retetime steps a

ording to a probabilisti
 transitionPr(s → s
′)Let πt(s) be the probability distribution for the state after t steps, so

πt+1(s
′) =

∑

s

Pr(s → s
′)πt(s)If at some point we obtain πt+1(s) = πt(s) for all s then we have rea
heda stationary distribution π. In this 
ase

∀s
′π(s ′) =

∑

s

Pr(s → s
′)π(s)There is exa
tly one stationary distribution for a given Pr(s → s

′) providedthe latter obeys some simple 
onditions.
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Approximate inferen
e for Bayesian networksThe 
ondition of detailed balan
e

∀s, s ′π(s)Pr(s → s
′) = π(s ′)Pr(s ′ → s)is suÆ
ient to provide a π that is a stationary distribution. To see thissimply sum:

∑

s

π(s)Pr(s → s
′) =

∑

s

π(s ′)Pr(s ′ → s)

= π(s ′)
∑

s

Pr(s ′ → s)

︸ ︷︷ ︸
=1

= π(s ′)If all this is looking a little familiar, it's be
ause we now have an ex
el-lent appli
ation for the material in Mathemati
al Methods for ComputerS
ien
e . That 
ourse used the alternative term lo
al balan
e .
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Approximate inferen
e for Bayesian networksRe
alling on
e again the basi
 equation for performing probabilisti
 infer-en
e Pr(Q|e) =
1

Z

Pr(Q ∧ e) =
1

Z

∑

u

Pr(Q,u, e)where� Q is the query variable.� e is the eviden
e.� u are the unobserved variables.� 1/Z normalises the distribution.We are going to 
onsider obtaining samples from the distribution Pr(Q,U|e).

4



Approximate inferen
e for Bayesian networksThe eviden
e is �xed. Let the state of our system be a spe
i�
 set of valuesfor the query variable and the unobserved variables
s = (q, u1, u2, . . . , un) = (s1, s2, . . . , sn+1)and de�ne si to be the state ve
tor with si removed

si = (s1, . . . , si−1, si+1, . . . , sn+1)To move from s to s
′ we repla
e one of its elements, say si, with a newvalue s ′

i sampled a

ording to

s ′

i ∼ Pr(Si|si, e)This has detailed balan
e, and has Pr(Q,U|e) as its stationary distribution.
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Approximate inferen
e for Bayesian networksTo see that Pr(Q,U|e) is the stationary distribution

π(s)Pr(s → s
′) = Pr(s|e)Pr(s ′

i|si, e)

= Pr(si, si|e)Pr(s ′

i|si, e)

= Pr(si|si, e)Pr(si|e)Pr(s ′

i|si, e)

= Pr(si|si, e)Pr(s ′

i, si|e)

= Pr(s ′ → s)π(s ′)As a further simpli�
ation, sampling from Pr(Si|si, e) is equivalent to sam-pling Si 
onditional on its parents, 
hildren and 
hildren's parents.
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Approximate inferen
e for Bayesian networksSo:� We su

essively sample the query variable and the unobserved variables,
onditional on their parents, 
hildren and 
hildren's parents.� This gives us a sequen
e s1, s2, . . . whi
h has been sampled a

ording toPr(Q,U|e).Finally, note that as Pr(Q|e) =
∑

u

Pr(Q,u|e)we 
an just ignore the values obtained for the unobserved variables. Thisgives us q1, q2, . . . with
qi ∼ Pr(Q|e)
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Approximate inferen
e for Bayesian networksTo see that the �nal step works, 
onsider what happens when we estimatethe expe
ted value of some fun
tion of Q.

E[f(Q)] =
∑

q

f(q)Pr(q|e)

=
∑

q

f(q)
∑

u

Pr(q, u|e)

=
∑

q

∑

u

f(q)Pr(q, u|e)so sampling using Pr(q, u|e) and ignoring the values for u obtained worksexa
tly as required.
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