MCMC methods

A simple technique is to introduce a random walk, so
Wip] = Wi+ €

where € is zero mean spherical Gaussian and has small variance. Obviously
the sequence w; does not have the required distribution. However, we can
use the Metropolis algorithm, which does not accept all the steps in the
random walk:

1. If p(wit1ly) > p(wily) then accept the step.

P(Wit1ly)

2. Else accept the step with probability pp(w-|y) :

In practice, the Metropolis algorithm has several shortcomings, and a great
deal of research exists on improved methods, see:

R. Neal, “Probabilistic inference using Markov chain Monte Carlo

methods,” Unwversity of Toronto, Department of Computer Science
Technical Report CRG-TR-93-1, 1993.



Approximate inference for Bayesian networks

MCMC methods also provide a method for performing approximate in-
ference in Bayesian networks.

Say a system can be in a state s and moves from state to state in discrete
time steps according to a probabilistic transition

Pr(s — s’)

Let 71.(s) be the probability distribution for the state after t steps, so

mii(s’) = ) Pr(s — s')m(s)

If at some point we obtain 7 1(s) = m(s) for all s then we have reached
a stationary distribution 7. In this case

Vs'mt(s') = Z Pr(s — s')mt(s)

There is exactly one stationary distribution for a given Pr(s — s’) provided
the latter obeys some simple conditions.



Approximate inference for Bayesian networks

The condition of detailed balance
Vs,s'nt(s)Pr(s — s') = nt(s’)Pr(s’ — s)

1s sufficient to provide a 7t that is a stationary distribution. To see this

simply sum:
Zn(s)Pr(s — s’) ZT( )Pr(s’ — s)

If all this 1s looking a little familiar, it’s because we now have an excel-
lent application for the material in Mathematical Methods for Computer
Science. That course used the alternative term local balance.



Approximate inference for Bayesian networks

Recalling once again the basic equation for performing probabilistic infer-
ence

]
Pr(Qle) = ZPr QAe) = ZPrQue
where

e Q is the query variable.
e ¢ 1s the evidence.
e UL are the unobserved variables.

e 1/7Z normalises the distribution.

We are going to consider obtaining samples from the distribution Pr(Q, Ule).



Approximate inference for Bayesian networks

The evidence is fixed. Let the state of our system be a specific set of values
for the query variable and the unobserved variables

S = (q,LL],LLZ,...,u/n) — (S1>SZ>-">Sn+1)

and define s; to be the state vector with s; removed

S{ = (S1>-°'>Si—1asi+1>"‘>Sn+1)

To move from s to s’ we replace one of its elements, say s;, with a new
value s; sampled according to

s; ~ Pr(Sils;, e)

This has detailed balance, and has Pr(Q, Ule) as its stationary distribution.
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To see that Pr(Q, Ule) is the stationary distribution

7i(s)Pr(s — s’) = Pr(s|e)Pr(s;[si, )
= Pr(si, Sile)Pr(si[si, e)
— Pr(si/si, e)Pr(sile)Pr(s{[s;, e)
= Pr(si[si, e)Pr(s{, 5ile)
= Pr(s’ — s)mt(s’)
As a further simplification, sampling from Pr(S;[s;, e) is equivalent to sam-
pling S; conditional on its parents, children and children’s parents.
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So:

e We successively sample the query variable and the unobserved variables,
conditional on their parents, children and children’s parents.

e This gives us a sequence s1,s), ... which has been sampled according to
Pr(Q, Ule).

Finally, note that as
Pr(Qle) = ZPI Q,ule)

we can just ignore the values obtained for the unobserved variables. This
gives us q1,d2,... with

~ Pr(Qle)
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To see that the final step works, consider what happens when we estimate
the expected value of some function of Q.

Zf )Pr(qle)
:Zf ZPrqu|e
—ZZf )Pr(q,ule)

so sampling using Pr(q, u/e) and ignoring the values for u obtained works
exactly as required.



