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1 Introduction

These notes provide a reminder of some further simple manipulations that are needed to understand
the application of Bayes’ theorem to supervised learning. They should be read in conjunction with the
earlier Part I of the supplementary notes. Once again, random variables are assumed to be discrete, but
all the following results still hold for continuous random variables, with sums replaced by integrals
where necessary.

1.1 Some (slightly) unconventional notation

In the machine learning literature there is a common notation intended to make it easy to keep track
of which random variables and which distributions are relevant in an expression. While this notation
is common within the field, it’s rarely if ever seen elsewhere; it is however very useful.

A statistician would define theexpected value of the random variableX as

E [X] =
∑

x∈X

xP (x)

Here, it is implicit that the probability distribution forX is P . With complex expressions involving
combinations of functions defined on random variables with multiple underlying distributions it can
be more tricky to keep track of which distributions are relevant. Thus the notation

Ex∼P (X) [f(X)]

wheref is some function defined onX is intended to indicate explicitly that the distribution ofX is
P , in situations where we don’t write out the full definition

Ex∼P (X) [f(X)] =
∑

x∈X

f(x)P (x)

to make it clear.

1.2 Expected value and conditional expected value

The standard definition of the expected value of a functionf of a random variableX is

Ex∼P (X) [f(X)] =
∑

x∈X

f(x)P (x)

as already noted. We can also define theconditional expected value of f(X) givenY as

Ex∼P (X|Y ) [f(X)] =
∑

x∈X

f(x)P (x|Y )

1



Now here’s an important point:the value of this expression depends on the value of Y . Thus, the
conditional expected value is itself a function of the random variableY . What is its expected value?
Well

Ey∼P (Y )

[

Ex∼P (X|Y ) [f(X)]
]

=
∑

y∈Y

Ex∼P (X|Y ) [f(X)] P (y)

=
∑

y∈Y

∑

x∈X

f(x)P (x|y)P (y)

=
∑

y∈Y

∑

x∈X

f(x)P (x, y)

=
∑

x∈X

f(x)
∑

y∈Y

P (x, y)

=
∑

x∈X

f(x)P (x)

= Ex∼P (X) [f(X)]

or in the more usual notation
E [E [f(X)|Y ]] = E [f(X)]

1.3 Expected value of the indicator function

For anyb ∈ {true, false} the indicator function I is defined as

I(b) =

{

1 if b = true
0 if b = false

Let f be a Boolean-valued function on a random variableX. Then

Ex∼P (X) [I(f(x))] =
∑

x∈X

I(f(x))P (x)

=
∑

x∈X,f(x) is true

I(f(x))P (x) +
∑

x∈X,f(x) is false

I(f(x))P (x)

=
∑

x∈X,f(x) is true

P (x)

= Prx∼P (x) [f(x) = true]

This provides a standard method for calculating probabilities by evaluating expected values. So for
example if we roll a fair die and considerf(X) to be true if and only if the outcome is even then

Pr(outcome is even) = E [I(f(X))] = 1/6 + 1/6 + 1/6 = 1/2

as expected.
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