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1 IntroductionThese notes provide some extra exer
ises for the AI1 
ourse. Solutions are available toSupervisors and will be made available to all after the 
ourse has �nished.
2 Knowledge representation and reasoning1. There have in fa
t been two queries suggested in the notes for obtaining a sequen
e ofa
tions. The details for

∃a ∃s . Sequen
e(a, s0, s) ∧ Goal(s)were given on the last slide, but earlier in the notes the format
∃actionList . Goal(... actionList ...)was suggested. Explain how this alternative form of query might be made to work.2. Making 
orre
t use of the situation 
al
ulus, write the senten
es in FOL required toimplement the Shoot a
tion in Wumpus World.3. Download and install a 
opy of Prover9 from www.cs.unm.edu/∼mccune/prover9/.(Hint: if you're Linux-based then you'll probably �nd it's already pa
kaged. For instan
e

yum install prover9-200805a-6.fc12 (i686) works under Fedora 12.)Referring to exam question 2003, paper 9, question 8 assume that initially both ownerand 
at are in the living room. The 
at 
an make its owner move to the kit
hen bygoing to its food bowl in the kit
hen and meeowing. It 
an then of 
ourse return to theliving room and s
rat
h something valuable.Implement suÆ
ient knowledge in the situation 
al
ulus to allow an a
tion sequen
e tobe derived allowing the 
at to a
hieve this, and use Prover9 to derive su
h an a
tionsequen
e.In order to do this you need to know how to extra
t an answer from the theorem prover.Taking an easy example from the le
ture notes:
formulas(assumptions).

wife(x,y) <-> (female(x) & married(x,y)).1



female(Violet).

married(Violet,Bill).

end_of_list.

formulas(goals).

exists x wife(Violet,x).

end_of_list.Extra
ting the value of x requires two things: we need to move the goal into theassumptions (whi
h is just like 
onverting ¬(A → B) to A ∧ ¬B when negating and
onverting to 
lauses) and we need to add a 
ommand to the knowledge base to get:
formulas(assumptions).

wife(x,y) <-> (female(x) & married(x,y)).

female(Violet).

married(Violet,Bill).

-wife(Violet,x) # answer(x).

end_of_list.

formulas(goals).

end_of_list.Here, the addition of # answer(x) 
auses the prover to output the value of x as partof the solution.
3 Planning1. We've seen how heuristi
s 
an be used to speed up the pro
ess of sear
hing. Planninghas mu
h in 
ommon with sear
h. Can you devise any general heuristi
s that you mightexpe
t to speed up the planning pro
ess?2. Violet S
root is the 
leverest student at Bibulous College. She has turned up at thisterm's Big Party, only to �nd that it is in the home of her ar
h rival, who has turnedher away. She spies in the driveway a large box and a ladder, and hat
hes a plan togate
rash by getting in through a se
ond 
oor window. Party on!Here is the planning problem. She needs to move the box to the house, the ladder ontothe box, then 
limb onto the box herself and at that point she 
an 
limb the ladder tothe window. Using the abbreviations 2



� B - Box� L - Ladder� H - House� V - Violet Scroot� W - Window� D - DrivewayThe start state is ¬At(B,H), ¬At(L, B), ¬At(V,W) and ¬At(V,B). The goal is At(V,W).The available a
tions are

At(V, B)

Move(L, D)

¬At(L, B)

At(L, B)

Move(L, B)

At(L, B)

¬At(L, B)

Move(B, H)

At(B, H)

¬At(B, H), ¬At(L, B) At(B, H), At(L, B), At(V, B)

Move(V, W)

At(V, W)

¬At(V, B)

Move(V, B)

Constru
t a solution to the problem using the partial order planning algorithm.3. Return of the Evil Cat! Consider the problem involving the situation 
al
ulus andProver9 above.� Represent this problem in the STRIPS format so that it 
ould be given as inputto the partial order planning algorithm.� Constru
t a solution to the problem using the partial order planning algorithm.How many spe
i�
 plans 
an be extra
ted from the result?
4 Learning1. The purpose of this exer
ise is to gain some insight into the way in whi
h the parametersof a basi
, linear per
eptron a�e
t the position and orientation of its de
ision boundary.Re
all that a linear per
eptron is based on the fun
tion

f(x) = w
T
x + bwhere x ∈ R

n, w ∈ R
n and b ∈ R. The per
eptron de
ides that a new input x isin 
lass 1 if f(x) ≥ 0 and de
ides that the input is in 
lass 2 otherwise. The de
isionboundary is therefore the 
olle
tion of all points where f(x) = 0.3



It's always easy to �nd n distin
t points where f(x) = 0 be
ause for any w and b wejust need to solve
w

T
x
′ = −bwhi
h is easy using

x
T = ( (−b/w1) 0 · · · 0 )

x
T = ( 0 (−b/w2) · · · 0 )and so on. If any of the weights is 0 this is problemati
 but easy to �x. (I leave it as awarm-up exer
ise to work out how.) Let x

′ and x
′′ be two points where f(x ′) = 0 and

f(x ′′) = 0. Let's 
on
entrate on the 
ase where n = 2. Consider the ve
tor
y = x

′ − x
′′Now take any number a ∈ R and look at what happens if we evaluate

f(x ′ + ay).We obtain
f(x ′ + ay) = w

T(x ′ + ay) + b

= w
T
x
′ + aw

T
y + b

= f(x ′) + aw
T(x ′ − x

′′)

= a(wT
x
′ − w

T
x
′′)

= a(−b − (−b))

= 0This works for any value a ∈ R, and suggests that the de
ision boundary is a straightline in R
2 as illustrated in �gure 1. (Note however that we haven't yet demonstratedthat f(x) 6= 0 if x is not of the form x = x

′ + ay.)(a) Prove that the weight ve
tor w is perpendi
ular to the line des
ribed by x
′ + ay.(Hint: remember that ve
tors are perpendi
ular if their inner produ
t is 0.) Notethat this tells us that w des
ribes the orientation of the de
ision boundary.(b) Let v be the ve
tor from the origin to the line des
ribed by x

′ + ay and perpen-di
ular to it as illustrated in �gure 1. Prove that
||v|| =

|b|

||w||Note that this tell us the following: if ||w|| = 1 then |b| tells us the distan
e fromthe origin to the de
ision boundary.
4



Dotted line f(x) = 0.
y = x ′ − x ′′

x ′′

x

vx ′

z

Figure 1: The de
ision boundary appears to be a straight line.(
) Let x be any point not on the line des
ribed by x
′ + ay. Let z be the ve
tor fromthe line to x and perpendi
ular to the line as illustrated in �gure 1. Prove that

||z|| =
|f(x)|

||w||This tells us that points not on the line do not obey f(x) = 0 and that the valueof f(x) tells us the distan
e from the de
ision boundary to x.(d) Prove that repla
ing w with w/||w|| and b with b/||w|| does not alter the de
isionboundary.2. In the appli
ation of neural networks to pattern 
lassi�
ation|where we wish toassign any input ve
tor x to membership in a spe
i�
 
lass|it makes sense to attemptto interpret network outputs as probabilities of 
lass membership.For example, in the medi
al diagnosis s
enario presented in the le
tures, where we tryto map an input x to either 
lass A (patient has the disease) or 
lass B (patient is freeof the disease) it makes sense to use a network with a single output produ
ing values
onstrained between 0 and 1 su
h that the output h(w;x) of a network using weights
w is interpreted as

h(w;x) = Pr(x is in 
lass A)Clearly we also have Pr(x is in 
lass B) = 1 − h(w;x)and it follows that training examples should be labelled 1 and 0 for 
lasses A and Brespe
tively. 5



Say we have a spe
i�
 training example (x ′, 0). What does it tell us about how to
hoose a good w? Clearly we might want to 
hoose w to maximizePr(We see the example (x ′, 0)|w) = Pr(We see the label 0|w,x ′) × Pr(x ′)

=
{
1 − h(w;x ′)

}
× Pr(x ′)where the se
ond step in
orporates the assumption that x

′ and w are independent.This quantity is 
alled the likelihood of w. Given an entire training sequen
e
s = ((x1, c1), (x2, c2), . . . , (xm, cm))where the labels ci take values 0 or 1 we 
an also 
onsider 
hoosing w to maximisethe probability that the entire 
olle
tion of m input ve
tors is labelled in the spe
i�edmanner (the likelihood Pr(s|w) of w).Assuming that the examples in s are independent, show that in order to a
hieve thiswe should 
hoose w to maximize the expression

m∑

i=1

ci log h(w;xi) + (1 − ci) log(1 − h(w;xi))What does this allow you to 
on
lude about the version of the ba
kpropagation algo-rithm presented in the le
tures?3. As in the previous question, the likelihood of a hypothesis h 
an be thought of as theprobability of obtaining a training sequen
e s given that h is a perfe
t mapping fromattribute ve
tors to 
lassi�
ations. Assume that H 
ontains fun
tions h : X → R andexamples are labelled using a spe
i�
 target fun
tion f ∈ H but 
orrupted by noise, so
s = ((x1, o1), (x2, o2), . . . , (xm, om))and

oi = f(xi) + eifor i = 1, 2, . . . ,m where ei denotes noise. If the attribute ve
tors are �xed, and the eiare independent and identi
ally distributed with the Gaussian distribution
p(ei) =

1√
2πσ2

exp(

−(ei − µ)2

2σ2

)where µ is the noise mean and σ2 the noise varian
e, then the likelihood of any hypoth-esis is
p(s|h) = p((o1, o2, . . . , om)|h) =

m∏

i=1

p(oi|h)where the last step follows be
ause the ei are independent. Assume in the followingthat µ = 0.(a) Show that the mean of oi is f(xi) and the varian
e of oi is σ2.6



(b) Show that
p(oi|h) =

1√
2πσ2

exp(

−(oi − h(xi))
2

2σ2

)

.(Hint: what happens to a Gaussian if you linearly transform it?)(
) Show that any hypothesis that maximises the likelihood is also one that min-imises the quantity
m∑

i=1

(oi − h(xi))
2(d) What does this tell you about the spe
i�
 example of the ba
kpropagation algo-rithm given in the le
tures?4. The demonstration of the ba
kpropagation algorithm given in the le
tures 
an be im-proved. In solving the parity problem what we really want to know is the probabilitythat an example should be pla
ed in 
lass one. Probabilities lie in the interval [0, 1],but the output of the network used is unbounded.� Derive the modi�
ation required to the algorithm if the a
tivation fun
tion on theoutput node is 
hanged from g(x) = x to g(x) = 1/(1 + exp(−x)). (This is afun
tion 
ommonly used to produ
e probabilities as outputs.)� Implement the modi�ed algorithm. (Matlab is probably a good language to use.)Apply it to the parity data des
ribed in the le
tures.
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