
Arti�ial Intelligene 1Exerises 2: knowledge representation and reasoning, planning and neural networksDr Sean B Holden, 2010
1 IntroductionThese notes provide some extra exerises for the AI1 ourse. Solutions are available toSupervisors and will be made available to all after the ourse has �nished.
2 Knowledge representation and reasoning1. There have in fat been two queries suggested in the notes for obtaining a sequene ofations. The details for

∃a ∃s . Sequene(a, s0, s) ∧ Goal(s)were given on the last slide, but earlier in the notes the format
∃actionList . Goal(... actionList ...)was suggested. Explain how this alternative form of query might be made to work.2. Making orret use of the situation alulus, write the sentenes in FOL required toimplement the Shoot ation in Wumpus World.3. Download and install a opy of Prover9 from www.cs.unm.edu/∼mccune/prover9/.(Hint: if you're Linux-based then you'll probably �nd it's already pakaged. For instane

yum install prover9-200805a-6.fc12 (i686) works under Fedora 12.)Referring to exam question 2003, paper 9, question 8 assume that initially both ownerand at are in the living room. The at an make its owner move to the kithen bygoing to its food bowl in the kithen and meeowing. It an then of ourse return to theliving room and srath something valuable.Implement suÆient knowledge in the situation alulus to allow an ation sequene tobe derived allowing the at to ahieve this, and use Prover9 to derive suh an ationsequene.In order to do this you need to know how to extrat an answer from the theorem prover.Taking an easy example from the leture notes:
formulas(assumptions).

wife(x,y) <-> (female(x) & married(x,y)).1



female(Violet).

married(Violet,Bill).

end_of_list.

formulas(goals).

exists x wife(Violet,x).

end_of_list.Extrating the value of x requires two things: we need to move the goal into theassumptions (whih is just like onverting ¬(A → B) to A ∧ ¬B when negating andonverting to lauses) and we need to add a ommand to the knowledge base to get:
formulas(assumptions).

wife(x,y) <-> (female(x) & married(x,y)).

female(Violet).

married(Violet,Bill).

-wife(Violet,x) # answer(x).

end_of_list.

formulas(goals).

end_of_list.Here, the addition of # answer(x) auses the prover to output the value of x as partof the solution.
3 Planning1. We've seen how heuristis an be used to speed up the proess of searhing. Planninghas muh in ommon with searh. Can you devise any general heuristis that you mightexpet to speed up the planning proess?2. Violet Sroot is the leverest student at Bibulous College. She has turned up at thisterm's Big Party, only to �nd that it is in the home of her arh rival, who has turnedher away. She spies in the driveway a large box and a ladder, and hathes a plan togaterash by getting in through a seond oor window. Party on!Here is the planning problem. She needs to move the box to the house, the ladder ontothe box, then limb onto the box herself and at that point she an limb the ladder tothe window. Using the abbreviations 2



� B - Box� L - Ladder� H - House� V - Violet Scroot� W - Window� D - DrivewayThe start state is ¬At(B,H), ¬At(L, B), ¬At(V,W) and ¬At(V,B). The goal is At(V,W).The available ations are

At(V, B)

Move(L, D)

¬At(L, B)

At(L, B)

Move(L, B)

At(L, B)

¬At(L, B)

Move(B, H)

At(B, H)

¬At(B, H), ¬At(L, B) At(B, H), At(L, B), At(V, B)

Move(V, W)

At(V, W)

¬At(V, B)

Move(V, B)

Construt a solution to the problem using the partial order planning algorithm.3. Return of the Evil Cat! Consider the problem involving the situation alulus andProver9 above.� Represent this problem in the STRIPS format so that it ould be given as inputto the partial order planning algorithm.� Construt a solution to the problem using the partial order planning algorithm.How many spei� plans an be extrated from the result?
4 Learning1. The purpose of this exerise is to gain some insight into the way in whih the parametersof a basi, linear pereptron a�et the position and orientation of its deision boundary.Reall that a linear pereptron is based on the funtion

f(x) = w
T
x + bwhere x ∈ R

n, w ∈ R
n and b ∈ R. The pereptron deides that a new input x isin lass 1 if f(x) ≥ 0 and deides that the input is in lass 2 otherwise. The deisionboundary is therefore the olletion of all points where f(x) = 0.3



It's always easy to �nd n distint points where f(x) = 0 beause for any w and b wejust need to solve
w

T
x
′ = −bwhih is easy using

x
T = ( (−b/w1) 0 · · · 0 )

x
T = ( 0 (−b/w2) · · · 0 )and so on. If any of the weights is 0 this is problemati but easy to �x. (I leave it as awarm-up exerise to work out how.) Let x

′ and x
′′ be two points where f(x ′) = 0 and

f(x ′′) = 0. Let's onentrate on the ase where n = 2. Consider the vetor
y = x

′ − x
′′Now take any number a ∈ R and look at what happens if we evaluate

f(x ′ + ay).We obtain
f(x ′ + ay) = w

T(x ′ + ay) + b

= w
T
x
′ + aw

T
y + b

= f(x ′) + aw
T(x ′ − x

′′)

= a(wT
x
′ − w

T
x
′′)

= a(−b − (−b))

= 0This works for any value a ∈ R, and suggests that the deision boundary is a straightline in R
2 as illustrated in �gure 1. (Note however that we haven't yet demonstratedthat f(x) 6= 0 if x is not of the form x = x

′ + ay.)(a) Prove that the weight vetor w is perpendiular to the line desribed by x
′ + ay.(Hint: remember that vetors are perpendiular if their inner produt is 0.) Notethat this tells us that w desribes the orientation of the deision boundary.(b) Let v be the vetor from the origin to the line desribed by x

′ + ay and perpen-diular to it as illustrated in �gure 1. Prove that
||v|| =

|b|

||w||Note that this tell us the following: if ||w|| = 1 then |b| tells us the distane fromthe origin to the deision boundary.
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Dotted line f(x) = 0.
y = x ′ − x ′′

x ′′

x

vx ′

z

Figure 1: The deision boundary appears to be a straight line.() Let x be any point not on the line desribed by x
′ + ay. Let z be the vetor fromthe line to x and perpendiular to the line as illustrated in �gure 1. Prove that

||z|| =
|f(x)|

||w||This tells us that points not on the line do not obey f(x) = 0 and that the valueof f(x) tells us the distane from the deision boundary to x.(d) Prove that replaing w with w/||w|| and b with b/||w|| does not alter the deisionboundary.2. In the appliation of neural networks to pattern lassi�ation|where we wish toassign any input vetor x to membership in a spei� lass|it makes sense to attemptto interpret network outputs as probabilities of lass membership.For example, in the medial diagnosis senario presented in the letures, where we tryto map an input x to either lass A (patient has the disease) or lass B (patient is freeof the disease) it makes sense to use a network with a single output produing valuesonstrained between 0 and 1 suh that the output h(w;x) of a network using weights
w is interpreted as

h(w;x) = Pr(x is in lass A)Clearly we also have Pr(x is in lass B) = 1 − h(w;x)and it follows that training examples should be labelled 1 and 0 for lasses A and Brespetively. 5



Say we have a spei� training example (x ′, 0). What does it tell us about how tohoose a good w? Clearly we might want to hoose w to maximizePr(We see the example (x ′, 0)|w) = Pr(We see the label 0|w,x ′) × Pr(x ′)

=
{
1 − h(w;x ′)

}
× Pr(x ′)where the seond step inorporates the assumption that x

′ and w are independent.This quantity is alled the likelihood of w. Given an entire training sequene
s = ((x1, c1), (x2, c2), . . . , (xm, cm))where the labels ci take values 0 or 1 we an also onsider hoosing w to maximisethe probability that the entire olletion of m input vetors is labelled in the spei�edmanner (the likelihood Pr(s|w) of w).Assuming that the examples in s are independent, show that in order to ahieve thiswe should hoose w to maximize the expression

m∑

i=1

ci log h(w;xi) + (1 − ci) log(1 − h(w;xi))What does this allow you to onlude about the version of the bakpropagation algo-rithm presented in the letures?3. As in the previous question, the likelihood of a hypothesis h an be thought of as theprobability of obtaining a training sequene s given that h is a perfet mapping fromattribute vetors to lassi�ations. Assume that H ontains funtions h : X → R andexamples are labelled using a spei� target funtion f ∈ H but orrupted by noise, so
s = ((x1, o1), (x2, o2), . . . , (xm, om))and

oi = f(xi) + eifor i = 1, 2, . . . ,m where ei denotes noise. If the attribute vetors are �xed, and the eiare independent and identially distributed with the Gaussian distribution
p(ei) =

1√
2πσ2

exp(

−(ei − µ)2

2σ2

)where µ is the noise mean and σ2 the noise variane, then the likelihood of any hypoth-esis is
p(s|h) = p((o1, o2, . . . , om)|h) =

m∏

i=1

p(oi|h)where the last step follows beause the ei are independent. Assume in the followingthat µ = 0.(a) Show that the mean of oi is f(xi) and the variane of oi is σ2.6



(b) Show that
p(oi|h) =

1√
2πσ2

exp(

−(oi − h(xi))
2

2σ2

)

.(Hint: what happens to a Gaussian if you linearly transform it?)() Show that any hypothesis that maximises the likelihood is also one that min-imises the quantity
m∑

i=1

(oi − h(xi))
2(d) What does this tell you about the spei� example of the bakpropagation algo-rithm given in the letures?4. The demonstration of the bakpropagation algorithm given in the letures an be im-proved. In solving the parity problem what we really want to know is the probabilitythat an example should be plaed in lass one. Probabilities lie in the interval [0, 1],but the output of the network used is unbounded.� Derive the modi�ation required to the algorithm if the ativation funtion on theoutput node is hanged from g(x) = x to g(x) = 1/(1 + exp(−x)). (This is afuntion ommonly used to produe probabilities as outputs.)� Implement the modi�ed algorithm. (Matlab is probably a good language to use.)Apply it to the parity data desribed in the letures.

7


