
Arti�
ial Intelligen
e IDr Sean HoldenComputer Laboratory, Room FC06Telephone extension 63725Email: sbh11�
l.
am.a
.ukwww.
l.
am.a
.uk/∼sbh11/

Copyright

 Sean Holden 2002-2010.1

Introdu
tion: what's AI for?What is the purpose of Arti�
ial Intelligen
e (AI)?If you're a philosopher or a psy
hologist then:� To understand intelligen
e .� To understand ourselves .However, we're neither|we're s
ientists/engineers, so while we might havesome interest in su
h pursuits...
2

Introdu
tion: what's AI for?From our perspe
tive:� To understand why our brain is small and (arguably) slow, but in-
redibly good at some tasks|we want to understand a spe
i�
 form of
omputation .� To
onstru
t intelligent systems.� To make and sell
ool stu�.This view seems to be the more su

essful .AI is entering our lives almost without us being aware of it.

3

Introdu
tion: now is a fantasti
 time to investigate AIIn many ways this is a young �eld, having only really got under way in1956 with the Dartmouth Conferen
e .

www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html� This means we
an a
tually do things.� Also, we know what we're trying to do is possible .Philosophy has addressed similar problems for at least 2000 years.� Can we do AI? Should we do AI?� Is AI impossible? (Note: I didn't write possible here, for a good rea-son...)Arguably, philosophy has had relatively little su

ess.
4

Aside I: philosophy (428 B.C. to present)� So
rates wanted an algorithm (!) for \piety". The rules governingrational thought. Syllogisms .� Me
hani
al reasoning : Ramon Lull's
on
ept wheels (approx. 1315).Further attempts at me
hani
al
al
ulators.� Mind as a physi
al system : Rene Des
artes (1596-1650). Dualism .� The opposing position of materialism : Wilhelm Leibnitz (1646-1716).� An intermediate position: mind is physi
al but unknowable .� Where does knowledge
ome from?� Fran
is Ba
on (1561-1626): empiri
ism . Leading to John Lo
ke (1632-1704): \Nothing is in the understanding, whi
h was not �rst in thesenses".� David Hume (1711-1776). Indu
tion : we obtain rules by repeated ex-posure. Further developed by Bertrand Russel (1872-1970) and in the
on�rmation theory of Carnap and Hempel.
5

Aside I: philosophy (428 B.C. to present)Finally: what is the
onne
tion between knowledge and a
tion? How area
tions justi�ed?Aristotle: don't
on
entrate on the end but the means .If to a
hieve the end you need to a
hieve something intermediate,
onsiderhow to a
hieve that, and so on.This approa
h was implemented in Newell and Simon's 1957General Prob-lem Solver (GPS).

6

Further readingWhy do people like to argue that AI is impossible?Why do people dislike the idea that humanity might not be spe
ial .An ex
ellent arti
le on why this view is mu
h more problemati
 than itmight seem is:\Why people think
omputers
an't," Marvin Minsky. AI Magazine,volume 3 number 4, 1982.
7

Introdu
tion: what's happened sin
e 1956?What's made the di�eren
e? We have a huge advantage in having rea
hed apoint where te
hnology has matured suÆ
iently to allow us to build things .� Per
eption (vision, spee
h pro
essing...)� Logi
al reasoning (prolog, expert systems, CYC...)� Playing games (
hess, ba
kgammon, go...)� Diagnosis of illness (in various
ontexts...)� Theorem proving (Robbin's
onje
ture...)� Literature and musi
 (automated writing and
omposition...)� And many more...The simple ability to try things out has led to huge advan
es in a relativelyshort time. So: don't believe the
riti
s...
8

Aside II:
omputer engineering (1940 to present)To have AI, you need a means of implementing the intelligen
e. Com-puters are (at present) the only devi
es in the ra
e. (Although quantum
omputation is looking interesting...)AI has had a major e�e
t on
omputer s
ien
e:� Time sharing� Intera
tive interpreters� Linked lists� Storage management� Some fundamental ideas in obje
t-oriented programming� and so on...When AI has a su

ess, the ideas in question tend to stop being
alled AI .

9

The nature of the pursuitWhat is AI? This is not ne
essarily a straightforward question.It depends on who you ask...We
an �nd many de�nitions and a rough
ategorisation
an be madedepending on whether we are interested in:� The way in whi
h a system a
ts or the way in whi
h it thinks .� Whether we want it to do this in a human way or a rational way.Here, the word rational has a spe
ial meaning: it means doing the
orre
tthing in given
ir
umstan
es .
10

A
ting like a humanWhat is AI, version one: a
ting like a humanAlan Turing proposed what is now known as the Turing Test .� A human judge is allowed to intera
t with an AI program via a terminal.� This is the only method of intera
tion.� If the judge
an't de
ide whether the intera
tion is produ
ed by a ma-
hine or another human then the program passes the test.In the unrestri
ted Turing test the AI program may also have a
ameraatta
hed, so that obje
ts
an be shown to it, and so on.

11

A
ting like a humanThe Turing test is informative, and (very!) hard to pass.� It requires many abilities that seem ne
essary for AI, su
h as learning.BUT : a human
hild would probably not pass the test.� Sometimes an AI system needs human-like a
ting abilities|for exampleexpert systems often have to produ
e explanations|but not always .See the Loebner Prize in Arti�
ial Intelligen
e :
www.loebner.net/Prizef/loebner-prize.html

12

Thinking like a humanWhat is AI, version two: thinking like a humanThere is always the possibility that a ma
hine a
ting like a human doesnot a
tually think . The
ognitive modelling approa
h to AI has tried to:� Dedu
e how humans think|for example by introspe
tion or psy
ho-logi
al experiments .� Copy the pro
ess by mimi
king it within a program.An early example of this approa
h is the General Problem Solver pro-du
ed by Newell and Simon in 1957. They were
on
erned with whetheror not the program reasoned in the same manner that a human did.Computer S
ien
e + Psy
hology = Cognitive S
ien
e

13

Aside III: psy
hology (1879 to present)� Begins with the study of the human visual system. Hermann vonHelmholtz (1821-1894).� The �rst experimental psy
hology founded by Wilhelm Wundt (1832-1920).

– The lab
ondu
ted
areful,
ontrolled experiments on human sub-je
ts.

– The idea was for the subje
t to perform some task and introspe
tabout their thought pro
esses.Other labs followed this lead. BUT: a strange|and fatal|e�e
t ap-peared.For ea
h lab, the introspe
tions of the subje
ts turned out to
onformto the preferred theories of the lab.

14

Aside III: psy
hology (1879 to present)The main response to this e�e
t was behaviourism .Watson (1878-1958)Thorndike (1874-1949).� They regarded eviden
e based on introspe
tion as fundamentally unre-liable, so they simply reje
ted all theories based on any form of mentalpro
ess.� They
onsidered only obje
tive measures of stimulus and response .They learnt a LOT of interesting things about rats and pigeons!The more sophisti
ated view of the brain as an information pro
ess-ing devi
e|the view of
ognitive psy
hology|was steamrollered by be-haviourism until Craik's The Nature of Explanation (1943).The idea that
on
epts su
h as reasoning, beliefs, goals et
 are importantis re-stated.Criti
ally: the system
ontains a model of the world and of the way itsa
tions a�e
t the world. 15

Aside III: psy
hology (1879 to present)stimuli
onverted to internal representation
↓
ognitive pro
esses manipulate internal representations
↓internal representations
onverted into a
tions

16

Thinking rationally: the \laws of thought"What is AI, version three: thinking rationallyThe idea that intelligen
e redu
es to rational thinking is a very old one,going at least as far ba
k as Aristotle as we've already seen.The general �eld of logi
 made major progress in the 19th and 20th
en-turies, allowing it to be applied to AI.� We
an represent and reason about many di�erent things.� The logi
ist approa
h to AI.This is a very appealing idea. However...
17

Thinking rationally: the \laws of thought"Unfortunately there are obsta
les to any naive appli
ation of logi
. It ishard to:� Represent
ommonsense knowledge .� Deal with un
ertainty .� Reason without being tripped up by
omputational
omplexity .These will be re
urring themes in this
ourse, and in AI II.Logi
 alone also falls short be
ause:� Sometimes it's ne
essary to a
t when there's no logi
al
ourse of a
tion.� Sometimes inferen
e is unne
essary (re
ex a
tions).

18

Further readingThe Fifth Generation Computer System proje
t has most
ertainly earnedthe badge of \heroi
 failure".It is an example of how mu
h harder the logi
ist approa
h is than you mightthink:\Overview of the Fifth Generation Computer Proje
t," TohruMoto-oka. ACM SIGARCH Computer Ar
hite
ture News, volume 11,number 3, 1983.
19

Aside III: mathemati
s (800 to present)� To be s
ienti�
 about AI we need
omputation, logi
, and probability.� Aristotle knew about logi
, but as a philosophi
al rather than mathe-mati
al pursuit.� George Boole (1815-1864) made it into mathemati
s.� Gottlob Frege (1848-1925) founded all the essential parts of �rst-orderlogi
.� Alfred Tarski (1902-1983). The theory of referen
e: what is the rela-tionship between real and logi
al obje
ts.� Computation begins with algorithms : Arab mathemati
ian al-Khowarazmi .� The limits of algorithms: David Hilbert (1862-1943). The ents
hei-dungsproblem .� Solved by Turing, who (with others) formulated pre
isely what an al-gorithm is . Intra
tability .� Kurt Godel (1906-1978): theorems on
ompleteness and in
ompleteness.

20

Aside III: mathemati
s (800 to present)Probability:� Gerolamo Cardano (1501-1576): gambling out
omes.� Further developed by Fermat, Pas
al, Bernoulli, Lapla
e...� Bernoulli (1654-1705): probability as a measure of degree of belief .� Bayes (1702-1761): updating a degree of belief when new eviden
e isavailable.� Probability forms the basis for the modern treatment of un
ertainty .� De
ision theory . Von Neumann and Morgenstern (1944):
ombineun
ertainty with a
tion.
21

A
ting rationallyWhat is AI, version four: a
ting rationallyBasing AI on the idea of a
ting rationally means attempting to designsystems that a
t to a
hieve their goals given their beliefs .What might be needed?� To make good de
isions in many di�erent situations we need to rep-resent and reason with knowledge .� We need to deal with natural language .� We need to be able to plan .� We need vision .� We need learning .And so on, so all the usual AI bases seem to be
overed.

22

A
ting rationallyThe idea of a
ting rationally has several advantages:� The
on
epts of a
tion , goal and belief
an be de�ned pre
isely makingthe �eld suitable for s
ienti�
 study.This is important: if we try to model AI systems on humans, we
an't evenpropose any sensible de�nition of what a belief or goal is .In addition, humans are a system that is still
hanging and adapted to avery spe
i�
 environment.Rational a
ting does not have these limitations.
23

A
ting rationallyRational a
ting also seems to in
lude two of the alternative approa
hes:� All of the things needed to pass a Turing test seem ne
essary for rationala
ting, so this seems preferable to the a
ting like a human approa
h.� The logi
ist approa
h
an
learly form part of what's required to a
trationally, so this seems preferable to the thinking rationally approa
halone.As a result, we will fo
us on the idea of designing systems that a
t ratio-nally .

24

Other
ontributionsLinguisti
s (1957 to present)� Skinner's Verbal Behaviour (1951). The approa
h to language devel-oped by the behaviourists.� Noam Chomsky showed it
ould not explain understanding or produ
-tion of senten
es not previously heard .� Chomsky's own theory|based on synta
ti
 models|did not su�er inthis way. It was also formal, and
ould be programmed.This overall problem is
onsiderably harder than was realised in 1957.It requires knowledge representation, and the �elds have informed one an-other.A
lassi
 example: \Time
ies like an arrow" and \Fruit
ies like abanana"

25

Other
ontributionsE
onomi
s (1776 to present)� How should I a
t, perhaps in the presen
e of adversaries, to obtainsomething ni
e in the future?� When we say \something ni
e," how
an the \degree of ni
eness" bemeasured?� This leads to the idea of utility as a mathemati
al
on
ept. Walras(1834-1910), Ramsey (1931) and Von Neumann and Morgenstern (1944).� Large e
onomies: Probability theory + utility theory = de
ision theory� Game theory is more appli
able to small e
onomies. Sometimes it'srational to a
t (apparently) randomly.� Future gains resulting from a sequen
e of a
tions. Operations resear
h.Bellman (1957): Markov de
ision pro
esses .� Unfortunately it is
omputationally hard to a
t rationally.� Herbert Simon (1916-2001): Nobel Prize for E
onomi
s. Satis�
ing isa better way of des
ribing the a
tual behaviour of humans.26

Other
ontributionsNeuros
ien
e (1861 to present)Nasty bumps on the head
↓We know that the brain has something to do with
ons
iousnessExperiments by Paul Bro
a (1824-1880) led to the understanding that lo-
alised regions have di�erent tasks.Around that time the presen
e of neurons was understood but there werestill major problems.For example, even now there is no
omplete understanding of how ourbrains store a single memory.More re
ently: EEG, MRI and the study of single
ells.

27

Other
ontributionsCyberneti
s and
ontrol theory (1948 to present)� Ktesibios of Alexandria (250 BC). First ma
hine able to modify its ownbehaviour. (Water
lo
k
ontaining a me
hanism for
ontrolling the
owof water.)� James Watt (1736-1819): governor for steam engines.� Cornelius Drebbel (1572-1633): thermostat.� Control theory as a mathemati
al subje
t: Norbert Wiener (1894-1964)and others.� Interesting behaviour
aused by a
ontrol system minimising error =di�eren
e between goal and
urrent situation .� More re
ently: sto
hasti
 optimal
ontrol . Maximisation over time ofan obje
tive fun
tion .� Conne
ted dire
tly to AI, but the latter moves away from linear ,
on-tinuous s
enarios.
28

What's in this
ourse?This
ourse introdu
es some of the fundamental areas that make up AI:� An outline of the ba
kground to the subje
t.� An introdu
tion to the idea of an agent .� Solving problems in an intelligent way by sear
h .� Solving problems represented as
onstraint satisfa
tion problems.� Playing games .� Knowledge representation, and reasoning .� Planning .� Learning using neural networks .Stri
tly speaking, AI I
overs what is often referred to as \Good Old-Fashioned AI".The nature of the subje
t
hanged a great deal when the importan
e of un-
ertainty be
ame fully appre
iated. AI II
overs this more re
ent material.29

What's not in this
ourse?� The
lassi
al AI programming languages prolog and lisp.� A great deal of all the areas on the last slide!� Per
eption: vision , hearing and spee
h pro
essing , tou
h (for
e sens-ing, knowing where your limbs are, knowing when something is bad),taste , smell .� Natural language pro
essing.� A
ting on and in the world: roboti
s (e�e
tors, lo
omotion, manipula-tion),
ontrol engineering , me
hani
al engineering , navigation .� Areas su
h as geneti
 algorithms/programming , swarm intelligen
e ,arti�
ial immune systems and fuzzy logi
, for reasons that I will ex-pand upon during the le
tures.� Un
ertainty and mu
h further probabilisti
 material. (You'll have towait until next year.)
30

Text bookThe
ourse is based on the relevant parts of:Arti�
ial Intelligen
e: A Modern Approa
h , Se
ond Edition (2003).Stuart Russell and Peter Norvig, Prenti
e Hall International Editions.NOTE: the 3rd edition has re
ently be
ome available. This is also �ne.

31

Interesting things on the webA few interesting web starting points:The Honda Asimo robot: world.honda.com/ASIMOAI at Nasa Ames: www.nasa.gov/centers/ames/research/exploringtheuniverse/spiffy.htmlDARPAGrand Challenge: ai.stanford.edu/∼dstavens/aaai06/montemerlo etal aaai06.pdf2007 DARPA Urban Challenge: cs.stanford.edu/group/roadrunnerThe Cy
 proje
t: www.cyc.comHuman-like robots: www.ai.mit.edu/projects/humanoid-robotics-groupSony robots: support.sony-europe.com/aiboNEC \PaPeRo": www.nec.co.jp/products/robot/en

32

PrerequisitesThe prerequisites for the
ourse are: �rst order logi
, some algorithms anddata stru
tures, dis
rete and
ontinuous mathemati
s, basi

omputational
omplexity.DIRE WARNING:In the le
tures on ma
hine learning I will be talking about neural net-works .This means you will need to be able to di�erentiate and also handle ve
torsand matri
es .If you've forgotten how to do this you WILL get lost|I guarantee it!!!

33

PrerequisitesSelf test:1. Let

f(x1, . . . , xn) =

n∑

i=1

aix
2
iwhere the ai are
onstants. Can you
ompute ∂f/∂xj where 1 ≤ j ≤ n?2. Let f(x1, . . . , xn) be a fun
tion. Now assume xi = gi(y1, . . . , ym) for ea
h

xi and some
olle
tion of fun
tions gi. Assuming all requirements fordi�erentiability and so on are met,
an you write down an expressionfor ∂f/∂yj where 1 ≤ j ≤ m?If the answer to either of these questions is \no" then it's time for somerevision. (You have about three weeks noti
e, so I'll assume you know it!)

34

Arti�
ial Intelligen
e IDr Sean Holden

An introdu
tion to Agents

Copyright

 Sean Holden 2002-2010.35

AgentsThere are many di�erent de�nitions for the term agent within AI.Allow me to introdu
e EVIL ROBOT.
ENVIRONMENT

A
t
SenseGLORIOUS LEADER!!!!DR HOLDEN WILL BE OURMUST ENSLAVE EARTH!!!

We will use the following simple de�nition: an agent is any devi
e that
an sense and a
t upon its environment .
36

AgentsThis de�nition
an be very widely applied: to humans, robots, pie
es ofsoftware, and so on.We are taking quite an applied perspe
tive. We want to make thingsrather than
opy humans , so to be s
ienti�
 there are some issues to beaddressed:� How
an we judge an agent's performan
e?� How
an an agent's environment a�e
t its design?� Are there sensible ways in whi
h to think about the stru
ture of anagent?Re
all that we are interested in devi
es that a
t rationally , where `rational'means doing the
orre
t thing under given
ir
umstan
es .Reading: Russell and Norvig,
hapter 2.
37

Measuring performan
eHow
an we judge an agent's performan
e? Any measure of performan
eis likely to be problem-spe
i�
.Example: For a
hess playing agent, we might use its rating.Example: For a mail-�ltering agent, we might devise a measure of howwell it blo
ks spam, but allows interesting email to be read.Example: For a
ar driving agent the measure needs
onsiderable sophis-ti
ation: we need to take a

ount of
omfort, journey time, safety et
.So: the
hoi
e of a performan
e measure is itself worthy of
areful
onsid-eration.

38

Measuring performan
eWe're usually interested in expe
ted, long-term performan
e .� Expe
ted performan
e be
ause usually agents are not omnis
ient|they don't infallibly know the out
ome of their a
tions.� It is rational for you to enter this le
ture theatre even if the roof fallsin today.An agent
apable of dete
ting and prote
ting itself from a falling roof mightbe more su

essful than you, but not more rational .� Long-term performan
e be
ause it tends to lead to better approxima-tions to what we'd
onsider rational behaviour.� We probably don't want our
ar driving agent to be outstandinglysmooth and safe for most of the time, but have episodes of drivingthrough the lo
al orphanage at 150 mph.
39

EnvironmentsHow
an an agent's environment a�e
t its design? Example: the environ-ment for a
hess program is vastly di�erent to that for an autonomousdeep-spa
e vehi
le . Some
ommon attributes of an environment have a
onsiderable in
uen
e on agent design.� A

essible/ina

essible: do per
epts tell you everything you need toknow about the world?� Deterministi
/non-deterministi
: does the future depend predi
tablyon the present and your a
tions?� Episodi
/non-episodi
 is the agent run in independent episodes.� Stati
/dynami
:
an the world
hange while the agent is de
iding whatto do?� Dis
rete/
ontinuous: an environment is dis
rete if the sets of allowableper
epts and a
tions are �nite.
40

EnvironmentsAll of this assumes there is only one agent.When multiple agents are involved we need to
onsider:� Whether the situation is
ompetitive or
ooperative .� Whether
ommuni
ation required?An example of multiple agents:news.bb
.
o.uk/1/hi/te
hnology/3486335.stm

41

Basi
 stru
tures for intelligent agentsAre there sensible ways in whi
h to think about the stru
ture of an agent?Again, this is likely to be problem-spe
i�
, although perhaps to a lesserextent.So far, an agent is based on per
epts, a
tions and goals.Example: Air
raft piloting agent.Per
epts: sensor information regarding height, speed, engines et
, audioand video inputs, and so on.A
tions: manipulation of the air
raft's
ontrols.Also, perhaps talking to the passengers et
.Goals: get to the ne
essary destination as qui
kly as possible with minimaluse of fuel, without
rashing et
.
42

Programming agentsA basi
 agent
an be thought of as working on a straightforward underlyingpro
ess:� Gather per
eptions .� Update working memory to take a

ount of them.� On the basis of what's in the working memory,
hoose an a
tion toperform.� Update the working memory to take a

ount of this a
tion.� Do the
hosen a
tion.Obviously, this hides a great deal of
omplexity.Also, it ignores subtleties su
h as the fa
t that a per
ept might arrive whilean a
tion is being
hosen.
43

Programming agentsWe'll initially look at two hopelessly limited approa
hes, be
ause they dosuggest a
ouple of important points.Hopelessly limited approa
h number 1: use a table to map per
ept se-quen
es to a
tions. This
an qui
kly be reje
ted.� The table will be huge for any problem of interest. About 35100 entriesfor a
hess player.� We don't usually know how to �ll the table.� Even if we allow table entries to be learned it will take too long.� The system would have no autonomy .We
an attempt to over
ome these problems by allowing agents to reason .Autonomy is an interesting issue though...
44

AutonomyIf an agent's behaviour depends in some manner on its own experien
e ofthe world via its per
ept sequen
e, we say it is autonomous .� An agent using only built-in knowledge would seem not to be su

ess-ful at AI in any meaningful sense: its behaviour is prede�ned by itsdesigner.� On the other hand some built-in knowledge seems essential, even tohumans.Not all animals are entirely autonomous.For example: dung beetles.
45

Re
ex agentsHopelessly limited approa
h number 2: try extra
ting pertinent informa-tion and using rules based on this.Condition-a
tion rules: if a
ertain state is observed then perform somea
tionSome points immediately present themselves regarding why re
ex agentsare unsatisfa
tory:� We
an't always de
ide what to do based on the
urrent per
ept .� However storing all past per
epts might be undesirable (for examplerequiring too mu
h memory) or just unne
essary.� Re
ex agents don't maintain a des
ription of the state of their envi-ronment ...� ...however this seems ne
essary for any meaningful AI. (Consider au-tomating the task of driving.)This is all the more important as usually per
epts don't tell you everythingabout the state . 46

Keeping tra
k of the environmentIt seems reasonable that an agent should maintain:� A des
ription of the
urrent state of its environment .� Knowledge of how the environment
hanges independently of the agent .� Knowledge of how the agent's a
tions a�e
t its environment .This requires us to do knowledge representation and reasoning .

47

Goal-based agentsIt seems reasonable that an agent should
hoose a rational
ourse of a
tiondepending on its goal .� If an agent has knowledge of how its a
tions a�e
t the environment,then it has a basis for
hoosing a
tions to a
hieve goals.� To obtain a sequen
e of a
tions we need to be able to sear
h and toplan .This is fundamentally di�erent from a re
ex agent.For example: by
hanging the goal you
an
hange the entire behaviour.

48

Goal-based agentsWe now have a basi
 design that looks something like this:

Des
ription of Goal
Infer

UpdatePer
ept
Des
ription:
urrent environmentDes
ription: e�e
t of a
tionsDes
ription: behaviour of environment

Update

A
tion/A
tion sequen
e
49

Utility-based agentsIntrodu
ing goals is still not the end of the story.There may be many sequen
es of a
tions that lead to a given goal, andsome may be preferable to others .A utility fun
tion maps a state to a number representing the desirabilityof that state.� We
an trade-o�
on
i
ting goals , for example speed and safety.� If an agent has several goals and is not
ertain of a
hieving any of them,then it
an trade-o� likelihood of rea
hing a goal against the desirabilityof getting there.Maximising expe
ted utility over time forms a fundamental model for thedesign of agents. However we don't get as far as that until AI II.

50

Learning agentsIt seems reasonable that an agent should learn from experien
e .

Learner Des
ription of GoalFeedba
k

Infer
UpdatePer
ept

Des
ription:
urrent environmentDes
ription: e�e
t of a
tionsDes
ription: behaviour of environment
Update

A
tion/A
tion sequen
e

Update
51

Learning agentsThis requires two additions:� The learner needs some form of feedba
k on the agent's performan
e.This
an
ome in several di�erent forms.� In general, we also need a means of generating new behaviour in orderto �nd out about the world.This in turn implies a trade-o�: should the agent spend time exploitingwhat it's learned so far, or exploring the environment on the basis that itmight learn something really useful?
52

What have we learned? (No pun intended...)The
ru
ial things that should be taken away from this le
ture are:� The nature of an agent depends on its environment and performan
emeasure .� We're usually interested in expe
ted, long-term performan
e .� Autonomy requires that an agent in some way behaves depending onits experien
e of the world .� There is a natural basi
 stru
ture on whi
h agent design
an be based.� Consideration of that stru
ture leads naturally to the basi
 areas
overedin this
ourse.Those basi
 areas are: knowledge representation and reasoning, sear
h,planning and learning . Oh, and �nally, we've learned NOT TO MESS WITH EVIL ROBOT... he's a VERY BADROBOT!

53

Arti�
ial Intelligen
e IDr Sean Holden

Notes on problem solving by sear
h

Copyright

 Sean Holden 2002-2010.54

Problem solving by sear
hWe begin with what is perhaps the simplest
olle
tion of AI te
hniques:those allowing an agent existing within an environment to sear
h for asequen
e of a
tions that a
hieves a goal .The algorithms
an,
rudely, be divided into two kinds: uninformed andinformed .Not surprisingly, the latter are more e�e
tive and so we'll look at those inmore detail.Reading: Russell and Norvig,
hapters 3 and 4.
55

Problem solving by sear
hAs with any area of
omputer s
ien
e, some degree of abstra
tion is ne
-essary when designing AI algorithms.Sear
h algorithms apply to a parti
ularly simple
lass of problems|weneed to identify:� An initial state : what is the agent's situation to start with?� A set of a
tions : these are modelled by spe
ifying what state will resulton performing any available a
tion from any known state.� A goal test : we
an tell whether or not the state we're in
orrespondsto a goal.Note that the goal may be des
ribed by a property rather than an expli
itstate or set of states, for example
he
kmate .
56

Problem solving by sear
hA simple example: the 8-puzzle .

3 5

1 4 2

7 8 6

3 5

4 2

7 8 6

1

3 5

2

7 8 6

1

4

7 8

4 5 6

2 31

−→

−→

−→ · · · −→

A
tion A
tion

Start State

Goal StateFurther a
tions

(A good way of keeping kids quiet...)
57

Problem solving by sear
hStart state: a randomly-sele
ted
on�guration of the numbers 1 to 8 ar-ranged on a 3 × 3 square grid, with one square empty.Goal state: the numbers in as
ending order with the bottom right squareempty.A
tions: left, right, up, down. We
an move any square adja
ent to theempty square into the empty square. (It's not always possible to
hoosefrom all four a
tions.)Path
ost: 1 per move.The 8-puzzle is very simple. However general sliding blo
k puzzles are agood test
ase. The general problem is NP-
omplete. The 5×5 version hasabout 1025 states, and a random instan
e is in fa
t quite a
hallenge.

58

Problem solving by basi
 sear
hEVIL ROBOT has found himself in an unfamiliar building:
ODIN

Evil Robot Teleport

He wants the ODIN (Oblivion Devi
e of Indes
ribable Nastiness).

59

Problem solving by sear
hStart state: EVIL ROBOT is in the top left
orner.Goal state: EVIL ROBOT is in the area
ontaining the ODIN.A
tions: left, right, up, down. We
an move as long as there's no wall inthe way. (Again, it's not always possible to
hoose from all four a
tions.)Path
ost: 1 per move. If you step on a teleport then you move to theother one with a
ost of 0.
60

Problem solving by sear
hProblems of this kind are very simple, but a surprisingly large number ofappli
ations have appeared:� route-�nding/tour-�nding� layout of VLSI systems� navigation systems for robots� sequen
ing for automati
 assembly� sear
hing the internet� design of proteinsand many others...Problems of this kind
ontinue to form an a
tive resear
h area.

61

Problem solving by sear
hIt's worth emphasising that a lot of abstra
tion has taken pla
e here:� Can the agent know it's
urrent state in full?� Can the agent know the out
ome of its a
tions in full?Single-state problems: the state is always known pre
isely, as is the e�e
tof any a
tion. There is therefore a single out
ome state.Multiple-state problems: The e�e
ts of a
tions are known, but the state
an not reliably be inferred, or the state is known but not the e�e
ts of thea
tions.

62

Problem solving by sear
hSingle and multiple state problems
an be handled using these sear
h te
h-niques.In the latter, we must reason about the set of states that we
ould be in:� In this
ase we have an initial set of states.� Ea
h a
tion leads to a further set of states.� The goal is a set of states all of whi
h are valid goals.

63

Problem solving by sear
hContingen
y problemsIn some situations it is ne
essary to perform sensing while the a
tions arebeing
arried out in order to guarantee rea
hing a goal.(It's good to keep your eyes open while you
ross the road!)This kind of problem requires planning and will be dealt with later.Sometimes it is a
tively bene�
ial to a
t and see what happens, rather thanto try to
onsider all possibilities in advan
e in order to obtain a perfe
tplan.

64

Problem solving by sear
hExploration problemsSometimes you have no knowledge of the e�e
t that your a
tions have onthe environment.Babies in parti
ular have this experien
e.This means you need to experiment to �nd out what happens when youa
t.This kind of problem requires reinfor
ement learning for a solution. Wewill not
over reinfor
ement learning in this
ourse. (Although it is in AIII.)

65

Sear
h treesThe basi
 idea should be familiar from your (
urrent) Algorithms I
ourse,and also from Foundations of Computer S
ien
e .� We build a tree with the start state as root node.� A node is expanded by applying a
tions to it to generate new states.� A path is a sequen
e of a
tions that lead from state to state.� The aim is to �nd a goal state within the tree.� A solution is a path beginning with the initial state and ending in agoal state.We may also be interested in the path
ost as some solutions might bebetter than others.Path
ost will be denoted by p.
66

2 58

6

7 3 4

1 7

2 58

6

3 4

1

2 58

6

7 3 4

1

5

6

3

18

7 4

2

7

3

2 58

6

4

1 7

2 58

6

3 4

1

6

2 58

7 3 4

1

6

6

6

2

1

3

2 5

6

7 3 4

18Start State

2 58

7 4

1

2 58

7 3 4

1

58

7 3 4

1

2 58

7 3 4

6

Further statesUpDown
Left

DownLeft
UpLeftDown

Right Up Left
67

Sear
h trees versus sear
h graphsWe need to make an important distin
tion between sear
h trees and sear
hgraphs . For the time being we assume that it's a tree as opposed to a graphthat we're dealing with.
as opposed to

(There is a good reason for this, whi
h we'll get to in a moment...)In a tree only one path
an lead to a given state. In a graph a state
anbe rea
hed via possibly multiple paths .
68

Sear
h treesBasi
 approa
h:� Test the root to see if it is a goal.� If not then expand it by generating all possible su

essor states a

ord-ing to the available a
tions.� If there is only one out
ome state then move to it. Otherwise
hooseone of the out
omes and expand it.� The way in whi
h this
hoi
e is made de�nes a sear
h strategy .� Repeat until you �nd a goal.The
olle
tion of states generated but not yet expanded is
alled the fringeor frontier and is generally stored as a queue .
69

The basi
 tree-sear
h algorithmIn pseudo-
ode, the algorithm looks like this:

function treeSearch {

fringe = queue containing only the start state;

while() {

if (empty(fringe))

return fail;

node = head(fringe);

if (goal(node))

return solution(node);

fringe = insert(expand(node), fringe);

}

}The sear
h strategy is set by using a priority queue .The de�nition of priority then sets the way in whi
h the tree is sear
hed.

70

The basi
 tree-sear
h algorithm
Not yet investigated

In the fringe, but not expanded

Expanded

71

The basi
 tree-sear
h algorithmWe
an immediately de�ne some familiar tree sear
h algorithms:� New nodes are added to the head of the queue . This is depth-�rstsear
h .� New nodes are added to the tail of the queue . This is breadth-�rstsear
h .We will not dwell on these, as they are both
ompletely hopeless in pra
-ti
e.Why is that?

72

The performan
e of sear
h te
hniquesHow might we judge the performan
e of a sear
h te
hnique?We are interested in:� Whether a solution is found.� Whether the solution found is a good one in terms of path
ost.� The
ost of the sear
h in terms of time and memory.

the total
ost = path
ost+ sear
h
ostIf a problem is highly
omplex it may be worth settling for a sub-optimalsolution obtained in a short time .
73

Evaluation of sear
h strategiesWe are also interested in:Completeness: does the strategy guarantee a solution is found?Optimality: does the strategy guarantee that the best solution is found?On
e we start to
onsider these, things get a lot more interesting...

74

Breadth-�rst sear
hWhy is breadth-�rst sear
h hopeless?� The pro
edure is
omplete : it is guaranteed to �nd a solution if oneexists.� The pro
edure is optimal if the path
ost is a non-de
reasing fun
tionof node-depth. (Exer
ise: why is this?)� The pro
edure has exponential
omplexity for both memory and time .A bran
hing fa
tor b requires
1 + b + b2 + b3 + · · · + bd =

bd+1 − 1

b − 1nodes if the shortest path has depth d.In pra
ti
e it is the memory requirement that is problemati
.

75

Depth-�rst sear
hWith depth-�rst sear
h: for a given bran
hing fa
tor b and depth d thememory requirement is O(bd).

· · · · · ·

· · ·

· · ·

· · ·

· · ·

−→ −→

This is be
ause we need to store nodes on the
urrent path and the otherunexpanded nodes .The time
omplexity is O(bd). Despite this, if there aremany solutions westand a
han
e of �nding one qui
kly,
ompared with breadth-�rst sear
h.

76

Ba
ktra
king sear
hWe
an sometimes improve on depth-�rst sear
h by using ba
ktra
kingsear
h .� If ea
h node knows how to generate the next possibility then memoryis improved to O(d).� Even better, if we
an work by making modi�
ations to a state de-s
ription then the memory requirement is:
– One full state des
ription, plus...
– ... O(d) a
tions (in order to be able to undo a
tions).How does this work?

77

2 58

7 3 4

1

2 58

6

3 4

17

6

Trying: up, down, left, right:No ba
ktra
king

+ [up, up]

we
an undo this to obtain
+ [up]

and apply down to get
+ [up, down]

and so on...
up

2 58

6

7 3 4

1

2 5

6

7 3 4

18

2 58

6

3 4

17

up
down

left

With ba
ktra
kingIf we have:
2 5

6

7 3 4

18

2 58

7 3 4

1

2 58

6

3 4

17

6

78

Depth-�rst, depth-limited, and iterative deepening sear
hDepth-�rst sear
h is
learly dangerous if the tree is very deep or in�nite .Depth-limited sear
h simply imposes a limit on depth. For example ifwe're sear
hing for a route on a map with n
ities we know that the maxi-mum depth will be n. However:� We still risk �nding a suboptimal solution.� The pro
edure be
omes problemati
 if we impose a depth limit that istoo small.Usually we do not know a reasonable depth limit in advan
e.Iterative deepening sear
h repeatedly runs depth-limited sear
h for in-
reasing depth limits 0, 1, 2, . . .

79

Iterative deepening sear
hIterative deepening sear
h :� Essentially
ombines the advantages of depth-�rst and breadth-�rstsear
h.� It is
omplete and optimal.� It has a memory requirement similar to that of depth-�rst sear
h.Importantly, the fa
t that you're repeating a sear
h pro
ess several timesis less signi�
ant than it might seem.It's still not a good pra
ti
al method, but it does point us in the dire
tionof one...

80

Iterative deepening sear
hIterative deepening depends on the fa
t that the vast majority of thenodes in a tree are in the bottom level :� In a tree with bran
hing fa
tor b and depth d the number of nodes is
f1(b, d) = 1 + b + b2 + b3 + · · · + bd =

bd+1 − 1

b − 1� A
omplete iterative deepening sear
h of this tree generates the �nallayer on
e, the penultimate layer twi
e, and so on down to the root,whi
h is generated d + 1 times. The total number of nodes generated istherefore

f2(b, d) = (d + 1) + db + (d − 1)b2 + (d − 2)b3 + · · · + 2bd−1 + bd

81

Iterative deepening sear
hExample:� For b = 20 and d = 5 we have

f1(b, d) = 3, 368, 421

f2(b, d) = 3, 545, 706whi
h represents a 5 per
ent in
rease with iterative deepening sear
h.� The overhead gets smaller as b in
reases. However the time
omplexityis still exponential.For problems where the sear
h spa
e is large and the solution depth is notknown, this
an be a good method.
82

Iterative deepening sear
hFurther insight
an be gained if we note that

f2(b, d) = f1(b, 0) + f1(b, 1) + · · · + f1(b, d)as we generate the root, then the tree to depth 1, and so on. Thus
f2(b, d) =

d∑

i=0

f1(b, i) =

d∑

i=0

bi+1 − 1

b − 1

=
1

b − 1

d∑

i=0

bi+1 − 1 =
1

b − 1

[(

d∑

i=0

bi+1

)

− (d + 1)

]

Noting that

bf1(b, d) = b + b2 + · · · + bd+1 =

d∑

i=0

bi+1we have

f2(b, d) =
b

b − 1
f1(b, d) −

d + 1

b − 1so f2(b, d) is about equal to f1(b, d) for large b.
83

Bidire
tional sear
hIn some problems we
an simultaneously sear
h:forward from the start stateba
kward from the goal stateuntil the sear
hes meet.This is potentially a very good idea:� If the sear
h methods have
omplexity O(bd) then...� ...we are
onverting this to O(2bd/2) = O(bd/2).(Here, we are assuming the bran
hing fa
tor is b in both dire
tions.)

84

Bidire
tional sear
h - beware!� It is not always possible to generate eÆ
iently prede
essors as well assu

essors.� If we only have the des
ription of a goal, not an expli
it goal , thengenerating prede
essors
an be hard. (For example,
onsider the
on
eptof
he
kmate .)� We need a way of
he
king whether or not a node appears in the othersear
h ...� ... and the �gure of O(bd/2) hides the assumption that we
an do
on-stant time
he
king for interse
tion of the frontiers. (This may bepossible using a hash table).� We need to de
ide what kind of sear
h to use in ea
h half. For example,would depth-�rst sear
h be sensible? Possibly not...� ...to guarantee that the sear
hes meet, we need to store all the nodes ofat least one of the sear
hes. Consequently the memory requirement is

O(bd/2).

85

Uniform-
ost sear
hBreadth-�rst sear
h �nds the shallowest solution, but this is not ne
essarilythe best one.Uniform-
ost sear
h is a variant. It uses the path
ost p(n) as the priorityfor the priority queue.Thus, the paths that are apparently best are explored �rst, and the bestsolution will always be found if

∀n (∀n ′ ∈ su

essors(n) . p(n ′) ≥ p(n))Although this is still not a good pra
ti
al algorithm, it does point the wayforward to informed sear
h...
86

Repeated statesWith many problems it is easy to waste time by expanding nodes that haveappeared elsewhere in the tree. For example:
.

.

.

.

.

.
.

.

.
.

.

.
.

.

.

A

B

C

D

A

B B

C C CC

The sliding blo
ks puzzle for example su�ers this way.

87

Repeated statesFor example, in a problem su
h as �nding a route in a map, where all ofthe operators are reversible , this is inevitable.There are three basi
 ways to avoid this, depending on how you trade o�e�e
tiveness against overhead.� Never return to the state you
ame from .� Avoid
y
les: never pro
eed to a state identi
al to one of your an
es-tors .� Do not expand any state that has previously appeared .Graph sear
h is a standard approa
h to dealing with the situation. It usesthe last of these possibilities.
88

Graph sear
hIn pseudo
ode:

function graphSearch() {

closed = {};

fringe = queue containing only the start state;

while () {

if (empty(fringe))

return fail;

node = head(fringe);

if goal(node)

return solution(node);

if (node not a member of closed) {

closed = closed + node;

fringe = insert(expand(node), fringe);

}

}

}

89

Graph sear
hThere are several points to note regarding graph sear
h:1. The
losed list
ontains all the expanded nodes.2. The
losed list
an be implemented using a hash table.3. Both worst
ase time and spa
e are now proportional to the size of thestate spa
e.4.Memory: depth �rst and iterative deepening sear
h are no longer linearspa
e as we need to store the
losed list.5. Optimality: when a repeat is found we are dis
arding the new possi-bility even if it is better than the �rst one.� This never happens for uniform-
ost or breadth-�rst sear
h with
on-stant step
osts, so these remain optimal.� Iterative deepening sear
h needs to
he
k whi
h solution is betterand if ne
essary modify path
osts and depths for des
endants of therepeated state.
90

Sear
h treesEverything we've seen so far is an example of uninformed or blind sear
h|we only distinguish goal states from non-goal states.(Uniform
ost sear
h is a slight anomaly as it uses the path
ost as a guide.)To perform well in pra
ti
e we need to employ informed or heuristi
sear
h.This involves exploiting knowledge of the distan
e between the
urrentstate and a goal .

91

Problem solving by informed sear
hBasi
 sear
h methods make limited use of any problem-spe
i�
 knowledgewe might have.� We have already seen the
on
ept of path
ost p(n)

p(n) =
ost of path (sequen
e of a
tions) from the start state to n� We
an now introdu
e an evaluation fun
tion . This is a fun
tion thatattempts to measure the desirability of ea
h node .The evaluation fun
tion will
learly not be perfe
t. (If it is, there is noneed to sear
h.)Best-�rst sear
h simply expands nodes using the ordering given by theevaluation fun
tion.

92

Greedy sear
hWe've already seen path
ost used for this purpose.� This is misguided as path
ost is not in general dire
ted in any sensetoward the goal .� A heuristi
 fun
tion , usually denoted h(n) is one that estimates the
ost of the best path from any node n to a goal.� If n is a goal then h(n) = 0.Using a heuristi
 fun
tion along with best-�rst sear
h gives us the greedysear
h algorithm.

93

Example: route-�ndingExample: for route �nding a reasonable heuristi
 fun
tion is
h(n) = straight line distan
e from n to the nearest goal

n3

Goal

n1 n21 1

h(n3) = 1

h(n1) =
√

5

h(n2) =
√

2

n3

Goal
n1 n2

A

ura
y here obviously depends on what the roads are really like.

94

Example: route-�ndingGreedy sear
h su�ers from some problems:� Its time
omplexity is O(bd).� Its spa
e-
omplexity is O(bd).� It is not optimal or
omplete.BUT: greedy sear
h
an be e�e
tive, provided we have a good h(n).Wouldn't it be ni
e if we
ould improve it to make it optimal and
omplete?

95

A⋆ sear
hWell, we
an.

A⋆ sear
h
ombines the good points of:� Greedy sear
h|by making use of h(n).� Uniform-
ost sear
h|by being optimal and
omplete.It does this in a very simple manner: it uses path
ost p(n) and also theheuristi
 fun
tion h(n) by forming
f(n) = p(n) + h(n)where

p(n) =
ost of path to nand

h(n) = estimated
ost of best path from nSo: f(n) is the estimated
ost of a path through n.
96

A⋆ sear
h

A⋆ sear
h:� A best-�rst sear
h using f(n).� It is both
omplete and optimal...� ...provided that h obeys some simple
onditions.De�nition: an admissible heuristi
 h(n) is one that never overestimatesthe
ost of the best path from n to a goal.If h(n) is admissible then tree-sear
h A⋆ is optimal.
97

A⋆ tree-sear
h is optimal for admissible h(n)To see that A⋆ sear
h is optimal we reason as follows.Let Goalopt be an optimal goal state with

f(Goalopt) = p(Goalopt) = fopt(be
ause h(Goalopt) = 0). Let Goal2 be a suboptimal goal state with
f(Goal2) = p(Goal2) = f2 > foptWe need to demonstrate that the sear
h
an never sele
t Goal2.

98

A⋆ tree-sear
h is optimal for admissible h(n)

Goalopt
n

Goal2 At some point Goal2 is in the fringe.Can it be sele
ted before n?

99

A⋆ tree-sear
h is optimal for admissible h(n)Let n be a leaf node in the fringe on an optimal path to Goalopt. So
fopt ≥ p(n) + h(n) = f(n)be
ause h is admissible.Now say Goal2 is
hosen for expansion before n. This means that

f(n) ≥ f2so we've established that

fopt ≥ f2 = p(Goal2).But this means that Goalopt is not optimal: a
ontradi
tion.

100

A⋆ graph sear
hOf
ourse, we will generally be dealing with graph sear
h .Unfortunately the proof breaks in this
ase.� Graph sear
h
an dis
ard an optimal route if that route is not the �rstone generated.� We
ould keep only the least expensive path . This means updating,whi
h is extra work, not to mention messy, but suÆ
ient to insure op-timality.� Alternatively, we
an impose a further
ondition on h(n) whi
h for
esthe best path to a repeated state to be generated �rst .The required
ondition is
alled monotoni
ity . Asmonotoni
ity −→ admissibilitythis is an important property.
101

Monotoni
ityAssume h is admissible. Remember that f(n) = p(n)+h(n) so if n ′ follows
n

p(n ′) ≥ p(n)and we expe
t that h(n ′) ≤ h(n) although this does not have to be the
ase.

n

n ′

h(n) = 4

p(n ′) = 6

h(n ′) = 1

p(n) = 5

Here f(n) = 9 and f(n ′) = 7 so f(n ′) < f(n).
102

Monotoni
ityMonotoni
ity:� If it is always the
ase that f(n ′) ≥ f(n) then h(n) is
alled monotoni
.� h(n) is monotoni
 if and only if it obeys the triangle inequality .
h(n) ≤
ost(n a

−→ n ′) + h(n ′)If h(n) is not monotoni
 we
an make a simple alteration and use
f(n ′) = max{f(n), p(n ′) + h(n ′)}This is
alled the pathmax equation.

103

The pathmax equationWhy does the pathmax equation make sense?

n

n ′

h(n) = 4

p(n ′) = 6

h(n ′) = 1

p(n) = 5

The fa
t that f(n) = 9 tells us the
ost of a path through n is at least 9(be
ause h(n) is admissible).But n ′ is on a path through n. So to say that f(n ′) = 7 makes no sense.

104

A⋆ graph sear
h is optimal for monotoni
 heuristi
s
A⋆ graph sear
h is optimal for monotoni
 heuristi
s.The
ru
ial fa
t from whi
h optimality follows is that if h(n) is monotoni
then the values of f(n) along any path are non-de
reasing.Assume we move from n to n ′ using a
tion a. Then

∀a . p(n ′) = p(n) +
ost(n a
−→ n ′)and using the triangle inequality

h(n) ≤
ost(n a
−→ n ′) + h(n ′) (1)Thus

f(n ′) = p(n ′) + h(n ′)

= p(n) +
ost(n a
−→ n ′) + h(n ′)

≥ p(n) + h(n)

= f(n)where the inequality follows from equation 1.
105

A⋆ graph sear
h is optimal for monotoni
 heuristi
sWe therefore have the following situation:

f(n)
f(n ′′) < f(n ′) has been dealt with.

f(n ′)

You
an't deal with n ′ until everything with

Consequently everything with f(n ′′) < fopt gets explored. Then one ormore things with fopt get found (not ne
essarily all goals).

106

A⋆ sear
h is
omplete

A⋆ sear
h is
omplete provided:1. The graph has �nite bran
hing fa
tor.2. There is a �nite, positive
onstant c su
h that ea
h operator has
ost atleast c.Why is this?

107

A⋆ sear
h is
ompleteThe sear
h expands nodes a

ording to in
reasing f(n). So: the only wayit
an fail to �nd a goal is if there are in�nitely many nodes with f(n) <

f(Goal).There are two ways this
an happen:1. There is a node with an in�nite number of des
endants.2. There is a path with an in�nite number of nodes but a �nite path
ost.

108

Complexity� A⋆ sear
h has a further desirable property: it is optimally eÆ
ient .� This means that no other optimal algorithm that works by
onstru
tingpaths from the root
an guarantee to examine fewer nodes.� BUT: despite its good properties we're not done yet...� ...A⋆ sear
h unfortunately still has exponential time
omplexity in most
ases unless h(n) satis�es a very stringent
ondition that is generallyunrealisti
:

|h(n) − h ′(n)| ≤ O(log h ′(n))where h ′(n) denotes the real
ost from n to the goal.� As A⋆ sear
h also stores all the nodes it generates, on
e again it isgenerally memory that be
omes a problem before time .

109

IDA⋆ - iterative deepening A⋆ sear
hHow might we improve the way in whi
h A⋆ sear
h uses memory?� Iterative deepening sear
h used depth-�rst sear
h with a limit on depththat gradually in
reased.� IDA⋆ does the same thing with a limit on f
ost .
ActionSequence ida() {

float fLimit = f(root);

root = root node for problem;

while() {

(sequence, fLimit) = contour(root,fLimit,emptySequence);

if (sequence != emptySequence)

return sequence;

if (fLimit == infinity)

return emptySequence;

}

}

110

IDA⋆ - iterative deepening A⋆ sear
hThe fun
tion contour sear
hes from a given node, as far as the spe
i�ed
f limit . It returns either a solution, or the next biggest value of f to try.
(ActionSequence,float) contour(Node node, float fLimit, ActionSequence s) {

float nextF = infinity;

if (f(node) > fLimit)

return (emptySequence,f(node));

ActionSequence s’ = addToSequence(node,s);

if (goalTest(node))

return (s’,fLimit);

for (each successor n’ of node) {

(sequence,newF) = contour(n’,fLimit,s’);

if (sequence != emptySequence)

return (sequence,fLimit);

nextF = minimum(nextF,newF);

}

return (emptySequence,nextF);

}

111

IDA⋆ - iterative deepening A⋆ sear
hThis is a little tri
ky to unravel, so here is an example:
37 4 5

Initially, the algorithm looks ahead and �nds the smallest f
ost that isgreater than its
urrent f
ost limit. The new limit is 4.

112

IDA⋆ - iterative deepening A⋆ sear
hIt now does the same again:
37 4 55 9 10

Anything with f
ost at most equal to the
urrent limit gets explored, andthe algorithm keeps tra
k of the smallest f
ost that is greater than its
urrent limit. The new limit is 5.
113

IDA⋆ - iterative deepening A⋆ sear
hAnd again:

37 4 55 9 10 19 12 78 12 7

The new limit is 7, so at the next iteration the three arrowed nodes will beexplored.

114

IDA⋆ - iterative deepening A⋆ sear
hProperties of IDA⋆:� It is
omplete and optimal under the same
onditions as A⋆.� It is often good if we have step
osts equal to 1.� It does not require us to maintain a sorted queue of nodes.� It only requires spa
e proportional to the longest path .� The time taken depends on the number of values h
an take.If h takes enough values to be problemati
 we
an in
rease f by a �xed ǫat ea
h stage, guaranteeing a solution at most ǫ worse than the optimum.

115

Re
ursive best-�rst sear
h (RBFS)Another method by whi
h we
an attempt to over
ome memory limitationsis the Re
ursive best-�rst sear
h (RBFS).Idea: try to do a best-�rst sear
h, but only use linear spa
e by doing adepth-�rst sear
h with a few modi�
ations:1. We remember the f(n ′) for the best alternative node n ′ we've seen sofar on the way to the node n we're
urrently
onsidering.2. If n has f(n) > f(n ′):� We go ba
k and explore the best alternative...� ...and as we retra
e our steps we repla
e the f
ost of every nodewe've seen in the
urrent path with f(n).The repla
ement of f values as we retra
e our steps provides a means ofremembering how good a dis
arded path might be, so that we
an easilyreturn to it later.

116

Re
ursive best-�rst sear
h (RBFS)Note: for simpli
ity a parameter for the path has been omitted.
function RBFS(Node n, Float fLimit) {

if (goaltest(n))

return n;

if (n has no successors)

return (fail, infinity);

for (each successor n’ of n)

f(n’) = maximum(f(n’), f(n));

while() {

best = successor of n that has the smallest f(n’);

if (f(best) > fLimit)

return (fail, f(best));

nextBest = second smallest f(n’) value for successors of n;

(result, f’) = RBFS(best, minimum(fLimit, nextBest));

f(best) = f’;

if (result != fail)

return result;

}

}IMPORTANT: f(best) is modi�ed when RBFS produ
es a result.

117

Re
ursive best-�rst sear
h (RBFS): an exampleThis fun
tion is
alled using RBFS(startState, infinity) to begin thepro
ess.Fun
tion
all number 1:

37 4 5best1 fLimit1 =∞ nextBest1 = 5

Now perform the re
ursive fun
tion
all (result2, f ′) = RBFS(best1, 5)so f(best1) takes the returned value f ′

118

Re
ursive best-�rst sear
h (RBFS): an exampleFun
tion
all number 2:

37 4 5best1 nextBest1 = 5

fLimit2 = 5

fLimit1 =∞

5 9 10best2 nextBest2 = 9

Now perform the re
ursive fun
tion
all (result3, f ′) = RBFS(best2, 5)so f(best2) takes the returned value f ′

119

Re
ursive best-�rst sear
h (RBFS): an exampleFun
tion
all number 3:

37 4 5best1 nextBest1 = 5

fLimit2 = 5

fLimit1 =∞

5 9 10best211 12 10best3
5 repla
ed by 10 nextBest2 = 9

fLimit3 = 5

nextBest3 = 11Now f(best3) > fLimit3 so the fun
tion
all returns (fail, 10) into (result3, f ′)and f(best2) = 10.

120

Re
ursive best-�rst sear
h (RBFS): an exampleThe while loop for fun
tion
all 2 now repeats:
37 4 5best1 nextBest1 = 5

fLimit2 = 5

fLimit1 =∞

5 9 1011 12 10

5 repla
ed by 10 best2
4 repla
ed by 9

Now f(best2) > fLimit2 so the fun
tion
all returns (fail, 9) into (result2, f ′)and f(best1) = 9.

121

Re
ursive best-�rst sear
h (RBFS): an exampleThe while loop for fun
tion
all 1 now repeats:
37 4 5fLimit1 =∞

5 9 1011 12 10

5 repla
ed by 10

4 repla
ed by 9 best1nextBest1 = 7

We do a further fun
tion
all to expand the new best node, and so on...

122

Re
ursive best-�rst sear
h (RBFS)Some ni
e properties:� If h is admissible then RBFS is optimal.� Memory requirement is O(bd)� Generally more eÆ
ient than IDA⋆.And some less ni
e ones:� Time
omplexity is hard to analyse, but
an be exponential.� Can spend a lot of time re-generating nodes .
123

Other methods for getting around the memory problemTo some extent IDA⋆ and RBFS throw the baby out with the bathwater.� They limit memory too harshly, so...� ...we
an try to use all available memory .MA⋆ and SMA⋆ will not be
overed in this
ourse...
124

Arti�
ial Intelligen
e IDr Sean Holden

Notes on games (adversarial sear
h)

Copyright

 Sean Holden 2002-2010.125

Solving problems by sear
h: playing gamesHow might an agent a
t when the out
omes of its a
tions are not knownbe
ause an adversary is trying to hinder it?� This is essentially a more realisti
 kind of sear
h problem be
ause wedo not know the exa
t out
ome of an a
tion.� This is a
ommon situation when playing games : in
hess, draughts,and so on an opponent responds to our moves.� We don't know what their response will be, and so the out
ome of ourmoves is not
lear.Game playing has been of interest in AI be
ause it provides an idealisationof a world in whi
h two agents a
t to redu
e ea
h other's well-being.

126

Playing games: sear
h against an adversaryDespite the fa
t that games are an idealisation, game playing
an be anex
ellent sour
e of hard problems. For instan
e with
hess:� The average bran
hing fa
tor is roughly 35.� Games
an rea
h 50 moves per player.� So a rough
al
ulation gives the sear
h tree 35100 nodes.� Even if only di�erent, legal positions are
onsidered it's about 1040.So: in addition to the un
ertainty due to the opponent:� We
an't make a
omplete sear
h to �nd the best move...� ... so we have to a
t even though we're not sure about the best thingto do.

127

Playing games: sear
h against an adversaryAnd
hess isn't even very hard:� Go is mu
h harder than
hess.� The bran
hing fa
tor is about 360.Until very re
ently it has resisted all attempts to produ
e a good AI player.See:

senseis.xmp.net/?MoGoand others.

128

Playing games: sear
h against an adversaryIt seems that games are a step
loser to the
omplexities inherent in theworld around us than are the standard sear
h problems
onsidered so far.The study of games has led to some of the most
elebrated appli
ationsand te
hniques in AI.We now look at:� How game-playing
an be modelled as sear
h .� The minimax algorithm for game-playing.� Some problems inherent in the use of minimax.� The
on
ept of α − β pruning .Reading: Russell and Norvig
hapter 6.
129

Perfe
t de
isions in a two-person gameSay we have two players. Traditionally, they are
alled Max and Min forreasons that will be
ome
lear.� We'll use noughts and
rosses as an initial example.� Max moves �rst.� The players alternate until the game ends.� At the end of the game, prizes are awarded. (Or punishments administered|EVIL ROBOT is starting up his favourite
hainsaw...)This is exa
tly the same game format as
hess, Go, draughts and so on.

130

Perfe
t de
isions in a two-person gameGames like this
an be modelled as sear
h problems as follows:� There is an initial state .

Max to move

� There is a set of operators . Here, Max
an pla
e a
ross in any emptysquare, or Min a nought.� There is a terminal test . Here, the game ends when three noughts orthree
rosses are in a row, or there are no unused spa
es.� There is a utility or payo� fun
tion. This tells us, numeri
ally, whatthe out
ome of the game is.This is enough to model the entire game.
131

Perfe
t de
isions in a two-person gameWe
an
onstru
t a tree to represent a game. From the initial state Max
an make nine possible moves:

. . .

Then it's Min's turn...
132

Perfe
t de
isions in a two-person gameFor ea
h of Max's opening moves Min has eight replies:
. . .

. . .

And so on...This
an be
ontinued to represent all possibilities for the game.

133

Perfe
t de
isions in a two-person game
. . .

. . .

+1
0

−1

At the leaves a player has won or there are no spa
es. Leaves are labelledusing the utility fun
tion.
134

Perfe
t de
isions in a two-person gameHow
an Max use this tree to de
ide on a move? Consider a mu
h simplertree:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4
Labels on the leaves denote utility.High values are preferred by Max.Low values are preferred by Min.

If Max is rational he will play to rea
h a position with the biggest utilitypossibleBut if Min is rational she will play to minimise the utility available toMax.

135

The minimax algorithmThere are two moves: Max then Min. Game theorists would
all this onemove, or two ply deep.The minimax algorithm allows us to infer the best move that the
urrentplayer
an make, given the utility fun
tion, by working ba
kward from theleaves.

4 5 20 20 15 7 4 10 9 5 8 52
2

6
6

1
1

4
4

As Min plays the last move, she minimises the utility available to Max.

136

The minimax algorithmMin takes the �nal move:� If Min is in game position 1, her best
hoi
e is move 3. So from Max'spoint of view this node has a utility of 2.� If Min is in game position 2, her best
hoi
e is move 3. So from Max'spoint of view this node has a utility of 6.� If Min is in game position 3, her best
hoi
e is move 1. So from Max'spoint of view this node has a utility of 1.� If Min is in game position 4, her best
hoi
e is move 4. So from Max'spoint of view this node has a utility of 4.
137

The minimax algorithmMoving one further step up the tree:
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

1 42 6 6

We
an see that Max's best opening move is move 2, as this leads to thenode with highest utility.
138

The minimax algorithmIn general:� Generate the
omplete tree and label the leaves a

ording to the utilityfun
tion.� Working from the leaves of the tree upward, label the nodes dependingon whether Max or Min is to move.� If Min is to move label the
urrent node with the minimum utility ofany des
endant.� If Max is to move label the
urrent node with the maximum utility ofany des
endant.If the game is p ply and at ea
h point there are q available moves then thispro
ess has (surprise, surprise) O(qp) time
omplexity and spa
e
omplex-ity linear in p and q.
139

Making imperfe
t de
isionsWe need to avoid sear
hing all the way to the end of the tree. So:� We generate only part of the tree: instead of testing whether a node isa leaf we introdu
e a
ut-o� test telling us when to stop.� Instead of a utility fun
tion we introdu
e an evaluation fun
tion forthe evaluation of positions for an in
omplete game.The evaluation fun
tion attempts to measure the expe
ted utility of the
urrent game position.
140

Making imperfe
t de
isionsHow
an this be justi�ed?� This is a strategy that humans
learly sometimes make use of.� For example, when using the
on
ept of material value in
hess.� The e�e
tiveness of the evaluation fun
tion is
riti
al ...� ... but it must be
omputable in a reasonable time.� (In prin
iple it
ould just be done using minimax.)The importan
e of the evaluation fun
tion
an not be understated|it isprobably the most important part of the design.
141

The evaluation fun
tionDesigning a good evaluation fun
tion
an be extremely tri
ky:� Let's say we want to design one for
hess by giving ea
h pie
e its materialvalue: pawn = 1, knight/bishop = 3, rook = 5 and so on.� De�ne the evaluation of a position to be the di�eren
e between thematerial value of bla
k's and white's pie
eseval(position) =
∑bla
k's pie
es pi

value of pi −
∑white's pie
es qi

value of qi

This seems like a reasonable �rst attempt. Why might it go wrong?

142

The evaluation fun
tionConsider what happens at the start of a game:� Until the �rst
apture the evaluation fun
tion gives 0, so in fa
t wehave a
ategory
ontaining many di�erent game positions with equalestimated utility.� For example, all positions where white is one pawn ahead.� The evaluation fun
tion for su
h a
ategory should perhaps representthe probability that a position
hosen at random from it leads to a win.So in fa
t this seems highly naive...
143

The evaluation fun
tionIdeally, we should
onsider individual positions .If on the basis of past experien
e a position has 50%
han
e of winning,10%
han
e of losing and 40%
han
e of rea
hing a draw, we might give itan evaluation ofeval(position) = (0.5 × 1) + (0.1 × −1) + (0.4 × 0) = 0.4.Extending this to the evaluation of
ategories, we should then weight thepositions in the
ategory a

ording to their likelihood of o

urring.Of
ourse, we don't know what any of these likelihoods are...

144

The evaluation fun
tionUsing material value
an be thought of as giving us a weighted linearevaluation fun
tion eval(position) =

n∑

i=1

wifiwhere the wi are weights and the fi represent features of the position. Inthis example

fi = value of the ith pie
e
wi = number of ith pie
es on the boardwhere bla
k and white pie
es are regarded as di�erent and the fi are positivefor one and negative for the other.

145

The evaluation fun
tionEvaluation fun
tions of this type are very
ommon in game playing.There is no systemati
 method for their design.Weights
an be
hosen by allowing the game to play itself and using learn-ing te
hniques to adjust the weights to improve performan
e.By using more
arefully
rafted features we
an give di�erent evaluationsto individual positions .
146

α − β pruningEven with a good evaluation fun
tion and
ut-o� test, the time
omplexityof the minimax algorithm makes it impossible to write a good
hess programwithout some further improvement.� Assuming we have 150 se
onds to make ea
h move, for
hess we wouldbe limited to a sear
h of about 3 to 4 ply whereas...� ...even an average human player
an manage 6 to 8.Lu
kily, it is possible to prune the sear
h tree without a�e
ting the out-
ome and without having to examine all of it .
147

α − β pruningReturning for a moment to the earlier, simpli�ed example:
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4The sear
h is depth-�rst and left to right.

148

α − β pruningThe sear
h
ontinues as previously for the �rst 8 leaves.
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

2 6 ≤ 1

Then we note: if Max plays move 3 then Min
an rea
h a leaf with utilityat most 1.So: we don't need to sear
h any further under Max's opening move 3.This is be
ause the sear
h has already established thatMax
an do betterby making opening move 2.
149

α − β pruning in general

m

Tree= Player= Opponent

nm ′

then this node will never be rea
hed.If n < m or n < m ′ here

So: on
e you've established that n is suÆ
iently small, you don't need toexplore any more of the
orresponding node's
hildren.

150

α − β pruning in general

m

Tree= Player= Opponent

nm ′

then this node will never be rea
hed.If n > m or n > m ′ here

So: on
e you've established that n is suÆ
iently large, you don't need toexplore any more of the
orresponding node's
hildren.

151

α − β pruning in generalThe sear
h is depth-�rst, so we're only ever looking at one path throughthe tree .We need to keep tra
k of the values α and β where
α = the highest utility seen so far on the path for Max
β = the lowest utility seen so far on the path for MinAssume Max begins . Initial values for α and β are

α = −∞and

β = +∞.

152

α − β pruning in generalSo: we start with the fun
tion
all

max(−∞, +∞, root)where max is the fun
tion

max(alpha,beta,node) {

if (node is at cut-off)

return evaluation(node);

else {

for (each successor n’ of node) {

alpha = maximum(alpha,min(alpha,beta,n’));

if (alpha >= beta)

return beta; // pruning happens here.

}

return alpha;

}

}

153

α − β pruning in generalThe fun
tion min is

min(alpha,beta,node) {

if (node is at cut-off)

return evaluation(node);

else {

for (each successor n’ of node) {

beta = minimum(beta,max(alpha,beta,n’));

if (beta <= alpha)

return alpha; // pruning happens here.

}

return beta;

}

}
154

α − β pruning in generalApplying this to the earlier example and keeping tra
k of the values for αand β you should obtain:

4 5 2 20 20 15 6 7 1

2 6

Return 2

α = −∞ = 2 = 6

β = +∞Return 6

α = 2

β = +∞ = 6

α = −∞

β = +∞ = 2

α = 6

β = +∞ = 1

Return 6

155

How e�e
tive is α − β pruning?(Warning: the theoreti
al results that follow are somewhat idealised.)A qui
k inspe
tion should
onvin
e you that the order in whi
h moves arearranged in the tree is
riti
al.So, it seems sensible to try good moves �rst:� If you were to have a perfe
t move-ordering te
hnique then α−β pruningwould be O(qp/2) as opposed to O(qp).� so the bran
hing fa
tor would e�e
tively be √
q instead of q.� We would therefore expe
t to be able to sear
h ahead twi
e as manymoves as before .However, this is not realisti
: if you had su
h an ordering te
hnique you'dbe able to play perfe
t games!

156

How e�e
tive is α − β pruning?If moves are arranged at random then α − β pruning is:� O((q/ log q)p) asymptoti
ally when q > 1000 or...� ...about O(q3p/4) for reasonable values of q.In pra
ti
e simple ordering te
hniques
an get
lose to the best
ase. Forexample, if we try
aptures, then threats, then moves forward et
.Alternatively, we
an implement an iterative deepening approa
h and usethe order obtained at one iteration to drive the next.
157

A further optimisation: the transposition tableFinally, note that many games
orrespond to graphs rather than treesbe
ause the same state
an be arrived at in di�erent ways.� This is essentially the same e�e
t we saw in heuristi
 sear
h: re
allgraph sear
h versus tree sear
h .� It
an be addressed in a similar way: store a state with its evaluationin a hash table|generally
alled a transposition table|the �rst timeit is seen.The transposition table is essentially equivalent to the
losed list intro-du
ed as part of graph sear
h.This
an vastly in
rease the e�e
tiveness of the sear
h pro
ess, be
ause wedon't have to evaluate a single state multiple times.
158

Arti�
ial Intelligen
e IDr Sean Holden

Notes on
onstraint satisfa
tion problems (CSPs)

Copyright

 Sean Holden 2002-2010.159

Constraint satisfa
tion problems (CSPs)The sear
h s
enarios examined so far seem in some ways unsatisfa
tory.� States were represented using an arbitrary and problem-spe
i�
 datastru
ture.� Heuristi
s were also problem-spe
i�
.� It would be ni
e to be able to transform general sear
h problems intoa standard format .CSPs standardise the manner in whi
h states and goal tests are repre-sented...

160

Constraint satisfa
tion problems (CSPs)By standardising like this we bene�t in several ways:� We
an devise general purpose algorithms and heuristi
s.� We
an look at general methods for exploring the stru
ture of the prob-lem.� Consequently it is possible to introdu
e te
hniques for de
omposingproblems.� We
an try to understand the relationship between the stru
ture of aproblem and the diÆ
ulty of solving it .Note: another method of interest in AI that allows us to do similar thingsinvolves transforming to a propositional satis�ability problem. We'll seean example of this in AI II.
161

Introdu
tion to
onstraint satisfa
tion problemsWe now return to the idea of problem solving by sear
h and examine itfrom this new perspe
tive.Aims:� To introdu
e the idea of a
onstraint satisfa
tion problem (CSP) as ageneral means of representing and solving problems by sear
h.� To look at a ba
ktra
king algorithm for solving CSPs.� To look at some general heuristi
s for solving CSPs.� To look at more intelligent ways of ba
ktra
king .Reading: Russell and Norvig,
hapter 5.
162

Constraint satisfa
tion problemsWe have:� A set of n variables V1, V2, . . . , Vn.� For ea
h Vi a domain Di spe
ifying the values that Vi
an take.� A set of m
onstraints C1, C2, . . . , Cm.Ea
h
onstraint Ci involves a set of variables and spe
i�es an allowable
olle
tion of values .� A state is an assignment of spe
i�
 values to some or all of the variables.� An assignment is
onsistent if it violates no
onstraints.� An assignment is
omplete if it gives a value to every variable.A solution is a
onsistent and
omplete assignment.
163

ExampleWe will use the problem of
olouring the nodes of a graph as a runningexample.
1 2 8

653 4
7 7

5 643
1 2 8

Ea
h node
orresponds to a variable . We have three
olours and dire
tly
onne
ted nodes should have di�erent
olours.
164

ExampleThis translates easily to a CSP formulation:� The variables are the nodes

Vi = node i� The domain for ea
h variable
ontains the values bla
k, red and
yan
Di = {B, R, C}� The
onstraints enfor
e the idea that dire
tly
onne
ted nodes musthave di�erent
olours. For example, for variables V1 and V2 the
on-straints spe
ify

(B, R), (B,C), (R, B), (R,C), (C,B), (C, R)� Variable V8 is un
onstrained.
165

Di�erent kinds of CSPThis is an example of the simplest kind of CSP: it is dis
rete with �nitedomains . We will
on
entrate on these.We will also
on
entrate on binary
onstraints ; that is,
onstraints be-tween pairs of variables .� Constraints on single variables|unary
onstraints|
an be handled byadjusting the variable's domain. For example, if we don't want Vi to bered , then we just remove that possibility from Di.� Higher-order
onstraints applying to three or more variables
an
er-tainly be
onsidered, but...� ...when dealing with �nite domains they
an always be
onverted to setsof binary
onstraints by introdu
ing extra auxiliary variables .How does that work?
166

Auxiliary variablesExample: three variables ea
h with domain {B, R,C}.A single
onstraint

(C,C, C), (R, B, B), (B, R, B), (B, B, R)

V1 V1V2

V3The original
onstraint
onne
ts allthree variables.

V2

V3

A = 3

New, binary
onstraints:
(A = 1, V1 = C), (A = 1, V2 = C), (A = 1, V3 = C)
(A = 2, V1 = R), (A = 2, V2 = B), (A = 2, V3 = B)
(A = 3, V1 = B), (A = 3, V2 = R), (A = 3, V3 = B)
(A = 4, V1 = B), (A = 4, V2 = B), (A = 4, V3 = R)

Introdu
ing auxiliary variable A with domain {1, 2, 3, 4} allows us to
onvertthis to a set of binary
onstraints.
167

Ba
ktra
king sear
hConsider what happens if we try to solve a CSP using a simple te
hniquesu
h as breadth-�rst sear
h .The bran
hing fa
tor is nd at the �rst step, for n variables ea
h with dpossible values.Step 2: (n − 1)dStep 3: (n − 2)d...Step n: d






Number of leaves = nd × (n − 1)d × · · · × 1

= n!dn

BUT: only dn assignments are possible.The order of assignment doesn't matter, and we should assign to one vari-able at a time.

168

Ba
ktra
king sear
hUsing the graph
olouring example:The sear
h now looks something like this...
1=B1=B1=B

2=R 2=R2=R
3=B 3=R 3=C

1=B 1= R 1=C

1=B 1=B 1=B
2=B 2=R 2=C

...and new possibilities appear.
169

Ba
ktra
king sear
hBa
ktra
king sear
h sear
hes depth-�rst, assigning a single variable at atime, and ba
ktra
king if no valid assignment is available.
1

2

3
4

5
6

7

8

1=B
2=R
3=C
4=B
5=R

6=B

Nothing is available for 7, so
either assign 8 or backtrack

Rather than using problem-spe
i�
 heuristi
s to try to improve sear
hing,we
an now explore heuristi
s appli
able to general CSPs.

170

Ba
ktra
king sear
h

Result backTrack(problem) {

return bt ([], problem);

}

Result bt(assignmentList, problem) {

if (assignmentList is complete)

return assignmentList;

nextVar = getNextVar(assignmentList, problem);

for (all v in orderVariables(nextVar, assignmentList, problem)) {

if (v is consistent with assignmentList) {

add "nextVar = v" to assignmentList;

solution = bt(assignmentList, problem);

if (solution is not "fail")

return solution;

remove "nextVar = v" from assignmentList;

}

}

return "fail";

} 171

Ba
ktra
king sear
h: possible heuristi
sThere are several points we
an examine in an attempt to obtain generalCSP-based heuristi
s:� In what order should we try to assign variables?� In what order should we try to assign possible values to a variable?Or being a little more subtle:� What e�e
t might the values assigned so far have on later attemptedassignments?� When for
ed to ba
ktra
k, is it possible to avoid the same failure lateron?

172

Heuristi
s I: Choosing the order of variable assignments and valuesSay we have 1 = B and 2 = R

1

2

3
4

5
6

8

?

7

At this point there is only one possible assignmentfor 3, whereas the others have more
exibility.

Assigning su
h variables �rst is
alled the minimum remaining values(MRV) heuristi
.(Alternatively, the most
onstrained variable or fail �rst heuristi
.)

173

Heuristi
s I: Choosing the order of variable assignments and valuesHow do we
hoose a variable to begin with?The degree heuristi

hooses the variable involved in the most
onstraintson as yet unassigned variables.
1

2

3
4

5
6

8

Start with 3, 5 or 7.

7

MRV is usually better but the degree heuristi
 is a good tie breaker.

174

Heuristi
s I: Choosing the order of variable assignments and valuesOn
e a variable is
hosen, in what order should values be assigned?

1

2

3
4

5
6

8

?
The heuristic prefers 1=B

7

Choosing 1 = C is bad as it removesthe �nal possibility for 3.

The least
onstraining value heuristi

hooses �rst the value that leavesthe maximum possible freedom in
hoosing assignments for the variable'sneighbours.

175

Heuristi
s II: forward
he
king and
onstraint propagationContinuing the previous slide's progress, now add 1 = C.
3

4

5
6

8

2 and 3.

7

C is ruled out as an assignment to

2

1Ea
h time we assign a value to a variable, it makes sense to delete thatvalue from the
olle
tion of possible assignments to its neighbours .This is
alled forward
he
king . It works ni
ely in
onjun
tion with MRV.

176

Heuristi
s II: forward
he
king and
onstraint propagationWe
an visualise this pro
ess as follows:1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

2 = B RC = B RC RC BRC BRC BRC BRC

3 = R C = B = R RC BC BRC BC BRC

6 = B C = B = R RC C = B C BRC

5 = C C = B = R R = C = B ! BRCAt the fourth step 7 has no possible assignments left .However, we
ould have dete
ted a problem a little earlier...

177

Heuristi
s II: forward
he
king and
onstraint propagation...by looking at step three.1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

2 = B RC = B RC RC BRC BRC BRC BRC

3 = R C = B = R RC BC BRC BC BRC

6 = B C = B = R RC C = B C BRC

5 = C C = B = R R = C = B ! BRC� At step three, 5
an be C only and 7
an be C only.� But 5 and 7 are
onne
ted.� So we
an't progress, but this hasn't been dete
ted.� Ideally we want to do
onstraint propagation .Trade-o�: time to do the sear
h, against time to explore
onstraints.

178

Constraint propagationAr

onsisten
y:Consider a
onstraint as being dire
ted . For example 4→ 5.In general, say we have a
onstraint i→ j and
urrently the domain of i is
Di and the domain of j is Dj.

i→ j is
onsistent if

∀d ∈ Di,∃d ′ ∈ Dj su
h that i→ j is valid

179

Constraint propagationExample:In step three of the table, D4 = {R, C} and D5 = {C}.� 5→ 4 in step three of the table is
onsistent .� 4→ 5 in step three of the table is not
onsistent .
4→ 5
an be made
onsistent by deleting C from D4.Or in other words, regardless of what you assign to i you'll be able to �ndsomething valid to assign to j.

180

Enfor
ing ar

onsisten
yWe
an enfor
e ar

onsisten
y ea
h time a variable i is assigned.� We need to maintain a
olle
tion of ar
s to be
he
ked .� Ea
h time we alter a domain, we may have to in
lude further ar
s inthe
olle
tion.This is be
ause if i → j is in
onsistent resulting in a deletion from Di wemay as a
onsequen
e make some ar
 k→ i in
onsistent.Why is this?

181

Enfor
ing ar

onsisten
y
with i = R.{R} kK→ i is no longer
onsistent

i→ j is now
onsistent.i→ j is not
onsistent sodelete B from the domainof i.

{R} kK→ i is
onsistent but

kK = R
an only be pairedwith i = B. be
ause kK = R
an not be paired{B}{R}{R, B} {B}
ji

...

k1

k2

kK

ji

...

k1

k2

kK

� i→ j in
onsistent means removing a value from Di.� ∃d ∈ Di su
h that there is no valid d ′ ∈ Dj so delete d ∈ Di.However some d ′′ ∈ Dk may only have been pairable with d.We need to
ontinue until all
onsequen
es are taken
are of.

182

The AC-3 algorithm

NewDomains AC-3 (problem) {

Queue toCheck = all arcs i->j;

while (toCheck is not empty) {

i->j = next(toCheck);

if (removeInconsistencies(Di,Dj)) {

for (each k that is a neighbour of i)

add k->i to toCheck;

}

}

}

Bool removeInconsistencies (domain1, domain2) {

Bool result = false;

for (each d in domain1) {

if (no d’ in domain2 valid with d) {

remove d from domain1;

result = true;

}

}

return result;

} 183

Enfor
ing ar

onsisten
yComplexity:� A binary CSP with n variables
an have O(n2) dire
tional
onstraints
i→ j.� Any i → j
an be
onsidered at most d times where d = maxk |Dk|be
ause only d things
an be removed from Di.� Che
king any single ar
 for
onsisten
y
an be done in O(d2).So the
omplexity is O(n2d3).Note: this setup in
ludes 3SAT.Consequen
e: we
an't
he
k for
onsisten
y in polynomial time, whi
hsuggests this doesn't guarantee to �nd all in
onsisten
ies.

184

A more powerful form of
onsisten
yWe
an de�ne a stronger notion of
onsisten
y as follows:� Given: any k − 1 variables and any
onsistent assignment to these.� Then: We
an �nd a
onsistent assignment to any kth variable.This is known as k-
onsisten
y .Strong k-
onsisten
y requires the we be k-
onsistent, k − 1-
onsistent et
as far down as 1-
onsistent.If we
an demonstrate strong n-
onsisten
y (where as usual n is the numberof variables) then an assignment
an be found in O(nd).Unfortunately, demonstrating strong n-
onsisten
y will be worst-
ase ex-ponential .

185

Ba
kjumpingThe basi
 ba
ktra
king algorithm ba
ktra
ks to the most re
ent assign-ment . This is known as
hronologi
al ba
ktra
king . It is not always thebest poli
y:

2

3
4

5
6

8

7

1

3

5

7

4

1

???

Say we've assigned 1 = B, 3 = R, 5 = C and 4 = B and now we wantto assign something to 7. This isn't possible so we ba
ktra
k, howeverre-assigning 4
learly doesn't help.
186

Ba
kjumpingWith some
areful bookkeeping it is often possible to jump ba
k multiplelevels without sa
ri�
ing the ability to �nd a solution.We need some de�nitions:� When we set a variable Vi to some value d ∈ Di we refer to this as theassignment Ai = (Vi ← d).� A partial instantiation Ik = {A1, A2, . . . , Ak} is a
onsistent set ofassignments to the �rst k variables...� ... where
onsistent means that no
onstraints are violated.Hen
eforth we shall assume that variables are assigned in the order V1, V2, . . . , Vnwhen formally presenting algorithms.
187

Gas
hnig's algorithmGas
hnig's algorithm works as follows. Say we have a partial instantiation
Ik:� When
hoosing a value for Vk+1 we need to
he
k that any
andidatevalue d ∈ Dk+1, is
onsistent with Ik.� When testing potential values for d, we will generally dis
ard one ormore possibilities, be
ause they
on
i
t with some member of Ik� We keep tra
k of the most re
ent assignment Aj for whi
h this hashappened.Finally, if no value for Vk+1 is
onsistent with Ik then we ba
ktra
k to Vj.If there are no possible values left to try for Vj then we ba
ktra
k
hrono-logi
ally .

188

Gas
hnig's algorithmExample:

2

3
4

5
6

8

7

1

1

3

5

4

7

Ba
ktra
k to 5
7 = 7 = 7 =

82
???

If there's no value left to try for 5 then ba
ktra
k to 3 and so on.

189

Graph-based ba
kjumpingThis allows us to jump ba
k multiple levels when we initially dete
t a
on
i
t .Can we do better than
hronologi
al ba
ktra
king thereafter?Some more de�nitions:� We assume an ordering V1, V2, . . . , Vn for the variables.� Given V ′ = {V1, V2, . . . , Vk} where k < n the an
estors of Vk+1 are themembers of V ′
onne
ted to Vk+1 by a
onstraint.� The parent P(V) of Vk+1 is its most re
ent an
estor.The an
estors for ea
h variable
an be a

umulated as assignments aremade.Graph-based ba
kjumping ba
ktra
ks to the parent of Vk+1.

190

Graph-based ba
kjumping
2

3
4

5
6

8

7

1

1

3

1

3

5

4

1

3

5

1

3

5

4

7

{1}

{3}

{1} {1}

{3}

{5}

{1}

{3}

{5}

{4}

{1, 3, 4, 8}

{1, 3, 5}

82
???

At this point, ba
kjump to the parent for 7, whi
h is 5.

191

Ba
kjumping and forward
he
kingIf we use forward
he
king : say we're assigning to Vk+1 by making Vk+1 =

d:� Forward
he
king removes d from the Di of all Vi
onne
ted to Vk+1 bya
onstraint.� When doing graph-based ba
kjumping, we'd also add Vk+1 to the an-
estors of Vi.In fa
t, use of forward
he
king
an make some forms of ba
kjumping re-dundant .Note: there are in fa
t many ways of
ombining
onstraint propagationwith ba
kjumping , and we will not explore them in further detail here.

192

Ba
kjumping and forward
he
king
2

3
4

5
6

8

7

1

3

5

7

4

1

8 − {}

3 − {1}

1 − {}

3

4 − { }

6 − { }
7 − {1, , }5

5
5 − { }3

5

32 − {1, , 4}

An
estors???

1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

1 = B = B RC RC BRC BRC BRC RC BRC

3 = R = B C = R BRC BC BRC C BRC

5 = C = B C = R BR = C BR ! BRC

4 = B = B C = R BR = C BR ! BRCForward
he
king �nds the problem before ba
ktra
king does .

193

Graph-based ba
kjumpingWe're not quite done yet though. What happens when there are no as-signments left for the parent we just ba
kjumped to?
V4

V3

V2

V1

V7

V6

V5

V4

V3

V2

V1

???
???

Ba
kjumping from V7 to V4 is �ne. However we shouldn't then just ba
k-jump to V2, be
ause
hanging V3
ould �x the problem at V7.

194

Graph-based ba
kjumpingTo des
ribe an algorithm in this
ase is a little involved.

Leaf dead-end

I6.
Leaf dead-end variable V7

V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

???
???

Given an instantiation Ik and Vk+1, if there is no
onsistent d ∈ Dk+1 we
all Ik a leaf dead-end and Vk+1 a leaf dead-end variable .

195

Graph-based ba
kjumpingAlso
Leaf dead-end Internal dead-end

I4.

I6.
Leaf dead-end variable V7

Internal dead-end variable V4V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

???
???

If Vi was ba
ktra
ked to from a later leaf dead-end and there are no morevalues to try for Vi then we refer to it as an internal dead-end variableand
all Ii−1 an internal dead-end .
196

Graph-based ba
kjumpingTo keep tra
k of exa
tly where to jump to we also need the de�nitions:� The session of a variable V begins when the sear
h algorithm visits itand ends when it ba
ktra
ks through it to an earlier variable.� The
urrent session of a variable V is the set of all variables visitingduring its session.� In parti
ular, the
urrent session for any V
ontains V.� The relevant dead-ends for the
urrent session R(V) for a variable Vare:1. If V is a leaf dead-end variable then R(V) = {V}.2. If V was ba
ktra
ked to from a dead-end V ′ then R(V) = R(V)∪R(V ′).And we're not done yet...
197

Graph-based ba
kjumpingExample:

Session of V4 = {V4, V5, V6, V7}.

Session starts
Session starts

Session of V7 = {V7}.

R(V7) = {V7}

R(V4) = {V7}

As expe
ted, the relevant dead-end for V4 is {V7}.
198

Graph-based ba
kjumpingOne more bun
h of de�nitions before the pain stops. Say Vk is a dead-end:� The indu
ed an
estors ind(Vk) of Vk are de�ned as

ind(Vk) = {V1, V2, . . . , Vk−1} ∩





⋃

V∈R(Vk)

an
estors(V)





� The
ulprit for Vk is the most re
ent V ′ ∈ ind(Vk).Note that these de�nitions depend on R(Vk).FINALLY: graph-based ba
kjumping ba
kjumps to the
ulprit .

199

Graph-based ba
kjumpingExample:

Session of V4 = {V4, V5, V6, V7}.

Ba
kjump from V7to V4.

R(V4) = {V7}ind(V4) = {V3}

Nothing left to try!

As expe
ted, we ba
k jump to V3 instead of V2. Hooray!

200

Con
i
t-dire
ted ba
kjumpingGas
hnig's algorithm and graph-based ba
kjumping
an be
ombined toprodu
e
on
i
t-dire
ted ba
kjumping .We will not explore
on
i
t-dire
ted ba
kjumping in this
ourse.For
onsiderable further detail on algorithms for CSPs see:\Constraint Pro
essing," Rina De
hter. Morgan Kaufmann, 2003.

201

Varieties of CSPWe have only looked at dis
rete CSPs with �nite domains . These are thesimplest. We
ould also
onsider:1. Dis
rete CSPs with in�nite domains :� We need a
onstraint language . For example
V3 ≤ V10 + 5� Algorithms are available for integer variables and linear
onstraints.� There is no algorithm for integer variables and nonlinear
onstraints.2. Continuous domains|using linear
onstraints de�ning
onvex regionswe have linear programming . This is solvable in polynomial time in n.3. We
an introdu
e preferen
e
onstraints in addition to absolute
on-straints , and in some
ases an obje
tive fun
tion .

202

Arti�
ial Intelligen
e IDr Sean Holden

Notes on knowledge representation and reasoning using �rst-orderlogi
 (FOL)
Copyright

 Sean Holden 2002-2010.203

Knowledge representation and reasoning using FOLWe now look at how an agent might represent knowledge about its envi-ronment using �rst order logi
 (FOL), and reason with this knowledge toa
hieve its goals.Aims:� To show how FOL
an be used to represent knowledge about an en-vironment in the form of both ba
kground knowledge and knowledgederived from per
epts .� To show how this knowledge
an be used to derive non-per
eivedknowledge about the environment using a theorem prover .� To introdu
e the situation
al
ulus and demonstrate its appli
ation ina simple environment as a means by whi
h an agent
an work out whatto do next.

204

Interesting readingReading: Russell and Norvig,
hapters 7 to 10.Knowledge representation based on logi
 is a vast subje
t and
an't be
overed in full in the le
tures.In parti
ular:� Te
hniques for representing further kinds of knowledge .� Te
hniques for moving beyond the idea of a situation .� Reasoning systems based on
ategories .� Reasoning systems using default information .� Truth maintenan
e systems .Happy reading :-)

205

Knowledge representation and reasoningEarlier in the
ourse we looked at what an agent should be able to do.It seems that all of us|and all intelligent agents|should use logi
al rea-soning to help us intera
t su

essfully with the world.Any intelligent agent should:� Possess knowledge about the environment and about how its a
tionsa�e
t the environment .� Use some form of logi
al reasoning to maintain its knowledge as per-
epts arrive.� Use some form of logi
al reasoning to dedu
e a
tions to perform inorder to a
hieve goals .
206

Knowledge representation and reasoningThis raises some important questions:� How do we des
ribe the
urrent state of the world?� How do we infer from our per
epts, knowledge of unseen parts of theworld?� How does the world
hange as time passes?� How does the world stay the same as time passes? (The frame prob-lem .)� How do we know the e�e
ts of our a
tions? (The quali�
ation andrami�
ation problems .)We'll now look at one way of answering some of these questions.

207

Logi
 for knowledge representationFOL (arguably?) seems to provide a good way in whi
h to represent therequired kinds of knowledge:� It is expressive|anything you
an program
an be expressed.� It is
on
ise .� It is unambiguous� It
an be adapted to di�erent
ontexts .� It has an inferen
e pro
edure , although a semide
idable one.In addition is has a well-de�ned syntax and semanti
s .

208

Logi
 for knowledge representationProblem: it's quite easy to talk about things like set theory using FOL.For example, we
an easily write axioms like

∀S . ∀S ′ . ((∀x . (x ∈ S⇔ x ∈ S ′))⇒ S = S ′)But how would we go about representing the proposition that if you havea bu
ket of water and throw it at your friend they will get wet, havea bump on their head from being hit by a bu
ket, and the bu
ket willnow be empty and dented?More importantly, how
ould this be represented within a wider frameworkfor reasoning about the world?It's time to introdu
e my friend, The Wumpus ...
209

Wumpus worldAs a simple test s
enario for a knowledge-based agent we will make use ofthe Wumpus World .
Evil Robot

Wumpus

The Wumpus World is a 4 by 4 grid-based
ave.EVIL ROBOT wants to enter the
ave, �nd some gold, and get out againun-s
athed.

210

Wumpus worldThe rules of Wumpus World :� Unfortunately the
ave
ontains a number of pits, whi
h EVIL ROBOT
an fall into. Eventually his batteries will fail, and that's the end ofhim.� The
ave also
ontains the Wumpus, who is armed with state of the artEvil Robot Obliteration Te
hnology .� The Wumpus itself knows where the pits are and never falls into one.

211

Wumpus worldEVIL ROBOT
an move around the
ave at will and
an per
eive thefollowing:� In a position adja
ent to the Wumpus, a sten
h is per
eived. (Wumpusesare famed for their la
k of personal hygiene .)� In a position adja
ent to a pit, a breeze is per
eived.� In the position where the gold is, a glitter is per
eived.� On trying to move into a wall, a bump is per
eived.� On killing the Wumpus a s
ream is per
eived.In addition, EVIL ROBOT has a single arrow, with whi
h to try to kill theWumpus.\Adja
ent" in the following does not in
lude diagonals.

212

Wumpus worldSo we have:Per
epts: stench, breeze, glitter, bump, scream.A
tions: forward, turnLeft, turnRight, grab, release, shoot, climb.Of
ourse, our aim now is not just to design an agent that
an performwell in a single
ave layout.We want to design an agent that
an usually perform well regardless ofthe layout of the
ave.
213

Some nomen
latureThe
hoi
e of knowledge representation language tends to lead to two im-portant
ommitments:� Ontologi
al
ommitments : what does the world
onsist of?� Epistemologi
al
ommitments : what are the allowable states of knowl-edge?Propositional logi
 is useful for introdu
ing some fundamental ideas, butits ontologi
al
ommitment|that the world
onsists of fa
ts|sometimesmakes it too limited for further use.FOL has a di�erent ontologi
al
ommitment|the world
onsists of fa
ts ,obje
ts and relations .
214

Logi
 for knowledge representationThe fundamental aim is to
onstru
t a knowledge base KB
ontaining a
olle
tion of statements about the world|expressed in FOL|su
h thatuseful things
an be derived from it.Our
entral aim is to generate senten
es that are true , if the senten
es inthe KB are true .This pro
ess is based on
on
epts familiar from your introdu
tory logi

ourses:� Entailment: KB |= α means that the KB entails α.� Proof: KB ⊢i α means that α is derived from the KB using i. If i is soundthen we have a proof .� i is sound if it
an generate only entailed α.� i is
omplete if it
an �nd a proof for any entailed α.

215

Example: PrologYou have by now learned a little about programming in Prolog . For exam-ple:

concat([],L,L).

concat([H|T],L,[H|L2]) :- concat(T,L,L2).is a program to
on
atenate two lists. The query
concat([1,2,3],[4,5],X).results in

X = [1, 2, 3, 4, 5].What's happening here? Well, Prolog is just a more limited form of FOLso...

216

Example: Prolog... we are in fa
t doing inferen
e from a KB:� The Prolog programme itself is the KB. It expresses some knowledgeabout lists .� The query is expressed in su
h a way as to derive some new knowledge .How does this relate to full FOL? First of all the list notation is nothingbut synta
ti
 sugar . It
an be removed: we de�ne a
onstant
alled emptyand a fun
tion
alled cons.Now [1,2,3] just means cons(1, cons(2, cons(3, empty)))) whi
h isa term in FOL.I will assume the use of the synta
ti
 sugar for lists from now on.

217

Prolog and FOLThe program when expressed in FOL, says

∀x . concat(empty, x, x)∧

∀h, t, l1, l2 . concat(t, l1, l2) =⇒ concat(cons(h, t), l1, cons(h, l2))The rule is simple|given a Prolog program:� Universally quantify all the unbound variables in ea
h line of theprogram and ...� ... form the
onjun
tion of the results .If the universally quanti�ed lines are L1, L2, . . . , Ln then the Prolog pro-gramme
orresponds to the KB
KB = L1 ∧ L2 ∧ · · · ∧ LnNow, what does the query mean?

218

Prolog and FOLWhen you give the query

concat([1,2,3],[4,5],X).to Prolog it responds by trying to prove the following statement
KB =⇒ ∃x . concat([1, 2, 3], [4, 5], x)So: it tries to prove that the KB implies the query , and variables in thequery are existentially quanti�ed.When a proof is found, it supplies a value for x that makes the inferen
etrue .

219

Prolog and FOLProlog di�ers from FOL in that, amongst other things:� It restri
ts you to using Horn
lauses .� Its inferen
e pro
edure is not a full-blown proof pro
edure .� It does not deal with negation
orre
tly.However the
entral idea also works for full-blown theorem provers .If you want to experiment, you
an obtain Prover9 from
http://www.cs.unm.edu/∼mccune/mace4/We'll see a brief example now, and a more extensive example of its uselater, time permitting...

220

Prolog and FOLExpressed in Prover9, the above Prolog program and query look like this:
set(prolog_style_variables).

% This is the translated Prolog program for list concatenation.

% Prover9 has its own syntactic sugar for lists.

formulas(assumptions).

concat([], L, L).

concat(T, L, L2) -> concat([H:T], L, [H:L2]).

end_of_list.

% This is the query.

formulas(goals).

exists X concat([1, 2, 3], [4, 5], X).

end_of_list.Note: it is assumed that unbound variables are universally quanti�ed .

221

Prolog and FOLYou
an try to infer a proof using

prover9 -f file.inand the result is (in addition to a lot of other information):
1 concat(T,L,L2) -> concat([H:T],L,[H:L2]) # label(non_clause). [assumption].

2 (exists X concat([1,2,3],[4,5],X)) # label(non_clause) # label(goal). [goal].

3 concat([],A,A). [assumption].

4 -concat(A,B,C) | concat([D:A],B,[D:C]). [clausify(1)].

5 -concat([1,2,3],[4,5],A). [deny(2)].

6 concat([A],B,[A:B]). [ur(4,a,3,a)].

7 -concat([2,3],[4,5],A). [resolve(5,a,4,b)].

8 concat([A,B],C,[A,B:C]). [ur(4,a,6,a)].

9 $F. [resolve(8,a,7,a)].This shows that a proof is found but doesn't expli
itly give a value for

X|we'll see how to extra
t that later...
222

The fundamental ideaSo the basi
 idea is: build a KB that en
odes knowledge about the world ,the e�e
ts of a
tions and so on.The KB is a
onjun
tion of pie
es of knowledge, su
h that:� A query regarding what our agent should do
an be posed in the form
∃actionList . Goal(... actionList ...)� Proving that

KB =⇒ ∃actionList . Goal(... actionList ...)instantiates actionList to an a
tual list of a
tions that will a
hievea goal represented by the Goal predi
ate.We sometimes use the notation ask and tell to refer to querying andadding to the KB.

223

Using FOL in AI: the triumphant return of the WumpusWe want to be able to spe
ulate about the past and about possible futures .So:

Evil Robot

Wumpus

� We in
lude situations in the logi
al language used by our KB.� We in
lude axioms in our KB that relate to situations.This gives rise to situation
al
ulus .
224

Situation
al
ulusIn situation
al
ulus :� The world
onsists of sequen
es of situations .� Over time, an agent moves from one situation to another.� Situations are
hanged as a result of a
tions .In Wumpus World the a
tions are: forward, shoot, grab, climb, release,

turnRight, turnLeft.� A situation argument is added to items that
an
hange over time. Forexample At(lo
ation, s)Items that
an
hange over time are
alled
uents .� A situation argument is not needed for things that don't
hange. Theseare sometimes referred to as eternal or atemporal .

225

Representing
hange as a result of a
tionsSituation
al
ulus uses a fun
tionresult(action, s)to denote the new situation arising as a result of performing the spe
i�eda
tion in the spe
i�ed situation.result(grab, s0) = s1result(turnLeft, s1) = s2result(shoot, s2) = s3result(forward, s3) = s4...
226

Axioms I: possibility axiomsThe �rst kind of axiom we need in a KB spe
i�es when parti
ular a
tionsare possible .We introdu
e a predi
ate Poss(action, s)denoting that an a
tion
an be performed in situation s.We then need a possibility axiom for ea
h a
tion. For example:At(l, s) ∧Available(gold, l, s) =⇒ Poss(grab, s)Remember that unbound variables are universally quanti�ed .

227

Axioms II: e�e
t axiomsGiven that an a
tion results in a new situation, we
an introdu
e e�e
taxioms to spe
ify the properties of the new situation.For example, to keep tra
k of whether EVIL ROBOT has the gold we neede�e
t axioms to des
ribe the e�e
t of pi
king it up:Poss(grab, s) =⇒ Have(gold, result(grab, s))E�e
t axioms des
ribe the way in whi
h the world
hanges .We would probably also in
lude
¬Have(gold, s0)in the KB, where s0 is the starting state .Important : we are des
ribing what is true in the situation that resultsfrom performing an a
tion in a given situation .

228

Axioms III: frame axiomsWe need frame axioms to des
ribe the way in whi
h the world stays thesame .Example:Have(o, s) ∧

¬(a = release∧ o = gold) ∧ ¬(a = shoot∧ o = arrow)

=⇒ Have(o, result(a, s))des
ribes the e�e
t of having something and not dis
arding it .In a more general setting su
h an axiom might well look di�erent. Forexample

¬Have(o, s) ∧

(a 6= grab(o) ∨ ¬(Available(o, s) ∧ Portable(o)))

=⇒ ¬Have(o, result(a, s))des
ribes the e�e
t of not having something and not pi
king it up.

229

The frame problemThe frame problem has histori
ally been a major issue.Representational frame problem : a large number of frame axioms arerequired to represent the many things in the world whi
h will not
hangeas the result of an a
tion.We will see how to solve this in a moment.Inferential frame problem : when reasoning about a sequen
e of situations,all the un
hanged properties still need to be
arried through all the steps.This
an be alleviated using planning systems that allow us to reasoneÆ
iently when a
tions
hange only a small part of the world. There arealso other remedies, whi
h we will not
over.
230

Su

essor-state axiomsE�e
t axioms and frame axioms
an be
ombined into su

essor-state ax-ioms .One is needed for ea
h predi
ate that
an
hange over time.A
tion a is possible =⇒
(true in new situation ⇐⇒
(you did something to make it true ∨it was already true and you didn't make it false))For examplePoss(a, s) =⇒

(Have(o, result(a, s)) ⇐⇒ ((a = grab ∧ Available(o,s)) ∨

(Have(o, s) ∧ ¬(a = release ∧ o = gold) ∧

¬(a = shoot ∧ o = arrow))))
231

Knowing where you areIf s0 is the initial situation we know thatAt((1, 1), s0)I am assuming that we've added axioms allowing us to deal with thenumbers 0 to 5 and pairs of su
h numbers. (Exer
ise: do this.)We need to keep tra
k of what way we're fa
ing. Say north is 0, south is

2, east is 1 and west is 3. fa
ing(s0) = 0We need to know how motion a�e
ts lo
ationforwardResult((x, y), north) = (x, y + 1)forwardResult((x, y), east) = (x + 1, y)...and At(l, s) =⇒ goForward(s) = forwardResult(l, fa
ing(s))
232

Knowing where you areThe
on
ept of adja
en
y is very important in the Wumpus worldAdja
ent(l1, l2) ⇐⇒ ∃d forwardResult(l1, d) = l2We also know that the
ave is 4 by 4 and surrounded by wallsWallHere((x, y)) ⇐⇒ (x = 0 ∨ y = 0 ∨ x = 5 ∨ y = 5)It is only possible to
hange lo
ation by moving, and this only works ifyou're not fa
ing a wall. So......we need a su

essor-state axiom:Poss(a, s) =⇒At(l, result(a, s)) ⇐⇒ (l = goForward(s)

∧ a = forward

∧ ¬WallHere(l))
∨ (At(l, s) ∧ a 6= forward)

233

Knowing where you areIt is only possible to
hange orientation by turning. Again, we need asu

essor-state axiomPoss(a, s) =⇒fa
ing(result(a, s)) = d ⇐⇒
(a = turnRight∧ d = mod(fa
ing(s) + 1, 4))

∨ (a = turnLeft∧ d = mod(fa
ing(s) − 1, 4))

∨ (fa
ing(s) = d ∧ a 6= turnRight∧ a 6= turnLeft)and so on...

234

The quali�
ation and rami�
ation problemsQuali�
ation problem : we are in general never
ompletely
ertain what
onditions are required for an a
tion to be e�e
tive.Consider for example turning the key to start your
ar.This will lead to problems if important
onditions are omitted from axioms.Rami�
ation problem : a
tions tend to have impli
it
onsequen
es thatare large in number.For example, if I pi
k up a sandwi
h in a dodgy sandwi
h shop, I willalso be pi
king up all the bugs that live in it. I don't want to model thisexpli
itly.

235

Solving the rami�
ation problemThe rami�
ation problem
an be solved by modifying su

essor-state ax-ioms .For example: Poss(a, s) =⇒
(At(o, l, result(a, s)) ⇐⇒

(a = go(l ′, l) ∧

[o = robot ∨ Has(robot, o, s)]) ∨

(At(o, l, s) ∧

[¬∃l ′′ . a = go(l, l ′′) ∧ l 6= l ′′ ∧

{o = robot ∨ Has(robot, o, s)}]))des
ribes the fa
t that anything EVIL ROBOT is
arrying moves aroundwith him.

236

Dedu
ing properties of the world:
ausal rulesIf you know where you are, then you
an think about pla
es rather thanjust situations .Syn
hroni
 rules relate properties shared by a single state of the world.There are two kinds:
ausal and diagnosti
.Causal rules : some properties of the world will produ
e per
epts.WumpusAt(l1) ∧ Adja
ent(l1, l2) =⇒ Sten
hAt(l2)PitAt(l1) ∧ Adja
ent(l1, l2) =⇒ BreezeAt(l2)Systems reasoning with su
h rules are known as model-based reasoningsystems.

237

Dedu
ing properties of the world: diagnosti
 rulesDiagnosti
 rules : infer properties of the world from per
epts.For example: At(l, s) ∧ Breeze(s) =⇒ BreezeAt(l)At(l, s) ∧ Stench(s) =⇒ StenchAt(l)These may not be very strong.The di�eren
e between model-based and diagnosti
 reasoning
an be im-portant. For example, medi
al diagnosis
an be done based on symptomsor based on a model of disease.
238

General axioms for situations and obje
tsNote : in FOL, if we have two
onstants robot and gold then an interpre-tation is free to assign them to be the same thing.This is not something we want to allow.Unique names axioms state that ea
h pair of distin
t items in our modelof the world must be di�erent

robot 6= gold

robot 6= arrow

robot 6= wumpus...
wumpus 6= gold...

239

General axioms for situations and obje
tsUnique a
tions axioms state that a
tions must share this property, so forea
h pair of a
tions

go(l, l ′) 6= grab

go(l, l ′) 6= drop(o)...

drop(o) 6= shoot...and in addition we need to de�ne equality for a
tions, so for ea
h a
tion

go(l, l ′) = go(l ′′, l ′′′) ⇐⇒ l = l ′′ ∧ l ′ = l ′′′

drop(o) = drop(o ′) ⇐⇒ o = o ′...
240

General axioms for situations and obje
tsThe situations are ordered so

s0 6= result(a, s)and situations are distin
t soresult(a, s) = result(a ′, s ′) ⇐⇒ a = a ′ ∧ s = s ′Stri
tly speaking we should be using a many-sorted version of FOL.In su
h a system variables
an be divided into sorts whi
h are impli
itlyseparate from one another.
241

The start stateFinally, we're going to need to spe
ify what's true in the start state .For example At(robot, [1, 1], s0)At(wumpus, [3, 4], s0)Has(robot, arrow, s0)...and so on.

242

Sequen
es of situationsWe know that the fun
tion result tells us about the situation resulting fromperforming an a
tion in an earlier situation.How
an this help us �nd sequen
es of a
tions to get things done?De�ne Sequen
e([], s, s ′) = s ′ = sSequen
e([a], s, s ′) = Poss(a, s) ∧ s ′ = result(a, s)Sequen
e(a :: as, s, s ′) = ∃t . Sequen
e([a], s, t) ∧ Sequen
e(as, t, s ′)To obtain a sequen
e of a
tions that a
hieves Goal(s) we
an use thequery

∃a ∃s . Sequen
e(a, s0, s) ∧ Goal(s)
243

Knowledge representation and reasoningIt should be
lear that generating sequen
es of a
tions by inferen
e in FOLis highly non-trivial.Ideally we'd like to maintain an expressive language while restri
ting itenough to be able to do inferen
e eÆ
iently .Further aims :� To give a brief introdu
tion to semanti
 networks and frames forknowledge representation.� To see how inheritan
e
an be applied as a reasoning method.� To look at the use of rules for knowledge representation, along withforward
haining and ba
kward
haining for reasoning.Further reading : The Essen
e of Arti�
ial Intelligen
e , Alison Cawsey.Prenti
e Hall, 1998.

244

Frames and semanti
 networksFrames and semanti
 networks represent knowledge in the form of
lassesof obje
ts and relationships between them :� The sub
lass and instan
e relationships are emphasised.� We form
lass hierar
hies in whi
h inheritan
e is supported and pro-vides the main inferen
e me
hanism .As a result inferen
e is quite limited.We also need to be extremely
areful about semanti
s .The only major di�eren
e between the two ideas is notational .

245

Example of a semanti
 network
has

Jake Mayhem

instance

Ear problems

volume

has

subclass

Musician

subclass
hasInstrument

Person

has

has

Right arm

subclass volume

has

hair_length Any

Sheet music

Quiet

instance

Violet Scroot
has

Oboe

has

Axe

Long

Loud
Rock musician

hair_length

Head

Left arm

Classical musician

246

FramesFrames on
e again support inheritan
e through the sub
lass relationship.
volume: loud

has: ear problems
hairlength: long

subclass: Musician

Rock musician

subclass: Person
has: instrument

Musician

has, hairlength, volume et
 are slots .
long, loud, instrument et
 are slot values .These are a dire
t prede
essor of obje
t-oriented programming languages .

247

DefaultsBoth approa
hes to knowledge representation are able to in
orporate de-faults :

has: ear problems
* hairlength: long

subclass: Musician

* volume: loud

subclass: Rock musician
hairlength: short
image: gothic

Rock musician
Dementia Evilperson

Starred slots are typi
al values asso
iated with sub
lasses and instan
es,but
an be overridden .
248

Multiple inheritan
eBoth approa
hes
an in
orporate multiple inheritan
e , at a
ost:
instanceinstance

Classical musicianRock musician

Cornelius Cleverchap

� What is hairlength for Cornelius if we're trying to use inheritan
e toestablish it?� This
an be over
ome initially by spe
ifying whi
h
lass is inheritedfrom in preferen
e when there's a
on
i
t.� But the problem is still not entirely solved|what if we want to preferinheritan
e of some things from one
lass, but inheritan
e of others froma di�erent one?

249

Other issues� Slots and slot values
an themselves be frames. For example Dementiamay have an instrument slot with the value Electric harp, whi
h itselfmay have properties des
ribed in a frame.� Slots
an have spe
i�ed attributes . For example, we might spe
ify that
instrument
an have multiple values, that ea
h value
an only be aninstan
e of Instrument, that ea
h value has a slot
alled owned by andso on.� Slots may
ontain arbitrary pie
es of program. This is known as pro
e-dural atta
hment . The fragment might be exe
uted to return the slot'svalue, or update the values in other slots et
.

250

Rule-based systemsA rule-based system requires three things:1. A set of if-then rules . These denote spe
i�
 pie
es of knowledge aboutthe world.They should be interpreted similarly to logi
al impli
ation.Su
h rules denote what to do or what
an be inferred under given
ir
umstan
es.2. A
olle
tion of fa
ts denoting what the system regards as
urrently trueabout the world.3. An interpreter able to apply the
urrent rules in the light of the
urrentfa
ts.

251

Forward
hainingThe �rst of two basi
 kinds of interpreter begins with established fa
tsand then applies rules to them .This is a data-driven pro
ess. It is appropriate if we know the initial fa
tsbut not the required
on
lusion.Example: XCON|used for
on�guring VAX
omputers.In addition:� We maintain a working memory , typi
ally of what has been inferredso far.� Rules are often
ondition-a
tion rules , where the right-hand side spe
i-�es an a
tion su
h as adding or removing something from working mem-ory, printing a message et
.� In some
ases a
tions might be entire program fragments.

252

Forward
hainingThe basi
 algorithm is:1. Find all the rules that
an �re, based on the
urrent working memory.2. Sele
t a rule to �re. This requires a
on
i
t resolution strategy .3. Carry out the a
tion spe
i�ed, possibly updating the working memory.Repeat this pro
ess until either no rules
an be used or a halt appears inthe working memory.
253

Example
dry_mouth
working

InterpreterWorking memory

Condition−action rules

no_work −> DELETE working
working −> ADD no_work
get_drink AND no_work −> ADD go_bar
thirsty −> ADD get_drink
dry_mouth −> ADD thirsty

254

ExampleProgress is as follows:1. The rule

dry mouth =⇒ ADD thirsty�res adding thirsty to working memory.2. The rule

thirsty =⇒ ADD get drink�res adding get drink to working memory.3. The rule

working =⇒ ADD no work�res adding no work to working memory.4. The rule

get drink AND no work =⇒ ADD go bar�res, and we establish that it's time to go to the bar.

255

Con
i
t resolutionClearly in any more realisti
 system we expe
t to have to deal with as
enario where two or more rules
an be �red at any one time :� Whi
h rule we
hoose
an
learly a�e
t the out
ome.� We might also want to attempt to avoid inferring an abundan
e of use-less information.We therefore need a means of resolving su
h
on
i
ts .

256

Con
i
t resolutionCommon
on
i
t resolution strategies are:� Prefer rules involving more re
ently added fa
ts.� Prefer rules that are more spe
i�
. For example
patient coughing =⇒ ADD lung problemis more general than

patient coughing AND patient smoker =⇒ ADD lung cancer.This allows us to de�ne ex
eptions to general rules.� Allow the designer of the rules to spe
ify priorities.� Fire all rules simultaneously|this essentially involves following all
hains of inferen
e at on
e.
257

Reason maintenan
eSome systems will allow information to be removed from the working mem-ory if it is no longer justi�ed .For example, we might �nd that

patient coughingand

patient smokerare in working memory, and hen
e �re
patient coughing AND patient smoker =⇒ ADD lung cancerbut later infer something that
auses patient coughing to be withdrawnfrom working memory.The justi�
ation for lung cancer has been removed, and so it should per-haps be removed also.

258

Pattern mat
hingIn general rules may be expressed in a slightly more
exible form involvingvariables whi
h
an work in
onjun
tion with pattern mat
hing .For example the rule

coughs(X) AND smoker(X) =⇒ ADD lung cancer(X)
ontains the variable X.If the working memory
ontains coughs(neddy) and smoker(neddy) then

X = neddyprovides a mat
h and

lung cancer(neddy)is added to the working memory.
259

Ba
kward
hainingThe se
ond basi
 kind of interpreter begins with a goal and �nds a rulethat would a
hieve it.It then works ba
kwards , trying to a
hieve the resulting earlier goals inthe su

ession of inferen
es.Example: MYCIN|medi
al diagnosis with a small number of
onditions.This is a goal-driven pro
ess. If you want to test a hypothesis or youhave some idea of a likely
on
lusion it
an be more eÆ
ient than forward
haining.

260

Example

get drink
no work

thirsty
no work

working

dry mouth
no work

dry mouth
working

Try �rst to establish get drink. This

so we're done.

Working memory Goal

go bar

an be done by establishing thirsty.

These are the new goals.establish get drink and no work.To establish go bar we have to
thirsty
an be established by establishing

dry mouth. This is in the working memoryFinally, we
an establish no work byestablishing working. This is in the workingmemory so the pro
ess has �nished.

261

Example with ba
ktra
kingIf at some point more than one rule has the required
on
lusion then we
an ba
ktra
k .Example: Prolog ba
ktra
ks, and in
orporates pattern mat
hing. It ordersattempts a

ording to the order in whi
h rules appear in the program.Example: having added

up early =⇒ ADD tiredand

tired AND lazy =⇒ ADD go barto the rules, and up early to the working memory:
262

Example with ba
ktra
king
thirsty
no work

get drink
no work

working

dry mouth
no work

dry mouth
working
up early

Pro
ess pro
eeds as before
go bar

lazy

lazy
up early

lazy
tired

di�erent approa
h.
by establishing tired andAttempt to establish go bar

lazy.This
an be done by establishing
up early and lazy.so we're done.up early is in the working memoryWe
an not establisg lazyand so we ba
ktra
k and try a

GoalWorking memory

263

Arti�
ial Intelligen
e IDr Sean Holden
Notes on planning

Copyright

 Sean Holden 2002-2010.264

Problem solving is di�erent to planningIn sear
h problems we:� Represent states : and a state representation
ontains everything that'srelevant about the environment.� Represent a
tions : by des
ribing a new state obtained from a
urrentstate.� Represent goals : all we know is how to test a state either to see if it'sa goal, or using a heuristi
.� A sequen
e of a
tions is a `plan' : but we only
onsider sequen
es of
onse
utive a
tions .Sear
h algorithms are good for solving problems that �t this framework.However for more
omplex problems they may fail
ompletely...

265

Problem solving is di�erent to planningRepresenting a problem su
h as: `go out and buy some pies' is hopeless:� There are too many possible a
tions at ea
h step.� A heuristi

an only help you rank states. In parti
ular it does not helpyou ignore useless a
tions.� We are for
ed to start at the initial state, but you have to work out howto get the pies|that is, go to town and buy them, get online and �nda web site that sells pies et
|before you
an start to do it .Knowledge representation and reasoning might not help either: althoughwe end up with a sequen
e of a
tions|a plan|there is so mu
h
exibilitythat
omplexity might well be
ome an issue.
266

Introdu
tion to planningWe now look at how an agent might
onstru
t a plan enabling it to a
hievea goal.Aims :� To look at how we might update our
on
ept of knowledge represen-tation and reasoning to apply more spe
i�
ally to planning tasks.� To look in detail at the basi
 partial-order planning algorithm .Reading : Russell and Norvig,
hapter 11.
267

Planning algorithms work di�erentlyDi�eren
e 1 :� Planning algorithms use a spe
ial purpose language|often based onFOL or a subset| to represent states, goals, and a
tions.� States and goals are des
ribed by senten
es, as might be expe
ted, but...� ...a
tions are des
ribed by stating their pre
onditions and their e�e
ts .So if you know the goal in
ludes (maybe among other things)Have(pie)and a
tion Buy(x) has an e�e
t Have(x) then you know that a plan in
lud-ing Buy(pie)might be reasonable.
268

Planning algorithms work di�erentlyDi�eren
e 2 :� Planners
an add a
tions at any relevant point at all between thestart and the goal , not just at the end of a sequen
e starting at thestart state.� This makes sense: I may determine that Have(carKeys) is a good stateto be in without worrying about what happens before or after �ndingthem.� By making an important de
ision like requiring Have(carKeys) early onwe may redu
e bran
hing and ba
ktra
king.� State des
riptions are not
omplete|Have(carKeys) des
ribes a
lassof states|and this adds
exibility.So: you have the potential to sear
h both forwards and ba
kwards withinthe same problem.

269

Planning algorithms work di�erentlyDi�eren
e 3 :It is assumed that most elements of the environment are independent ofmost other elements .� A goal in
luding several requirements
an be atta
ked with a divide-and-
onquer approa
h.� Ea
h individual requirement
an be ful�lled using a subplan...� ...and the subplans then
ombined.This works provided there is not signi�
ant intera
tion between the sub-plans.Remember: the frame problem .
270

Running example: gorilla-based mis
hiefWe will use the following simple example problem, whi
h as based on asimilar one due to Russell and Norvig.The intrepid little s
amps in the Cambridge University Roof-ClimbingSo
iety wish to atta
h an in
atable gorilla to the spire of a FamousCollege . To do this they need to leave home and obtain:� An in
atable gorilla : these
an be pur
hased from all good joke shops.� Some rope : available from a hardware store.� A �rst-aid kit : also available from a hardware store.They need to return home after they've �nished their shopping.How do they go about planning their jolly es
apade?

271

The STRIPS languageSTRIPS: \Stanford Resear
h Institute Problem Solver" (1970).States : are
onjun
tions of ground literals . They must not in
lude fun
-tion symbols . At(home) ∧ ¬Have(gorilla)
∧ ¬Have(rope)
∧ ¬Have(kit)Goals : are
onjun
tions of literals where variables are assumed existen-tially quanti�ed . At(x) ∧ Sells(x, gorilla)A planner �nds a sequen
e of a
tions that when performed makes the goaltrue. We are no longer employing a full theorem-prover.

272

The STRIPS languageSTRIPS represents a
tions using operators . For example

At(y), ¬At(x)

At(x),Path(x, y)Go(y)

Op(A
tion: Go(y),Pre: At(x) ∧ Path(x, y),E�e
t: At(y) ∧ ¬At(x))All variables are impli
itly universally quanti�ed. An operator has:� An a
tion des
ription : what the a
tion does.� A pre
ondition : what must be true before the operator
an be used. A
onjun
tion of positive literals .� An e�e
t : what is true after the operator has been used. A
onjun
tionof literals .

273

The spa
e of plansWe now make a
hange in perspe
tive|we sear
h in plan spa
e :� Start with an empty plan .� Operate on it to obtain new plans. In
omplete plans are
alled partialplans . Re�nement operators add
onstraints to a partial plan. Allother operators are
alled modi�
ation operators .� Continue until we obtain a plan that solves the problem.Operations on plans
an be:� Adding a step.� Instantiating a variable .� Imposing an ordering that pla
es a step in front of another.� and so on...

274

Representing a plan: partial order plannersWhen putting on your shoes and so
ks:� It does not matter whether you deal with your left or right foot �rst.� It does matter that you pla
e a so
k on before a shoe, for any givenfoot.It makes sense in
onstru
ting a plan not to make any
ommitment towhi
h side is done �rst if you don't have to.Prin
iple of least
ommitment : do not
ommit to any spe
i�

hoi
esuntil you have to. This
an be applied both to ordering and to instantiationof variables. A partial order planner allows plans to spe
ify that somesteps must
ome before others but others have no ordering. A linearisationof su
h a plan imposes a spe
i�
 sequen
e on the a
tions therein.

275

Representing a plan: partial order plannersA plan
onsists of:1. A set {S1, S2, . . . , Sn} of steps . Ea
h of these is one of the availableoperators .2. A set of ordering
onstraints . An ordering
onstraint Si < Sj denotesthe fa
t that step Si must happen before step Sj. Si < Sj < Sk andso on has the obvious meaning. Si < Sj does not mean that Si mustimmediately pre
ede Sj.3. A set of variable bindings v = x where v is a variable and x is either avariable or a
onstant.4. A set of
ausal links or prote
tion intervals Si
c→ Sj. This denotes thefa
t that the purpose of Si is to a
hieve the pre
ondition c for Sj.A
ausal link is always paired with an equivalent ordering
onstraint.

276

Representing a plan: partial order plannersThe initial plan has:� Two steps,
alled Start and Finish.� a single ordering
onstraint Start < Finish.� No variable bindings .� No
ausal links .In addition to this:� The step Start has no pre
onditions, and its e�e
t is the start state forthe problem.� The step Finish has no e�e
t, and its pre
ondition is the goal.� Neither Start or Finish has an asso
iated a
tion.We now need to
onsider what
onstitutes a solution ...

277

Solutions to planning problemsA solution to a planning problem is any
omplete and
onsistent partiallyordered plan.Complete : ea
h pre
ondition of ea
h step is a
hieved by another step inthe solution.A pre
ondition c for S is a
hieved by a step S ′ if:1. The pre
ondition is an e�e
t of the step
S ′ < S and c ∈ E�e
ts(S ′)and...2. ... there is no other step that
an
an
el the pre
ondition:no S ′′ exists where S ′ < S ′′ < S and ¬c ∈ E�e
ts(S ′′)

278

Solutions to planning problemsConsistent : no
ontradi
tions exist in the binding
onstraints or in theproposed ordering. That is:1. For binding
onstraints, we never have v = X and v = Y for distin
t
onstants X and Y.2. For the ordering, we never have S < S ′ and S ′ < S.Returning to the roof-
limber's shopping expedition, here is the basi
 ap-proa
h:� Begin with only the Start and Finish steps in the plan.� At ea
h stage add a new step.� Always add a new step su
h that a
urrently non-a
hieved pre
ondi-tion is a
hieved .� Ba
ktra
k when ne
essary.
279

An example of partial-order planningHere is the initial plan :

Start

Finish

At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)

At(Home) ∧ Sells(JS,G) ∧ Sells(HS,R) ∧ Sells(HS,FA)

Thin arrows denote ordering.
280

An example of partial-order planningThere are two a
tions available :

Go(y)

At(y), ¬At(x)

Buy(y)

At(x), Sells(x, y)

Have(y)

At(x)

A planner might begin, for example, by adding a Buy(G) a
tion in order toa
hieve the Have(G) pre
ondition of Finish.Note : the following order of events is by no means the only one availableto a planner.It has been
hosen for illustrative purposes.
281

An example of partial-order planningIn
orporating the suggested step into the plan:

Start

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

At(x), Sells(x, G)

Thi
k arrows denote
ausal links. They always have a thin arrow under-neath.Here the new Buy step a
hieves the Have(G) pre
ondition of Finish.

282

An example of partial-order planningThe planner
an now introdu
e a se
ond
ausal link from Start to a
hievethe Sells(x, G) pre
ondition of Buy(G).

Start

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(JS), Sells(JS,G)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

283

An example of partial-order planningThe planner's next obvious move is to introdu
e a Go step to a
hieve theAt(JS) pre
ondition of Buy(G).

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)At(x)

Go(JS)

Start

At(JS), Sells(JS,G)

And we
ontinue...

284

An example of partial-order planningInitially the planner
an
ontinue quite easily in this manner:� Add a
ausal link from Start to Go(JS) to a
hieve the At(x) pre
ondi-tion.� Add the step Buy(R) with an asso
iated
ausal link to the Have(R)pre
ondition of Finish.� Add a
ausal link from Start to Buy(R) to a
hieve the Sells(HS, R) pre-
ondition.But then things get more interesting...
285

An example of partial-order planning
Start

At(JS), Sells(JS,G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)

At(HS), Sells(HS,R)

At(Home)

Buy(G)

Go(JS)

At this point it starts to get tri
ky...The At(HS) pre
ondition in Buy(R) is not a
hieved.
286

An example of partial-order planning
Start

At(JS), Sells(JS,G)

Finish

At(Home), Have(G), Have(R), Have(FA)

Sells(HS,R), At(HS)

Go(HS)

At(x)

¬At(x)
Go(JS)

Buy(G) Buy(R)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)At(Home)

The At(HS) pre
ondition is easy to a
hieve. But if we introdu
e a
ausallink from Start to Go(HS) then we risk invalidating the pre
ondition forGo(JS).

287

An example of partial-order planningA step that might invalidate (sometimes the word
lobber is employed) apreviously a
hieved pre
ondition is
alled a threat .
Threat

Promotion

Demotion

c

¬c

cc

¬c

¬c

A planner
an try to �x a threat by introdu
ing an ordering
onstraint.

288

An example of partial-order planningThe planner
ould ba
ktra
k and try to a
hieve the At(x) pre
onditionusing the existing Go(JS) step.

Start

At(JS), Sells(JS,G)

Go(JS)

Finish

Go(HS)
At(Home) At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)Buy(G)

¬At(JS)

At(JS)

At(Home), Have(G), Have(R), Have(FA)

Sells(HS,R), At(HS)

This involves a threat, but one that
an be �xed using promotion.

289

The algorithmSimplifying slightly to the
ase where there are no variables .Say we have a partially
ompleted plan and a set of the pre
onditions thathave yet to be a
hieved.� Sele
t a pre
ondition p that has not yet been a
hieved and is asso
iatedwith an a
tion B.� At ea
h stage the partially
omplete plan is expanded into a new
olle
tion of plans .� To expand a plan, we
an try to a
hieve p either by using an a
tionthat's already in the plan or by adding a new a
tion to the plan. Ineither
ase,
all the a
tion A.We then try to
onstru
t
onsistent plans where A a
hieves p.

290

The algorithmThis works as follows:� For ea
h possible way of a
hieving p:

– Add Start < A, A < Finish, A < B and the
ausal link A
p→ B to theplan.

– If the resulting plan is
onsistent we're done, otherwise generate allpossible ways of removing in
onsisten
ies by promotion or demo-tion and keep any resulting
onsistent plans .At this stage:� If you have no further pre
onditions that haven't been a
hieved thenany plan obtained is valid .
291

The algorithmBut how do we try to enfor
e
onsisten
y?When you attempt to a
hieve p using A:� Find all the existing
ausal links A ′ ¬p→ B ′ that are
lobbered by A.� For ea
h of those you
an try adding A < A ′ or B ′ < A to the plan.� Find all existing a
tions C in the plan that
lobber the new
ausal link

A
p→ B.� For ea
h of those you
an try adding C < A or B < C to the plan.� Generate every possible
ombination in this way and retain any
on-sistent plans that result.

292

Possible threatsWhat about dealing with variables?If at any stage an e�e
t ¬At(x) appears, is it a threat to At(JS)?Su
h an o

urren
e is
alled a possible threat and we
an deal with it byintrodu
ing inequality
onstraints : in this
ase x 6= JS.� Ea
h partially
omplete plan now has a set I of inequality
onstraintsasso
iated with it.� An inequality
onstraint has the form v 6= X where v is a variable and

X is a variable or a
onstant.� Whenever we try to make a substitution we
he
k I to make sure wewon't introdu
e a
on
i
t.If we would introdu
e a
on
i
t then we dis
ard the partially
ompletedplan as in
onsistent.
293

Arti�
ial Intelligen
e IDr Sean Holden

Notes on ma
hine learning using neural networks

Copyright

 Sean Holden 2002-2010.294

Did you heed the DIRE WARNING?At the beginning of the
ourse I suggested making sure you
an answerthe following two questions:1. Let

f(x1, . . . , xn) =

n∑

i=1

aix
2
iwhere the ai are
onstants. Compute ∂f/∂xj where 1 ≤ j ≤ n?Answer: As

f(x1, . . . , xn) = a1x
2
1 + · · · + ajx

2
j + · · · + anx2

nonly one term in the sum depends on xj, so all the other terms di�er-entiate to give 0 and
∂f

∂xj

= 2ajxj
295

Did you heed the DIRE WARNING?2. Let f(x1, . . . , xn) be a fun
tion. Now assume xi = gi(y1, . . . , ym) for ea
h
xi and some
olle
tion of fun
tions gi. Assuming all requirements fordi�erentiability and so on are met,
an you write down an expressionfor ∂f/∂yj where 1 ≤ j ≤ m?Answer: this is just the
hain rule for partial di�erentiation

∂f

∂yj

=

n∑

i=1

∂f

∂gi

∂gi

∂yj

296

Supervised learning with neural networksWe now look at how an agent might learn to solve a general problem byseeing examples .Aims :� To present an outline of supervised learning as part of AI.� To introdu
e mu
h of the notation and terminology used.� To introdu
e the
lassi
al per
eptron .� To introdu
e multilayer per
eptrons and the ba
kpropagation algo-rithm for training them.Reading : Russell and Norvig
hapter 20.
297

An exampleA
ommon sour
e of problems in AI is medi
al diagnosis .Imagine that we want to automate the diagnosis of an Embarrassing Disease(
all it D) by
onstru
ting a ma
hine:

0 otherwise1 if the patient su�ers from DMeasurements taken from thepatient: heart rate, blood pressure,presen
e of green spots et
. Ma
hine

Could we do this by expli
itly writing a program that examines the mea-surements and outputs a diagnosis?Experien
e suggests that this is unlikely.
298

An example,
ontinued...An alternative approa
h: ea
h
olle
tion of measurements
an be writtenas a ve
tor,

x
T = (x1 x2 · · · xn)where,

x1 = heart rate

x2 = blood pressure
x3 = 1 if the patient has green spots

0 otherwise... and so on

(Note : it's a
ommon
onvention that ve
tors are
olumn ve
tors by de-fault. This is why the above is written as a transpose .)

299

An example,
ontinued...A ve
tor of this kind
ontains all the measurements for a single patient andis
alled a feature ve
tor or instan
e .The measurements are attributes or features .Attributes or features generally appear as one of three basi
 types:� Continuous : xi ∈ [xmin, xmax] where xmin, xmax ∈ R.� Binary : xi ∈ {0, 1} or xi ∈ {−1, +1}.� Dis
rete : xi
an take one of a �nite number of values, say xi ∈ {X1, . . . , Xp}.

300

An example,
ontinued...Now imagine that we have a large
olle
tion of patient histories (m in total)and for ea
h of these we know whether or not the patient su�ered from D.� The ith patient history gives us an instan
e xi.� This
an be paired with a single bit|0 or 1|denoting whether or notthe ith patient su�ers from D. The resulting pair is
alled an exampleor a labelled example .� Colle
ting all the examples together we obtain a training sequen
e

s = ((x1, 0), (x2, 1), . . . , (xm, 0))

301

An example,
ontinued...In supervised ma
hine learning we aim to design a learning algorithmwhi
h takes s and produ
es a hypothesis h.
Learning Algorithms h

Intuitively, a hypothesis is something that lets us diagnose new patients.This is IMPORTANT : we want to diagnose patients that the system hasnever seen .The ability to do this su

essfully is
alled generalisation .

302

An example,
ontinued...In fa
t, a hypothesis is just a fun
tion that maps instan
es to labels .
x

Classi�er

h(x) LabelAttribute ve
tor

As h is a fun
tion it assigns a label to any x and not just the ones thatwere in the training sequen
e .What we mean by a label here depends on whether we're doing
lassi�
a-tion or regression .

303

Supervised learning:
lassi�
ationIn
lassi�
ation we're assigning x to one of a set {ω1, . . . , ωc} of c
lasses .For example, if x
ontains measurements taken from a patient then theremight be three
lasses:

ω1 = patient has disease

ω2 = patient doesn't have disease
ω3 = don't ask me buddy, I'm just a
omputer!The binary
ase above also �ts into this framework, and we'll often spe-
ialise to the
ase of two
lasses, denoted C1 and C2.

304

Supervised learning: regressionIn regression we're assigning x to a real number h(x) ∈ R.For example, if x
ontains measurements taken regarding today's weatherthen we might have

h(x) = estimate of amount of rainfall expe
ted tomorrowFor the two-
lass
lassi�
ation problem we will also refer to a situationsomewhat between the two, where

h(x) = Pr(x is in C1)and so we would typi
ally assign x to
lass C1 if h(x) > 1/2.

305

SummaryWe don't want to design h expli
itly.
Training sequen
e

h = L(s)

Labelh(x)

s

Learner
L

Classi�erAttribute ve
tor

x

So we use a learner L to infer it on the basis of a sequen
e s of trainingexamples .

306

Neural networksThere is generally a set H of hypotheses from whi
h L is allowed to sele
t
h

L(s) = h ∈ H
H is
alled the hypothesis spa
e .The learner
an output a hypothesis expli
itly or|as in the
ase of a neuralnetwork|it
an output a ve
tor

w
T =

(

w1 w2 · · · wW

)of weights whi
h in turn spe
ify h

h(x) = f(w;x)where w = L(s).

307

Types of learningThe form of ma
hine learning des
ribed is
alled supervised learning .This introdu
tion will
on
entrate on this kind of learning. In parti
ular,the literature also dis
usses:1. Unsupervised learning .2. Learning using membership queries and equivalen
e queries .3. Reinfor
ement learning .Some of this further material will be
overed in AI 2.
308

Some further examples� Spee
h re
ognition .� De
iding whether or not to give
redit .� Dete
ting
redit
ard fraud .� De
iding whether to buy or sell a sto
k option .� De
iding whether a tumour is benign .� Data mining : extra
ting interesting but hidden knowledge from ex-isting, large databases. For example, databases
ontaining �nan
ialtransa
tions or loan appli
ations .� De
iding whether driving
onditions are dangerous .� Automati
 driving . (See Pomerleau, 1989, in whi
h a
ar is driven for90 miles at 70 miles per hour, on a publi
 road with other
ars present,but with no assistan
e from humans.)
309

This is very similar to
urve �ttingThis pro
ess is in fa
t very similar to
urve �tting .Think of the pro
ess as follows:� Nature pi
ks an h ′ ∈ H but doesn't reveal it to us.� Nature then shows us a training sequen
e s where ea
h xi is labelled as
h ′(xi) + ǫi where ǫi is noise of some kind.Our job is to try to infer what h ′ is on the basis of s only .This is easy to visualise in one dimension: it's just �tting a
urve to somepoints .

310

Curve �ttingExample : if H is the set of all polynomials of degree 3 then nature mightpi
k

h ′(x) =
1

3
x3 −

3

2
x2 + 2x −

1

2

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

The line is dashed to emphasise the fa
t that we don't get to see it .

311

Curve �ttingWe
an now use h ′ to obtain a training sequen
e s in the manner suggested..

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

Here we have,

s
T = ((x1, y1), (x2, y2), . . . , (xm, ym))where ea
h xi and yi is a real number.

312

Curve �ttingWe'll use a learning algorithm L that operates in a reasonable-lookingway: it pi
ks an h ∈ H minimising the following quantity,
E =

m∑

i=1

(h(xi) − yi)
2

In other words

h = L(s) = argmin
h∈H

m∑

i=1

(h(xi) − yi)
2Why is this sensible?1. Ea
h term in the sum is 0 if h(xi) is exa
tly yi.2. Ea
h term in
reases as the di�eren
e between h(xi) and yi in
reases.3. We add the terms for all examples.
313

Curve �ttingIf we pi
k h using this method then we get:
0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

The
hosen h is
lose to the target h ′, even though it was
hosen usingonly a small number of noisy examples .It is not quite identi
al to the target
on
ept.However if we were given a new point x
′ and asked to guess the value h ′(x ′)then guessing h(x ′) might be expe
ted to do quite well.

314

Curve �ttingProblem : we don't know what H nature is using . What if the one we
hoose doesn't mat
h? We
an make our H `bigger' by de�ning it as
H = {h : h is a polynomial of degree at most 5}If we use the same learning algorithm then we get:

0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

The result in this
ase is similar to the previous one: h is again quite
loseto h ′, but not quite identi
al.
315

Curve �ttingSo what's the problem? Repeating the pro
ess with,
H = {h : h is a polynomial of degree at most 1}gives the following:

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

In e�e
t, we have made our H too `small'. It does not in fa
t
ontain anyhypothesis similar to h ′.
316

Curve �ttingSo we have to make H huge, right? WRONG!!! With
H = {h : h is a polynomial of degree at most 25}we get:

0.5 1 1.5 2 2.5 3

-0.4

-0.2

0.2

0.4

0.6

0.8

BEWARE!!! This is known as over�tting .
317

Curve �ttingAn experiment to gain some further insight : using
h ′(x) =

1

10
x10 −

1

12
x8 +

1

15
x6 +

1

3
x3 −

3

2
x2 + 2x −

1

2
.as the unknown underlying fun
tion.We
an look at how the degree of the polynomial the training algorithm
an output a�e
ts the generalisation ability of the resulting h.We use the same training algorithm, and we train using

H = {h : h is a polynomial of degree at most d}for values of d ranging from 1 to 30

318

Curve �tting� Ea
h time we obtain an h of a given degree|
all it hd|we assess itsquality using a further 100 inputs x
′
i generated at random and
al-
ulating

q(d) =
1

100

100∑

i=1

(h ′(x ′
i) − hd(x

′
i))

2

� As the values q(d) are found using inputs that are not ne
essarily in-
luded in the training sequen
e they measure generalisation .� To smooth out the e�e
ts of the random sele
tion of examples we repeatthis pro
ess 100 times and average the values q(d).

319

Curve �ttingHere is the result:

5 10 15 20 25 30
d

5

10

15

20

25

30

Log of average q

Clearly: we need to
hoose H sensibly if we want to obtain good generali-sation performan
e .
320

The per
eptronThe example just given illustrates mu
h of what we want to do. Howeverin pra
ti
e we deal with more than a single dimension .The simplest form of hypothesis used is the linear dis
riminant , alsoknown as the per
eptron . Here

h(w;x) = σ

(

w0 +

m∑

i=1

wixi

)

= σ (w0 + w1x1 + w2x2 + · · · + wnxn)So: we have a linear fun
tion modi�ed by the a
tivation fun
tion σ.The per
eptron's in
uen
e
ontinues to be felt in the re
ent and ongoingdevelopment of support ve
tor ma
hines .
321

The per
eptron a
tivation fun
tion IThere are three standard forms for the a
tivation fun
tion:1. Linear : for regression problems we often use
σ(z) = z2. Step: for two-
lass
lassi�
ation problems we often use

σ(z) =

{
C1 if z > 0

C2 otherwise.3. Sigmoid/Logisti
: for probabilisti

lassi�
ation we often usePr(x is in C1) = σ(z) =
1

1 + exp(−z)
.The step fun
tion is important but the algorithms involved are somewhatdi�erent to those we'll be seeing. We won't
onsider it further.The sigmoid/logisti
 fun
tion plays a major role in what follows.

322

The sigmoid/logisti
 fun
tion
−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The logistic function σ(z) = 1

1+exp(−z)

z

σ
(z

)

−10
−5

0
5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

Input x1

Logistic σ(z) applied to the output of a linear function

Input x2

P
r(
x

is
in

C
1
)

323

Gradient des
entA method for training a basi
 per
eptron works as follows. Assume we'redealing with a regression problem and using σ(z) = z.We de�ne a measure of error for a given
olle
tion of weights. For example
E(w) =

m∑

i=1

(yi − h(w;xi))
2

Modifying our notation slightly so that
x

T = (1 x1 x2 · · · xn)

w
T = (w0 w1 w2 · · · wn)lets us write

E(w) =

m∑

i=1

(yi − w
T
xi)

2

324

Gradient des
entWe want to minimise E(w).One way to approa
h this is to start with a random w0 and update it asfollows:

wt+1 = wt − η
∂E(w)

∂w

∣

∣

∣

∣

wtwhere

∂E(w)

∂w

=
(

∂E(w)

∂w0

∂E(w)

∂w1
· · · ∂E(w)

∂wn

)Tand η is some small positive number.The ve
tor

−
∂E(w)

∂wtells us the dire
tion of the steepest de
rease in E(w).

325

Gradient des
entWith

E(w) =

m∑

i=1

(yi − w
T
xi)

2we have

∂E(w)

∂wj

=
∂

∂wj

(

m∑

i=1

(yi − w
T
xi)

2

)

=

m∑

i=1

(

∂

∂wj

(yi − w
T
xi)

2

)

=

m∑

i=1

(

2(yi − w
T
xi)

∂

∂wj

(

−w
T
xi

)

)

= −x
(j)

i

m∑

i=1

2
(

yi − w
T
xi

)

where x
(j)

i is the jth element of xi.
326

Gradient des
entThe method therefore gives the algorithm

wt+1 = wt + 2η

m∑

i=1

(

yi − w
T
t xi

)

xiSome things to note:� In this
ase E(w) is paraboli
 and has a unique global minimum andno lo
al minima so this works well.� Gradient des
ent in some form is a very
ommon approa
h to this kindof problem.� We
an perform a similar
al
ulation for other a
tivation fun
tionsand for other de�nitions for E(w).� Su
h
al
ulations lead to di�erent algorithms .
327

Per
eptrons aren't very powerful: the parity problemThere are many problems a per
eptron
an't solve.
−1 0 1 2

−1

−0.5

0

0.5

1

1.5

2

x1

x
2

−1 0 1 2 −1

0

1

2

0

0.2

0.4

0.6

0.8

1

x2

x1

N
et

w
o
rk

o
u
tp

u
t

We need a network that
omputes more interesting fun
tions .

328

The multilayer per
eptronEa
h node in the network is itself a per
eptron:
aj zj

σ(aj)

w0

w1

w2

wn

...
Node j

z1

z2

zn

∑n

i=0 wizi

z0 = 1

� Weights wi
onne
t nodes together.� aj is the weighted sum or a
tivation for node j.� σ is the a
tivation fun
tion .� The output is zj = σ(aj).
329

The multilayer per
eptronReminder :We'll
ontinue to use the notation

z
T = (1 z1 z2 · · · zn)

w
T = (w0 w1 w2 · · · wn)So that

n∑

i=0

wizi = w0 +

n∑

i=1

wizi

= w
T
z

330

The multilayer per
eptronIn the general
ase we have a
ompletely unrestri
ted feedforward stru
-ture : Feature ve
tor x Node i Node j
wi→j Output y = h(w;x)

x1

x2

xn

...

Ea
h node is a per
eptron. No spe
i�
 layering is assumed.

wi→j
onne
ts node i to node j. w0 for node j is denoted w0→j.

331

Ba
kpropagationAs usual we have:� Instan
es x
T = (x1, . . . , xn).� A training sequen
e s = ((x1, y1), . . . , (xm, ym)).We also de�ne a measure of training error

E(w) = measure of the error of the network on swhere w is the ve
tor of all the weights in the network .Our aim is to �nd a set of weights that minimises E(w) using gradientdes
ent .

332

Ba
kpropagation: the general
aseThe
entral task is therefore to
al
ulate

∂E(w)

∂wTo do that we need to
al
ulate the individual quantities
∂E(w)

∂wi→jfor every weight wi→j in the network .Often E(w) is the sum of separate
omponents, one for ea
h example in s

E(w) =

m∑

p=1

Ep(w)in whi
h
ase

∂E(w)

∂w

=

m∑

p=1

∂Ep(w)

∂wWe
an therefore
onsider examples individually.
333

Ba
kpropagation: the general
asePla
e example p at the input and
al
ulate aj and zj for all nodes in
ludingthe output y. This is forward propagation .We have

∂Ep(w)

∂wi→j

=
∂Ep(w)

∂aj

∂aj

∂wi→jwhere aj =
∑

k wk→jzk.Here the sum is over all the nodes
onne
ted to node j. As
∂aj

∂wi→j

=
∂

∂wi→j

(

∑

k

wk→jzk

)

= ziwe
an write

∂Ep(w)

∂wi→j

= δjziwhere we've de�ned
δj =

∂Ep(w)

∂aj

334

Ba
kpropagation: the general
aseSo we now need to
al
ulate the values for δj...When j is the output node|that is, the one produ
ing the output y =

h(w;xp) of the network|this is easy as zj = y and
δj =

∂Ep(w)

∂aj

=
∂Ep(w)

∂y

∂y

∂aj

=
∂Ep(w)

∂y
σ ′(aj)using the fa
t that y = σ(aj).

335

Ba
kpropagation: the general
aseThe �rst term is in general easy to
al
ulate for a given E as the erroris generally just a measure of the distan
e between y and the label in thetraining sequen
e.Example: when

Ep(w) = (y − yp)
2we have

∂Ep(w)

∂y
= 2(y − yp)

= 2(h(w;xp) − yp)

336

Ba
kpropagation: the general
aseWhen j is not an output node we need something di�erent:
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We're interested in

δj =
∂Ep(w)

∂ajAltering aj
an a�e
t several other nodes k1, k2, . . . , kq ea
h of whi
h
anin turn a�e
t Ep(w).
337

Ba
kpropagation: the general
ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We have

δj =
∂Ep(w)

∂aj

=
∑

k∈{k1,k2,...,kq}

∂Ep(w)

∂ak

∂ak

∂aj

=
∑

k∈{k1,k2,...,kq}

δk

∂ak

∂ajwhere k1, k2, . . . , kq are the nodes to whi
h node j sends a
onne
tion.

338

Ba
kpropagation: the general
ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

Be
ause we know how to
ompute δj for the output node we
an workba
kwards
omputing further δ values.We will always know all the values δk for nodes ahead of where we are .Hen
e the term ba
kpropagation .
339

Ba
kpropagation: the general
ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

∂ak

∂aj

=
∂

∂aj

(

∑

i

wi→kσ(ai)

)

= wj→kσ
′(aj)and

δj =
∑

k∈{k1,k2,...,kq}

δkwj→kσ
′(aj) = σ ′(aj)

∑

k∈{k1,k2,...,kq}

δkwj→k

340

Ba
kpropagation: the general
aseSummary : to
al
ulate ∂Ep(w)

∂w

for the pth pattern:1. Forward propagation : apply xp and
al
ulate outputs et
 for all thenodes in the network .2. Ba
kpropagation 1 : for the output node
∂Ep(w)

∂wi→j

= ziδj = ziσ
′(aj)

∂Ep(w)

∂ywhere y = h(w;xp).3. Ba
kpropagation 2 : For other nodes
∂Ep(w)

∂wi→j

= ziσ
′(aj)

∑

k

δkwj→kwhere the δk were
al
ulated at an earlier step.
341

Ba
kpropagation: a spe
i�
 exampleHidden nodes re
eiveinputs from all features
Output node re
eivesinputs from all hiddennodes

y = h(w;x)......x2

x1

xn

For the output: σ(a) = a. For the hidden nodes σ(a) = 1
1+exp(−a)

.

342

Ba
kpropagation: a spe
i�
 exampleFor the output: σ(a) = a so σ ′(a) = 1.For the hidden nodes:

σ(a) =
1

1 + exp(−a)so

σ ′(a) = σ(a) [1 − σ(a)]We'll
ontinue using the same de�nition for the error
E(w) =

m∑

p=1

(yp − h(w;xp))
2

Ep(w) = (yp − h(w;xp))
2

343

Ba
kpropagation: a spe
i�
 exampleFor the output : the equation is

∂Ep(w)

∂wi→output = ziδoutput = ziσ
′(aoutput)∂Ep(w)

∂ywhere y = h(w;xp). So as

∂Ep(w)

∂y
=

∂

∂y

(

(yp − y)2
)

= 2(y − yp)

= 2 [h(w;xp) − yp]and σ ′(a) = 1 so

δoutput = 2 [h(w;xp) − yp]and

∂Ep(w)

∂wi→output = 2zi(h(w;xp) − yp)
344

Ba
kpropagation: a spe
i�
 exampleFor the hidden nodes : the equation is

∂Ep(w)

∂wi→j

= ziσ
′(aj)

∑

k

δkwj→kHowever there is only one output so

∂Ep(w)

∂wi→j

= ziσ(aj) [1 − σ(aj)] δoutputwj→outputand we know that

δoutput = 2 [h(w;xp) − yp]so

∂Ep(w)

∂wi→j

= 2ziσ(aj) [1 − σ(aj)] [h(w;xp) − yp]wj→output

= 2xizj(1 − zj) [h(w;xp) − yp] wj→output

345

Putting it all togetherWe
an then use the derivatives in one of two basi
 ways:Bat
h : (as des
ribed previously)

∂E(w)

∂w

=

m∑

p=1

∂Ep(w)

∂wthen

wt+1 = wt − η
∂E(w)

∂w

∣

∣

∣

∣

wtSequential : using just one pattern at on
e
wt+1 = wt − η

∂Ep(w)

∂w

∣

∣

∣

∣

wtsele
ting patterns in sequen
e or at random .
346

Example: the parity problem revisitedAs an example we show the result of training a network with:� Two inputs.� One output.� One hidden layer
ontaining 5 units.� η = 0.01.� All other details as above.The problem is the parity problem. There are 40 noisy examples.The sequential approa
h is used, with 1000 repetitions through the entiretraining sequen
e.

347

Example: the parity problem revisited
−1 0 1 2

−1

−0.5

0

0.5

1

1.5

2
Before training

x1

x
2

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2
After training

x1

x
2

348

Example: the parity problem revisited
−1

0
1

2

−1
0

1
2
0

0.5

1

x1

Before training

x2

N
et

w
o
rk

o
u
tp

u
t

−1
0

1
2 −1

0

1

2
0

0.5

1

x2

After training

x1

N
et

w
o
rk

o
u
tp

u
t

349

Example: the parity problem revisited
0 100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4

5

6

7

8

9

10
Error during training

350

