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Introdu
tion: what's AI for?What is the purpose of Arti�
ial Intelligen
e (AI)?If you're a philosopher or a psy
hologist then:� To understand intelligen
e .� To understand ourselves .However, we're neither|we're s
ientists/engineers, so while we might havesome interest in su
h pursuits...
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Introdu
tion: what's AI for?From our perspe
tive:� To understand why our brain is small and (arguably) slow, but in-
redibly good at some tasks|we want to understand a spe
i�
 form of
omputation .� To 
onstru
t intelligent systems.� To make and sell 
ool stu�.This view seems to be the more su

essful .AI is entering our lives almost without us being aware of it.
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Introdu
tion: now is a fantasti
 time to investigate AIIn many ways this is a young �eld, having only really got under way in1956 with the Dartmouth Conferen
e .

www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html� This means we 
an a
tually do things.� Also, we know what we're trying to do is possible .Philosophy has addressed similar problems for at least 2000 years.� Can we do AI? Should we do AI?� Is AI impossible? (Note: I didn't write possible here, for a good rea-son...)Arguably, philosophy has had relatively little su

ess.
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Aside I: philosophy (428 B.C. to present)� So
rates wanted an algorithm (!) for \piety". The rules governingrational thought. Syllogisms .� Me
hani
al reasoning : Ramon Lull's 
on
ept wheels (approx. 1315).Further attempts at me
hani
al 
al
ulators.� Mind as a physi
al system : Rene Des
artes (1596-1650). Dualism .� The opposing position of materialism : Wilhelm Leibnitz (1646-1716).� An intermediate position: mind is physi
al but unknowable .� Where does knowledge 
ome from?� Fran
is Ba
on (1561-1626): empiri
ism . Leading to John Lo
ke (1632-1704): \Nothing is in the understanding, whi
h was not �rst in thesenses".� David Hume (1711-1776). Indu
tion : we obtain rules by repeated ex-posure. Further developed by Bertrand Russel (1872-1970) and in the
on�rmation theory of Carnap and Hempel.
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Aside I: philosophy (428 B.C. to present)Finally: what is the 
onne
tion between knowledge and a
tion? How area
tions justi�ed?Aristotle: don't 
on
entrate on the end but the means .If to a
hieve the end you need to a
hieve something intermediate, 
onsiderhow to a
hieve that, and so on.This approa
h was implemented in Newell and Simon's 1957General Prob-lem Solver (GPS).
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Further readingWhy do people like to argue that AI is impossible?Why do people dislike the idea that humanity might not be spe
ial .An ex
ellent arti
le on why this view is mu
h more problemati
 than itmight seem is:\Why people think 
omputers 
an't," Marvin Minsky. AI Magazine,volume 3 number 4, 1982.
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Introdu
tion: what's happened sin
e 1956?What's made the di�eren
e? We have a huge advantage in having rea
hed apoint where te
hnology has matured suÆ
iently to allow us to build things .� Per
eption (vision, spee
h pro
essing...)� Logi
al reasoning (prolog, expert systems, CYC...)� Playing games (
hess, ba
kgammon, go...)� Diagnosis of illness (in various 
ontexts...)� Theorem proving (Robbin's 
onje
ture...)� Literature and musi
 (automated writing and 
omposition...)� And many more...The simple ability to try things out has led to huge advan
es in a relativelyshort time. So: don't believe the 
riti
s...
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Aside II: 
omputer engineering (1940 to present)To have AI, you need a means of implementing the intelligen
e. Com-puters are (at present) the only devi
es in the ra
e. (Although quantum
omputation is looking interesting...)AI has had a major e�e
t on 
omputer s
ien
e:� Time sharing� Intera
tive interpreters� Linked lists� Storage management� Some fundamental ideas in obje
t-oriented programming� and so on...When AI has a su

ess, the ideas in question tend to stop being 
alled AI .
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The nature of the pursuitWhat is AI? This is not ne
essarily a straightforward question.It depends on who you ask...We 
an �nd many de�nitions and a rough 
ategorisation 
an be madedepending on whether we are interested in:� The way in whi
h a system a
ts or the way in whi
h it thinks .� Whether we want it to do this in a human way or a rational way.Here, the word rational has a spe
ial meaning: it means doing the 
orre
tthing in given 
ir
umstan
es .
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A
ting like a humanWhat is AI, version one: a
ting like a humanAlan Turing proposed what is now known as the Turing Test .� A human judge is allowed to intera
t with an AI program via a terminal.� This is the only method of intera
tion.� If the judge 
an't de
ide whether the intera
tion is produ
ed by a ma-
hine or another human then the program passes the test.In the unrestri
ted Turing test the AI program may also have a 
ameraatta
hed, so that obje
ts 
an be shown to it, and so on.
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A
ting like a humanThe Turing test is informative, and (very!) hard to pass.� It requires many abilities that seem ne
essary for AI, su
h as learning.BUT : a human 
hild would probably not pass the test.� Sometimes an AI system needs human-like a
ting abilities|for exampleexpert systems often have to produ
e explanations|but not always .See the Loebner Prize in Arti�
ial Intelligen
e :
www.loebner.net/Prizef/loebner-prize.html
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Thinking like a humanWhat is AI, version two: thinking like a humanThere is always the possibility that a ma
hine a
ting like a human doesnot a
tually think . The 
ognitive modelling approa
h to AI has tried to:� Dedu
e how humans think|for example by introspe
tion or psy
ho-logi
al experiments .� Copy the pro
ess by mimi
king it within a program.An early example of this approa
h is the General Problem Solver pro-du
ed by Newell and Simon in 1957. They were 
on
erned with whetheror not the program reasoned in the same manner that a human did.Computer S
ien
e + Psy
hology = Cognitive S
ien
e
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Aside III: psy
hology (1879 to present)� Begins with the study of the human visual system. Hermann vonHelmholtz (1821-1894).� The �rst experimental psy
hology founded by Wilhelm Wundt (1832-1920).

– The lab 
ondu
ted 
areful, 
ontrolled experiments on human sub-je
ts.

– The idea was for the subje
t to perform some task and introspe
tabout their thought pro
esses.Other labs followed this lead. BUT: a strange|and fatal|e�e
t ap-peared.For ea
h lab, the introspe
tions of the subje
ts turned out to 
onformto the preferred theories of the lab.
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Aside III: psy
hology (1879 to present)The main response to this e�e
t was behaviourism .Watson (1878-1958)Thorndike (1874-1949).� They regarded eviden
e based on introspe
tion as fundamentally unre-liable, so they simply reje
ted all theories based on any form of mentalpro
ess.� They 
onsidered only obje
tive measures of stimulus and response .They learnt a LOT of interesting things about rats and pigeons!The more sophisti
ated view of the brain as an information pro
ess-ing devi
e|the view of 
ognitive psy
hology|was steamrollered by be-haviourism until Craik's The Nature of Explanation (1943).The idea that 
on
epts su
h as reasoning, beliefs, goals et
 are importantis re-stated.Criti
ally: the system 
ontains a model of the world and of the way itsa
tions a�e
t the world. 15



Aside III: psy
hology (1879 to present)stimuli 
onverted to internal representation
↓
ognitive pro
esses manipulate internal representations
↓internal representations 
onverted into a
tions
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Thinking rationally: the \laws of thought"What is AI, version three: thinking rationallyThe idea that intelligen
e redu
es to rational thinking is a very old one,going at least as far ba
k as Aristotle as we've already seen.The general �eld of logi
 made major progress in the 19th and 20th 
en-turies, allowing it to be applied to AI.� We 
an represent and reason about many di�erent things.� The logi
ist approa
h to AI.This is a very appealing idea. However...
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Thinking rationally: the \laws of thought"Unfortunately there are obsta
les to any naive appli
ation of logi
. It ishard to:� Represent 
ommonsense knowledge .� Deal with un
ertainty .� Reason without being tripped up by 
omputational 
omplexity .These will be re
urring themes in this 
ourse, and in AI II.Logi
 alone also falls short be
ause:� Sometimes it's ne
essary to a
t when there's no logi
al 
ourse of a
tion.� Sometimes inferen
e is unne
essary (re
ex a
tions).
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Further readingThe Fifth Generation Computer System proje
t has most 
ertainly earnedthe badge of \heroi
 failure".It is an example of how mu
h harder the logi
ist approa
h is than you mightthink:\Overview of the Fifth Generation Computer Proje
t," TohruMoto-oka. ACM SIGARCH Computer Ar
hite
ture News, volume 11,number 3, 1983.
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Aside III: mathemati
s (800 to present)� To be s
ienti�
 about AI we need 
omputation, logi
, and probability.� Aristotle knew about logi
, but as a philosophi
al rather than mathe-mati
al pursuit.� George Boole (1815-1864) made it into mathemati
s.� Gottlob Frege (1848-1925) founded all the essential parts of �rst-orderlogi
.� Alfred Tarski (1902-1983). The theory of referen
e: what is the rela-tionship between real and logi
al obje
ts.� Computation begins with algorithms : Arab mathemati
ian al-Khowarazmi .� The limits of algorithms: David Hilbert (1862-1943). The ents
hei-dungsproblem .� Solved by Turing, who (with others) formulated pre
isely what an al-gorithm is . Intra
tability .� Kurt Godel (1906-1978): theorems on 
ompleteness and in
ompleteness.
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Aside III: mathemati
s (800 to present)Probability:� Gerolamo Cardano (1501-1576): gambling out
omes.� Further developed by Fermat, Pas
al, Bernoulli, Lapla
e...� Bernoulli (1654-1705): probability as a measure of degree of belief .� Bayes (1702-1761): updating a degree of belief when new eviden
e isavailable.� Probability forms the basis for the modern treatment of un
ertainty .� De
ision theory . Von Neumann and Morgenstern (1944): 
ombineun
ertainty with a
tion.
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A
ting rationallyWhat is AI, version four: a
ting rationallyBasing AI on the idea of a
ting rationally means attempting to designsystems that a
t to a
hieve their goals given their beliefs .What might be needed?� To make good de
isions in many di�erent situations we need to rep-resent and reason with knowledge .� We need to deal with natural language .� We need to be able to plan .� We need vision .� We need learning .And so on, so all the usual AI bases seem to be 
overed.
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A
ting rationallyThe idea of a
ting rationally has several advantages:� The 
on
epts of a
tion , goal and belief 
an be de�ned pre
isely makingthe �eld suitable for s
ienti�
 study.This is important: if we try to model AI systems on humans, we 
an't evenpropose any sensible de�nition of what a belief or goal is .In addition, humans are a system that is still 
hanging and adapted to avery spe
i�
 environment.Rational a
ting does not have these limitations.
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A
ting rationallyRational a
ting also seems to in
lude two of the alternative approa
hes:� All of the things needed to pass a Turing test seem ne
essary for rationala
ting, so this seems preferable to the a
ting like a human approa
h.� The logi
ist approa
h 
an 
learly form part of what's required to a
trationally, so this seems preferable to the thinking rationally approa
halone.As a result, we will fo
us on the idea of designing systems that a
t ratio-nally .
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Other 
ontributionsLinguisti
s (1957 to present)� Skinner's Verbal Behaviour (1951). The approa
h to language devel-oped by the behaviourists.� Noam Chomsky showed it 
ould not explain understanding or produ
-tion of senten
es not previously heard .� Chomsky's own theory|based on synta
ti
 models|did not su�er inthis way. It was also formal, and 
ould be programmed.This overall problem is 
onsiderably harder than was realised in 1957.It requires knowledge representation, and the �elds have informed one an-other.A 
lassi
 example: \Time 
ies like an arrow" and \Fruit 
ies like abanana"
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Other 
ontributionsE
onomi
s (1776 to present)� How should I a
t, perhaps in the presen
e of adversaries, to obtainsomething ni
e in the future?� When we say \something ni
e," how 
an the \degree of ni
eness" bemeasured?� This leads to the idea of utility as a mathemati
al 
on
ept. Walras(1834-1910), Ramsey (1931) and Von Neumann and Morgenstern (1944).� Large e
onomies: Probability theory + utility theory = de
ision theory� Game theory is more appli
able to small e
onomies. Sometimes it'srational to a
t (apparently) randomly.� Future gains resulting from a sequen
e of a
tions. Operations resear
h.Bellman (1957): Markov de
ision pro
esses .� Unfortunately it is 
omputationally hard to a
t rationally.� Herbert Simon (1916-2001): Nobel Prize for E
onomi
s. Satis�
ing isa better way of des
ribing the a
tual behaviour of humans.26



Other 
ontributionsNeuros
ien
e (1861 to present)Nasty bumps on the head
↓We know that the brain has something to do with 
ons
iousnessExperiments by Paul Bro
a (1824-1880) led to the understanding that lo-
alised regions have di�erent tasks.Around that time the presen
e of neurons was understood but there werestill major problems.For example, even now there is no 
omplete understanding of how ourbrains store a single memory.More re
ently: EEG, MRI and the study of single 
ells.
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Other 
ontributionsCyberneti
s and 
ontrol theory (1948 to present)� Ktesibios of Alexandria (250 BC). First ma
hine able to modify its ownbehaviour. (Water 
lo
k 
ontaining a me
hanism for 
ontrolling the 
owof water.)� James Watt (1736-1819): governor for steam engines.� Cornelius Drebbel (1572-1633): thermostat.� Control theory as a mathemati
al subje
t: Norbert Wiener (1894-1964)and others.� Interesting behaviour 
aused by a 
ontrol system minimising error =di�eren
e between goal and 
urrent situation .� More re
ently: sto
hasti
 optimal 
ontrol . Maximisation over time ofan obje
tive fun
tion .� Conne
ted dire
tly to AI, but the latter moves away from linear , 
on-tinuous s
enarios.
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What's in this 
ourse?This 
ourse introdu
es some of the fundamental areas that make up AI:� An outline of the ba
kground to the subje
t.� An introdu
tion to the idea of an agent .� Solving problems in an intelligent way by sear
h .� Solving problems represented as 
onstraint satisfa
tion problems.� Playing games .� Knowledge representation, and reasoning .� Planning .� Learning using neural networks .Stri
tly speaking, AI I 
overs what is often referred to as \Good Old-Fashioned AI".The nature of the subje
t 
hanged a great deal when the importan
e of un-
ertainty be
ame fully appre
iated. AI II 
overs this more re
ent material.29



What's not in this 
ourse?� The 
lassi
al AI programming languages prolog and lisp.� A great deal of all the areas on the last slide!� Per
eption: vision , hearing and spee
h pro
essing , tou
h (for
e sens-ing, knowing where your limbs are, knowing when something is bad),taste , smell .� Natural language pro
essing.� A
ting on and in the world: roboti
s (e�e
tors, lo
omotion, manipula-tion), 
ontrol engineering , me
hani
al engineering , navigation .� Areas su
h as geneti
 algorithms/programming , swarm intelligen
e ,arti�
ial immune systems and fuzzy logi
, for reasons that I will ex-pand upon during the le
tures.� Un
ertainty and mu
h further probabilisti
 material. (You'll have towait until next year.)
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Text bookThe 
ourse is based on the relevant parts of:Arti�
ial Intelligen
e: A Modern Approa
h , Se
ond Edition (2003).Stuart Russell and Peter Norvig, Prenti
e Hall International Editions.NOTE: the 3rd edition has re
ently be
ome available. This is also �ne.
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Interesting things on the webA few interesting web starting points:The Honda Asimo robot: world.honda.com/ASIMOAI at Nasa Ames: www.nasa.gov/centers/ames/research/exploringtheuniverse/spiffy.htmlDARPAGrand Challenge: ai.stanford.edu/∼dstavens/aaai06/montemerlo etal aaai06.pdf2007 DARPA Urban Challenge: cs.stanford.edu/group/roadrunnerThe Cy
 proje
t: www.cyc.comHuman-like robots: www.ai.mit.edu/projects/humanoid-robotics-groupSony robots: support.sony-europe.com/aiboNEC \PaPeRo": www.nec.co.jp/products/robot/en
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PrerequisitesThe prerequisites for the 
ourse are: �rst order logi
, some algorithms anddata stru
tures, dis
rete and 
ontinuous mathemati
s, basi
 
omputational
omplexity.DIRE WARNING:In the le
tures on ma
hine learning I will be talking about neural net-works .This means you will need to be able to di�erentiate and also handle ve
torsand matri
es .If you've forgotten how to do this you WILL get lost|I guarantee it!!!
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PrerequisitesSelf test:1. Let

f(x1, . . . , xn) =

n∑

i=1

aix
2
iwhere the ai are 
onstants. Can you 
ompute ∂f/∂xj where 1 ≤ j ≤ n?2. Let f(x1, . . . , xn) be a fun
tion. Now assume xi = gi(y1, . . . , ym) for ea
h

xi and some 
olle
tion of fun
tions gi. Assuming all requirements fordi�erentiability and so on are met, 
an you write down an expressionfor ∂f/∂yj where 1 ≤ j ≤ m?If the answer to either of these questions is \no" then it's time for somerevision. (You have about three weeks noti
e, so I'll assume you know it!)
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AgentsThere are many di�erent de�nitions for the term agent within AI.Allow me to introdu
e EVIL ROBOT.
ENVIRONMENT

A
t
SenseGLORIOUS LEADER!!!!DR HOLDEN WILL BE OURMUST ENSLAVE EARTH!!!

We will use the following simple de�nition: an agent is any devi
e that
an sense and a
t upon its environment .
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AgentsThis de�nition 
an be very widely applied: to humans, robots, pie
es ofsoftware, and so on.We are taking quite an applied perspe
tive. We want to make thingsrather than 
opy humans , so to be s
ienti�
 there are some issues to beaddressed:� How 
an we judge an agent's performan
e?� How 
an an agent's environment a�e
t its design?� Are there sensible ways in whi
h to think about the stru
ture of anagent?Re
all that we are interested in devi
es that a
t rationally , where `rational'means doing the 
orre
t thing under given 
ir
umstan
es .Reading: Russell and Norvig, 
hapter 2.
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Measuring performan
eHow 
an we judge an agent's performan
e? Any measure of performan
eis likely to be problem-spe
i�
.Example: For a 
hess playing agent, we might use its rating.Example: For a mail-�ltering agent, we might devise a measure of howwell it blo
ks spam, but allows interesting email to be read.Example: For a 
ar driving agent the measure needs 
onsiderable sophis-ti
ation: we need to take a

ount of 
omfort, journey time, safety et
.So: the 
hoi
e of a performan
e measure is itself worthy of 
areful 
onsid-eration.

38



Measuring performan
eWe're usually interested in expe
ted, long-term performan
e .� Expe
ted performan
e be
ause usually agents are not omnis
ient|they don't infallibly know the out
ome of their a
tions.� It is rational for you to enter this le
ture theatre even if the roof fallsin today.An agent 
apable of dete
ting and prote
ting itself from a falling roof mightbe more su

essful than you, but not more rational .� Long-term performan
e be
ause it tends to lead to better approxima-tions to what we'd 
onsider rational behaviour.� We probably don't want our 
ar driving agent to be outstandinglysmooth and safe for most of the time, but have episodes of drivingthrough the lo
al orphanage at 150 mph.
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EnvironmentsHow 
an an agent's environment a�e
t its design? Example: the environ-ment for a 
hess program is vastly di�erent to that for an autonomousdeep-spa
e vehi
le . Some 
ommon attributes of an environment have a
onsiderable in
uen
e on agent design.� A

essible/ina

essible: do per
epts tell you everything you need toknow about the world?� Deterministi
/non-deterministi
: does the future depend predi
tablyon the present and your a
tions?� Episodi
/non-episodi
 is the agent run in independent episodes.� Stati
/dynami
: 
an the world 
hange while the agent is de
iding whatto do?� Dis
rete/
ontinuous: an environment is dis
rete if the sets of allowableper
epts and a
tions are �nite.
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EnvironmentsAll of this assumes there is only one agent.When multiple agents are involved we need to 
onsider:� Whether the situation is 
ompetitive or 
ooperative .� Whether 
ommuni
ation required?An example of multiple agents:news.bb
.
o.uk/1/hi/te
hnology/3486335.stm
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Basi
 stru
tures for intelligent agentsAre there sensible ways in whi
h to think about the stru
ture of an agent?Again, this is likely to be problem-spe
i�
, although perhaps to a lesserextent.So far, an agent is based on per
epts, a
tions and goals.Example: Air
raft piloting agent.Per
epts: sensor information regarding height, speed, engines et
, audioand video inputs, and so on.A
tions: manipulation of the air
raft's 
ontrols.Also, perhaps talking to the passengers et
.Goals: get to the ne
essary destination as qui
kly as possible with minimaluse of fuel, without 
rashing et
.
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Programming agentsA basi
 agent 
an be thought of as working on a straightforward underlyingpro
ess:� Gather per
eptions .� Update working memory to take a

ount of them.� On the basis of what's in the working memory, 
hoose an a
tion toperform.� Update the working memory to take a

ount of this a
tion.� Do the 
hosen a
tion.Obviously, this hides a great deal of 
omplexity.Also, it ignores subtleties su
h as the fa
t that a per
ept might arrive whilean a
tion is being 
hosen.
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Programming agentsWe'll initially look at two hopelessly limited approa
hes, be
ause they dosuggest a 
ouple of important points.Hopelessly limited approa
h number 1: use a table to map per
ept se-quen
es to a
tions. This 
an qui
kly be reje
ted.� The table will be huge for any problem of interest. About 35100 entriesfor a 
hess player.� We don't usually know how to �ll the table.� Even if we allow table entries to be learned it will take too long.� The system would have no autonomy .We 
an attempt to over
ome these problems by allowing agents to reason .Autonomy is an interesting issue though...
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AutonomyIf an agent's behaviour depends in some manner on its own experien
e ofthe world via its per
ept sequen
e, we say it is autonomous .� An agent using only built-in knowledge would seem not to be su

ess-ful at AI in any meaningful sense: its behaviour is prede�ned by itsdesigner.� On the other hand some built-in knowledge seems essential, even tohumans.Not all animals are entirely autonomous.For example: dung beetles.
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Re
ex agentsHopelessly limited approa
h number 2: try extra
ting pertinent informa-tion and using rules based on this.Condition-a
tion rules: if a 
ertain state is observed then perform somea
tionSome points immediately present themselves regarding why re
ex agentsare unsatisfa
tory:� We 
an't always de
ide what to do based on the 
urrent per
ept .� However storing all past per
epts might be undesirable (for examplerequiring too mu
h memory) or just unne
essary.� Re
ex agents don't maintain a des
ription of the state of their envi-ronment ...� ...however this seems ne
essary for any meaningful AI. (Consider au-tomating the task of driving.)This is all the more important as usually per
epts don't tell you everythingabout the state . 46



Keeping tra
k of the environmentIt seems reasonable that an agent should maintain:� A des
ription of the 
urrent state of its environment .� Knowledge of how the environment 
hanges independently of the agent .� Knowledge of how the agent's a
tions a�e
t its environment .This requires us to do knowledge representation and reasoning .
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Goal-based agentsIt seems reasonable that an agent should 
hoose a rational 
ourse of a
tiondepending on its goal .� If an agent has knowledge of how its a
tions a�e
t the environment,then it has a basis for 
hoosing a
tions to a
hieve goals.� To obtain a sequen
e of a
tions we need to be able to sear
h and toplan .This is fundamentally di�erent from a re
ex agent.For example: by 
hanging the goal you 
an 
hange the entire behaviour.
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Goal-based agentsWe now have a basi
 design that looks something like this:

Des
ription of Goal
Infer

UpdatePer
ept
Des
ription: 
urrent environmentDes
ription: e�e
t of a
tionsDes
ription: behaviour of environment

Update

A
tion/A
tion sequen
e
49



Utility-based agentsIntrodu
ing goals is still not the end of the story.There may be many sequen
es of a
tions that lead to a given goal, andsome may be preferable to others .A utility fun
tion maps a state to a number representing the desirabilityof that state.� We 
an trade-o� 
on
i
ting goals , for example speed and safety.� If an agent has several goals and is not 
ertain of a
hieving any of them,then it 
an trade-o� likelihood of rea
hing a goal against the desirabilityof getting there.Maximising expe
ted utility over time forms a fundamental model for thedesign of agents. However we don't get as far as that until AI II.
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Learning agentsIt seems reasonable that an agent should learn from experien
e .

Learner Des
ription of GoalFeedba
k

Infer
UpdatePer
ept

Des
ription: 
urrent environmentDes
ription: e�e
t of a
tionsDes
ription: behaviour of environment
Update

A
tion/A
tion sequen
e

Update
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Learning agentsThis requires two additions:� The learner needs some form of feedba
k on the agent's performan
e.This 
an 
ome in several di�erent forms.� In general, we also need a means of generating new behaviour in orderto �nd out about the world.This in turn implies a trade-o�: should the agent spend time exploitingwhat it's learned so far, or exploring the environment on the basis that itmight learn something really useful?
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What have we learned? (No pun intended...)The 
ru
ial things that should be taken away from this le
ture are:� The nature of an agent depends on its environment and performan
emeasure .� We're usually interested in expe
ted, long-term performan
e .� Autonomy requires that an agent in some way behaves depending onits experien
e of the world .� There is a natural basi
 stru
ture on whi
h agent design 
an be based.� Consideration of that stru
ture leads naturally to the basi
 areas 
overedin this 
ourse.Those basi
 areas are: knowledge representation and reasoning, sear
h,planning and learning . Oh, and �nally, we've learned NOT TO MESS WITH EVIL ROBOT... he's a VERY BADROBOT!
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Problem solving by sear
hWe begin with what is perhaps the simplest 
olle
tion of AI te
hniques:those allowing an agent existing within an environment to sear
h for asequen
e of a
tions that a
hieves a goal .The algorithms 
an, 
rudely, be divided into two kinds: uninformed andinformed .Not surprisingly, the latter are more e�e
tive and so we'll look at those inmore detail.Reading: Russell and Norvig, 
hapters 3 and 4.
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Problem solving by sear
hAs with any area of 
omputer s
ien
e, some degree of abstra
tion is ne
-essary when designing AI algorithms.Sear
h algorithms apply to a parti
ularly simple 
lass of problems|weneed to identify:� An initial state : what is the agent's situation to start with?� A set of a
tions : these are modelled by spe
ifying what state will resulton performing any available a
tion from any known state.� A goal test : we 
an tell whether or not the state we're in 
orrespondsto a goal.Note that the goal may be des
ribed by a property rather than an expli
itstate or set of states, for example 
he
kmate .
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Problem solving by sear
hA simple example: the 8-puzzle .
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(A good way of keeping kids quiet...)
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Problem solving by sear
hStart state: a randomly-sele
ted 
on�guration of the numbers 1 to 8 ar-ranged on a 3 × 3 square grid, with one square empty.Goal state: the numbers in as
ending order with the bottom right squareempty.A
tions: left, right, up, down. We 
an move any square adja
ent to theempty square into the empty square. (It's not always possible to 
hoosefrom all four a
tions.)Path 
ost: 1 per move.The 8-puzzle is very simple. However general sliding blo
k puzzles are agood test 
ase. The general problem is NP-
omplete. The 5×5 version hasabout 1025 states, and a random instan
e is in fa
t quite a 
hallenge.
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Problem solving by basi
 sear
hEVIL ROBOT has found himself in an unfamiliar building:
ODIN

Evil Robot Teleport

He wants the ODIN (Oblivion Devi
e of Indes
ribable Nastiness).
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Problem solving by sear
hStart state: EVIL ROBOT is in the top left 
orner.Goal state: EVIL ROBOT is in the area 
ontaining the ODIN.A
tions: left, right, up, down. We 
an move as long as there's no wall inthe way. (Again, it's not always possible to 
hoose from all four a
tions.)Path 
ost: 1 per move. If you step on a teleport then you move to theother one with a 
ost of 0.
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Problem solving by sear
hProblems of this kind are very simple, but a surprisingly large number ofappli
ations have appeared:� route-�nding/tour-�nding� layout of VLSI systems� navigation systems for robots� sequen
ing for automati
 assembly� sear
hing the internet� design of proteinsand many others...Problems of this kind 
ontinue to form an a
tive resear
h area.
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Problem solving by sear
hIt's worth emphasising that a lot of abstra
tion has taken pla
e here:� Can the agent know it's 
urrent state in full?� Can the agent know the out
ome of its a
tions in full?Single-state problems: the state is always known pre
isely, as is the e�e
tof any a
tion. There is therefore a single out
ome state.Multiple-state problems: The e�e
ts of a
tions are known, but the state
an not reliably be inferred, or the state is known but not the e�e
ts of thea
tions.
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Problem solving by sear
hSingle and multiple state problems 
an be handled using these sear
h te
h-niques.In the latter, we must reason about the set of states that we 
ould be in:� In this 
ase we have an initial set of states.� Ea
h a
tion leads to a further set of states.� The goal is a set of states all of whi
h are valid goals.
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Problem solving by sear
hContingen
y problemsIn some situations it is ne
essary to perform sensing while the a
tions arebeing 
arried out in order to guarantee rea
hing a goal.(It's good to keep your eyes open while you 
ross the road!)This kind of problem requires planning and will be dealt with later.Sometimes it is a
tively bene�
ial to a
t and see what happens, rather thanto try to 
onsider all possibilities in advan
e in order to obtain a perfe
tplan.
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Problem solving by sear
hExploration problemsSometimes you have no knowledge of the e�e
t that your a
tions have onthe environment.Babies in parti
ular have this experien
e.This means you need to experiment to �nd out what happens when youa
t.This kind of problem requires reinfor
ement learning for a solution. Wewill not 
over reinfor
ement learning in this 
ourse. (Although it is in AIII.)
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Sear
h treesThe basi
 idea should be familiar from your (
urrent) Algorithms I 
ourse,and also from Foundations of Computer S
ien
e .� We build a tree with the start state as root node.� A node is expanded by applying a
tions to it to generate new states.� A path is a sequen
e of a
tions that lead from state to state.� The aim is to �nd a goal state within the tree.� A solution is a path beginning with the initial state and ending in agoal state.We may also be interested in the path 
ost as some solutions might bebetter than others.Path 
ost will be denoted by p.
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Sear
h trees versus sear
h graphsWe need to make an important distin
tion between sear
h trees and sear
hgraphs . For the time being we assume that it's a tree as opposed to a graphthat we're dealing with.
as opposed to

(There is a good reason for this, whi
h we'll get to in a moment...)In a tree only one path 
an lead to a given state. In a graph a state 
anbe rea
hed via possibly multiple paths .
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Sear
h treesBasi
 approa
h:� Test the root to see if it is a goal.� If not then expand it by generating all possible su

essor states a

ord-ing to the available a
tions.� If there is only one out
ome state then move to it. Otherwise 
hooseone of the out
omes and expand it.� The way in whi
h this 
hoi
e is made de�nes a sear
h strategy .� Repeat until you �nd a goal.The 
olle
tion of states generated but not yet expanded is 
alled the fringeor frontier and is generally stored as a queue .
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The basi
 tree-sear
h algorithmIn pseudo-
ode, the algorithm looks like this:

function treeSearch {

fringe = queue containing only the start state;

while() {

if (empty(fringe))

return fail;

node = head(fringe);

if (goal(node))

return solution(node);

fringe = insert(expand(node), fringe);

}

}The sear
h strategy is set by using a priority queue .The de�nition of priority then sets the way in whi
h the tree is sear
hed.
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The basi
 tree-sear
h algorithm
Not yet investigated

In the fringe, but not expanded

Expanded
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The basi
 tree-sear
h algorithmWe 
an immediately de�ne some familiar tree sear
h algorithms:� New nodes are added to the head of the queue . This is depth-�rstsear
h .� New nodes are added to the tail of the queue . This is breadth-�rstsear
h .We will not dwell on these, as they are both 
ompletely hopeless in pra
-ti
e.Why is that?

72



The performan
e of sear
h te
hniquesHow might we judge the performan
e of a sear
h te
hnique?We are interested in:� Whether a solution is found.� Whether the solution found is a good one in terms of path 
ost.� The 
ost of the sear
h in terms of time and memory.

the total 
ost = path 
ost+ sear
h 
ostIf a problem is highly 
omplex it may be worth settling for a sub-optimalsolution obtained in a short time .
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Evaluation of sear
h strategiesWe are also interested in:Completeness: does the strategy guarantee a solution is found?Optimality: does the strategy guarantee that the best solution is found?On
e we start to 
onsider these, things get a lot more interesting...
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Breadth-�rst sear
hWhy is breadth-�rst sear
h hopeless?� The pro
edure is 
omplete : it is guaranteed to �nd a solution if oneexists.� The pro
edure is optimal if the path 
ost is a non-de
reasing fun
tionof node-depth. (Exer
ise: why is this?)� The pro
edure has exponential 
omplexity for both memory and time .A bran
hing fa
tor b requires
1 + b + b2 + b3 + · · · + bd =

bd+1 − 1

b − 1nodes if the shortest path has depth d.In pra
ti
e it is the memory requirement that is problemati
.
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Depth-�rst sear
hWith depth-�rst sear
h: for a given bran
hing fa
tor b and depth d thememory requirement is O(bd).

· · · · · ·

· · ·

· · ·

· · ·

· · ·

−→ −→

This is be
ause we need to store nodes on the 
urrent path and the otherunexpanded nodes .The time 
omplexity is O(bd). Despite this, if there aremany solutions westand a 
han
e of �nding one qui
kly, 
ompared with breadth-�rst sear
h.
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Ba
ktra
king sear
hWe 
an sometimes improve on depth-�rst sear
h by using ba
ktra
kingsear
h .� If ea
h node knows how to generate the next possibility then memoryis improved to O(d).� Even better, if we 
an work by making modi�
ations to a state de-s
ription then the memory requirement is:
– One full state des
ription, plus...
– ... O(d) a
tions (in order to be able to undo a
tions).How does this work?
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Depth-�rst, depth-limited, and iterative deepening sear
hDepth-�rst sear
h is 
learly dangerous if the tree is very deep or in�nite .Depth-limited sear
h simply imposes a limit on depth. For example ifwe're sear
hing for a route on a map with n 
ities we know that the maxi-mum depth will be n. However:� We still risk �nding a suboptimal solution.� The pro
edure be
omes problemati
 if we impose a depth limit that istoo small.Usually we do not know a reasonable depth limit in advan
e.Iterative deepening sear
h repeatedly runs depth-limited sear
h for in-
reasing depth limits 0, 1, 2, . . .
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Iterative deepening sear
hIterative deepening sear
h :� Essentially 
ombines the advantages of depth-�rst and breadth-�rstsear
h.� It is 
omplete and optimal.� It has a memory requirement similar to that of depth-�rst sear
h.Importantly, the fa
t that you're repeating a sear
h pro
ess several timesis less signi�
ant than it might seem.It's still not a good pra
ti
al method, but it does point us in the dire
tionof one...
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Iterative deepening sear
hIterative deepening depends on the fa
t that the vast majority of thenodes in a tree are in the bottom level :� In a tree with bran
hing fa
tor b and depth d the number of nodes is
f1(b, d) = 1 + b + b2 + b3 + · · · + bd =

bd+1 − 1

b − 1� A 
omplete iterative deepening sear
h of this tree generates the �nallayer on
e, the penultimate layer twi
e, and so on down to the root,whi
h is generated d + 1 times. The total number of nodes generated istherefore

f2(b, d) = (d + 1) + db + (d − 1)b2 + (d − 2)b3 + · · · + 2bd−1 + bd
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Iterative deepening sear
hExample:� For b = 20 and d = 5 we have

f1(b, d) = 3, 368, 421

f2(b, d) = 3, 545, 706whi
h represents a 5 per
ent in
rease with iterative deepening sear
h.� The overhead gets smaller as b in
reases. However the time 
omplexityis still exponential.For problems where the sear
h spa
e is large and the solution depth is notknown, this 
an be a good method.
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Iterative deepening sear
hFurther insight 
an be gained if we note that

f2(b, d) = f1(b, 0) + f1(b, 1) + · · · + f1(b, d)as we generate the root, then the tree to depth 1, and so on. Thus
f2(b, d) =

d∑

i=0

f1(b, i) =

d∑

i=0

bi+1 − 1

b − 1

=
1

b − 1

d∑

i=0

bi+1 − 1 =
1

b − 1

[(

d∑

i=0

bi+1

)

− (d + 1)

]

Noting that

bf1(b, d) = b + b2 + · · · + bd+1 =

d∑

i=0

bi+1we have

f2(b, d) =
b

b − 1
f1(b, d) −

d + 1

b − 1so f2(b, d) is about equal to f1(b, d) for large b.
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Bidire
tional sear
hIn some problems we 
an simultaneously sear
h:forward from the start stateba
kward from the goal stateuntil the sear
hes meet.This is potentially a very good idea:� If the sear
h methods have 
omplexity O(bd) then...� ...we are 
onverting this to O(2bd/2) = O(bd/2).(Here, we are assuming the bran
hing fa
tor is b in both dire
tions.)
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Bidire
tional sear
h - beware!� It is not always possible to generate eÆ
iently prede
essors as well assu

essors.� If we only have the des
ription of a goal, not an expli
it goal , thengenerating prede
essors 
an be hard. (For example, 
onsider the 
on
eptof 
he
kmate .)� We need a way of 
he
king whether or not a node appears in the othersear
h ...� ... and the �gure of O(bd/2) hides the assumption that we 
an do 
on-stant time 
he
king for interse
tion of the frontiers. (This may bepossible using a hash table).� We need to de
ide what kind of sear
h to use in ea
h half. For example,would depth-�rst sear
h be sensible? Possibly not...� ...to guarantee that the sear
hes meet, we need to store all the nodes ofat least one of the sear
hes. Consequently the memory requirement is

O(bd/2).
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Uniform-
ost sear
hBreadth-�rst sear
h �nds the shallowest solution, but this is not ne
essarilythe best one.Uniform-
ost sear
h is a variant. It uses the path 
ost p(n) as the priorityfor the priority queue.Thus, the paths that are apparently best are explored �rst, and the bestsolution will always be found if

∀n (∀n ′ ∈ su

essors(n) . p(n ′) ≥ p(n))Although this is still not a good pra
ti
al algorithm, it does point the wayforward to informed sear
h...
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Repeated statesWith many problems it is easy to waste time by expanding nodes that haveappeared elsewhere in the tree. For example:
.
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A

B B
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The sliding blo
ks puzzle for example su�ers this way.
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Repeated statesFor example, in a problem su
h as �nding a route in a map, where all ofthe operators are reversible , this is inevitable.There are three basi
 ways to avoid this, depending on how you trade o�e�e
tiveness against overhead.� Never return to the state you 
ame from .� Avoid 
y
les: never pro
eed to a state identi
al to one of your an
es-tors .� Do not expand any state that has previously appeared .Graph sear
h is a standard approa
h to dealing with the situation. It usesthe last of these possibilities.
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Graph sear
hIn pseudo
ode:

function graphSearch() {

closed = {};

fringe = queue containing only the start state;

while () {

if (empty(fringe))

return fail;

node = head(fringe);

if goal(node)

return solution(node);

if (node not a member of closed) {

closed = closed + node;

fringe = insert(expand(node), fringe);

}

}

}
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Graph sear
hThere are several points to note regarding graph sear
h:1. The 
losed list 
ontains all the expanded nodes.2. The 
losed list 
an be implemented using a hash table.3. Both worst 
ase time and spa
e are now proportional to the size of thestate spa
e.4.Memory: depth �rst and iterative deepening sear
h are no longer linearspa
e as we need to store the 
losed list.5. Optimality: when a repeat is found we are dis
arding the new possi-bility even if it is better than the �rst one.� This never happens for uniform-
ost or breadth-�rst sear
h with 
on-stant step 
osts, so these remain optimal.� Iterative deepening sear
h needs to 
he
k whi
h solution is betterand if ne
essary modify path 
osts and depths for des
endants of therepeated state.
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Sear
h treesEverything we've seen so far is an example of uninformed or blind sear
h|we only distinguish goal states from non-goal states.(Uniform 
ost sear
h is a slight anomaly as it uses the path 
ost as a guide.)To perform well in pra
ti
e we need to employ informed or heuristi
sear
h.This involves exploiting knowledge of the distan
e between the 
urrentstate and a goal .
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Problem solving by informed sear
hBasi
 sear
h methods make limited use of any problem-spe
i�
 knowledgewe might have.� We have already seen the 
on
ept of path 
ost p(n)

p(n) = 
ost of path (sequen
e of a
tions) from the start state to n� We 
an now introdu
e an evaluation fun
tion . This is a fun
tion thatattempts to measure the desirability of ea
h node .The evaluation fun
tion will 
learly not be perfe
t. (If it is, there is noneed to sear
h.)Best-�rst sear
h simply expands nodes using the ordering given by theevaluation fun
tion.
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Greedy sear
hWe've already seen path 
ost used for this purpose.� This is misguided as path 
ost is not in general dire
ted in any sensetoward the goal .� A heuristi
 fun
tion , usually denoted h(n) is one that estimates the
ost of the best path from any node n to a goal.� If n is a goal then h(n) = 0.Using a heuristi
 fun
tion along with best-�rst sear
h gives us the greedysear
h algorithm.
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Example: route-�ndingExample: for route �nding a reasonable heuristi
 fun
tion is
h(n) = straight line distan
e from n to the nearest goal

n3

Goal

n1 n21 1

h(n3) = 1

h(n1) =
√

5

h(n2) =
√

2

n3

Goal
n1 n2

A

ura
y here obviously depends on what the roads are really like.
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Example: route-�ndingGreedy sear
h su�ers from some problems:� Its time 
omplexity is O(bd).� Its spa
e-
omplexity is O(bd).� It is not optimal or 
omplete.BUT: greedy sear
h 
an be e�e
tive, provided we have a good h(n).Wouldn't it be ni
e if we 
ould improve it to make it optimal and 
omplete?
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A⋆ sear
hWell, we 
an.

A⋆ sear
h 
ombines the good points of:� Greedy sear
h|by making use of h(n).� Uniform-
ost sear
h|by being optimal and 
omplete.It does this in a very simple manner: it uses path 
ost p(n) and also theheuristi
 fun
tion h(n) by forming
f(n) = p(n) + h(n)where

p(n) = 
ost of path to nand

h(n) = estimated 
ost of best path from nSo: f(n) is the estimated 
ost of a path through n.
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A⋆ sear
h

A⋆ sear
h:� A best-�rst sear
h using f(n).� It is both 
omplete and optimal...� ...provided that h obeys some simple 
onditions.De�nition: an admissible heuristi
 h(n) is one that never overestimatesthe 
ost of the best path from n to a goal.If h(n) is admissible then tree-sear
h A⋆ is optimal.
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A⋆ tree-sear
h is optimal for admissible h(n)To see that A⋆ sear
h is optimal we reason as follows.Let Goalopt be an optimal goal state with

f(Goalopt) = p(Goalopt) = fopt(be
ause h(Goalopt) = 0). Let Goal2 be a suboptimal goal state with
f(Goal2) = p(Goal2) = f2 > foptWe need to demonstrate that the sear
h 
an never sele
t Goal2.
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A⋆ tree-sear
h is optimal for admissible h(n)

Goalopt
n

Goal2 At some point Goal2 is in the fringe.Can it be sele
ted before n?
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A⋆ tree-sear
h is optimal for admissible h(n)Let n be a leaf node in the fringe on an optimal path to Goalopt. So
fopt ≥ p(n) + h(n) = f(n)be
ause h is admissible.Now say Goal2 is 
hosen for expansion before n. This means that

f(n) ≥ f2so we've established that

fopt ≥ f2 = p(Goal2).But this means that Goalopt is not optimal: a 
ontradi
tion.
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A⋆ graph sear
hOf 
ourse, we will generally be dealing with graph sear
h .Unfortunately the proof breaks in this 
ase.� Graph sear
h 
an dis
ard an optimal route if that route is not the �rstone generated.� We 
ould keep only the least expensive path . This means updating,whi
h is extra work, not to mention messy, but suÆ
ient to insure op-timality.� Alternatively, we 
an impose a further 
ondition on h(n) whi
h for
esthe best path to a repeated state to be generated �rst .The required 
ondition is 
alled monotoni
ity . Asmonotoni
ity −→ admissibilitythis is an important property.
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Monotoni
ityAssume h is admissible. Remember that f(n) = p(n)+h(n) so if n ′ follows
n

p(n ′) ≥ p(n)and we expe
t that h(n ′) ≤ h(n) although this does not have to be the
ase.

n

n ′

h(n) = 4

p(n ′) = 6

h(n ′) = 1

p(n) = 5

Here f(n) = 9 and f(n ′) = 7 so f(n ′) < f(n).
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Monotoni
ityMonotoni
ity:� If it is always the 
ase that f(n ′) ≥ f(n) then h(n) is 
alled monotoni
.� h(n) is monotoni
 if and only if it obeys the triangle inequality .
h(n) ≤ 
ost(n a

−→ n ′) + h(n ′)If h(n) is not monotoni
 we 
an make a simple alteration and use
f(n ′) = max{f(n), p(n ′) + h(n ′)}This is 
alled the pathmax equation.
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The pathmax equationWhy does the pathmax equation make sense?

n

n ′

h(n) = 4

p(n ′) = 6

h(n ′) = 1

p(n) = 5

The fa
t that f(n) = 9 tells us the 
ost of a path through n is at least 9(be
ause h(n) is admissible).But n ′ is on a path through n. So to say that f(n ′) = 7 makes no sense.
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A⋆ graph sear
h is optimal for monotoni
 heuristi
s
A⋆ graph sear
h is optimal for monotoni
 heuristi
s.The 
ru
ial fa
t from whi
h optimality follows is that if h(n) is monotoni
then the values of f(n) along any path are non-de
reasing.Assume we move from n to n ′ using a
tion a. Then

∀a . p(n ′) = p(n) + 
ost(n a
−→ n ′)and using the triangle inequality

h(n) ≤ 
ost(n a
−→ n ′) + h(n ′) (1)Thus

f(n ′) = p(n ′) + h(n ′)

= p(n) + 
ost(n a
−→ n ′) + h(n ′)

≥ p(n) + h(n)

= f(n)where the inequality follows from equation 1.
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A⋆ graph sear
h is optimal for monotoni
 heuristi
sWe therefore have the following situation:

f(n)
f(n ′′) < f(n ′) has been dealt with.

f(n ′)

You 
an't deal with n ′ until everything with

Consequently everything with f(n ′′) < fopt gets explored. Then one ormore things with fopt get found (not ne
essarily all goals).
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A⋆ sear
h is 
omplete

A⋆ sear
h is 
omplete provided:1. The graph has �nite bran
hing fa
tor.2. There is a �nite, positive 
onstant c su
h that ea
h operator has 
ost atleast c.Why is this?
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A⋆ sear
h is 
ompleteThe sear
h expands nodes a

ording to in
reasing f(n). So: the only wayit 
an fail to �nd a goal is if there are in�nitely many nodes with f(n) <

f(Goal).There are two ways this 
an happen:1. There is a node with an in�nite number of des
endants.2. There is a path with an in�nite number of nodes but a �nite path 
ost.
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Complexity� A⋆ sear
h has a further desirable property: it is optimally eÆ
ient .� This means that no other optimal algorithm that works by 
onstru
tingpaths from the root 
an guarantee to examine fewer nodes.� BUT: despite its good properties we're not done yet...� ...A⋆ sear
h unfortunately still has exponential time 
omplexity in most
ases unless h(n) satis�es a very stringent 
ondition that is generallyunrealisti
:

|h(n) − h ′(n)| ≤ O(log h ′(n))where h ′(n) denotes the real 
ost from n to the goal.� As A⋆ sear
h also stores all the nodes it generates, on
e again it isgenerally memory that be
omes a problem before time .
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IDA⋆ - iterative deepening A⋆ sear
hHow might we improve the way in whi
h A⋆ sear
h uses memory?� Iterative deepening sear
h used depth-�rst sear
h with a limit on depththat gradually in
reased.� IDA⋆ does the same thing with a limit on f 
ost .
ActionSequence ida() {

float fLimit = f(root);

root = root node for problem;

while() {

(sequence, fLimit) = contour(root,fLimit,emptySequence);

if (sequence != emptySequence)

return sequence;

if (fLimit == infinity)

return emptySequence;

}

}
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IDA⋆ - iterative deepening A⋆ sear
hThe fun
tion contour sear
hes from a given node, as far as the spe
i�ed
f limit . It returns either a solution, or the next biggest value of f to try.
(ActionSequence,float) contour(Node node, float fLimit, ActionSequence s) {

float nextF = infinity;

if (f(node) > fLimit)

return (emptySequence,f(node));

ActionSequence s’ = addToSequence(node,s);

if (goalTest(node))

return (s’,fLimit);

for (each successor n’ of node) {

(sequence,newF) = contour(n’,fLimit,s’);

if (sequence != emptySequence)

return (sequence,fLimit);

nextF = minimum(nextF,newF);

}

return (emptySequence,nextF);

}
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IDA⋆ - iterative deepening A⋆ sear
hThis is a little tri
ky to unravel, so here is an example:
37 4 5

Initially, the algorithm looks ahead and �nds the smallest f 
ost that isgreater than its 
urrent f 
ost limit. The new limit is 4.
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IDA⋆ - iterative deepening A⋆ sear
hIt now does the same again:
37 4 55 9 10

Anything with f 
ost at most equal to the 
urrent limit gets explored, andthe algorithm keeps tra
k of the smallest f 
ost that is greater than its
urrent limit. The new limit is 5.
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IDA⋆ - iterative deepening A⋆ sear
hAnd again:

37 4 55 9 10 19 12 78 12 7

The new limit is 7, so at the next iteration the three arrowed nodes will beexplored.
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IDA⋆ - iterative deepening A⋆ sear
hProperties of IDA⋆:� It is 
omplete and optimal under the same 
onditions as A⋆.� It is often good if we have step 
osts equal to 1.� It does not require us to maintain a sorted queue of nodes.� It only requires spa
e proportional to the longest path .� The time taken depends on the number of values h 
an take.If h takes enough values to be problemati
 we 
an in
rease f by a �xed ǫat ea
h stage, guaranteeing a solution at most ǫ worse than the optimum.
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Re
ursive best-�rst sear
h (RBFS)Another method by whi
h we 
an attempt to over
ome memory limitationsis the Re
ursive best-�rst sear
h (RBFS).Idea: try to do a best-�rst sear
h, but only use linear spa
e by doing adepth-�rst sear
h with a few modi�
ations:1. We remember the f(n ′) for the best alternative node n ′ we've seen sofar on the way to the node n we're 
urrently 
onsidering.2. If n has f(n) > f(n ′):� We go ba
k and explore the best alternative...� ...and as we retra
e our steps we repla
e the f 
ost of every nodewe've seen in the 
urrent path with f(n).The repla
ement of f values as we retra
e our steps provides a means ofremembering how good a dis
arded path might be, so that we 
an easilyreturn to it later.
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Re
ursive best-�rst sear
h (RBFS)Note: for simpli
ity a parameter for the path has been omitted.
function RBFS(Node n, Float fLimit) {

if (goaltest(n))

return n;

if (n has no successors)

return (fail, infinity);

for (each successor n’ of n)

f(n’) = maximum(f(n’), f(n));

while() {

best = successor of n that has the smallest f(n’);

if (f(best) > fLimit)

return (fail, f(best));

nextBest = second smallest f(n’) value for successors of n;

(result, f’) = RBFS(best, minimum(fLimit, nextBest));

f(best) = f’;

if (result != fail)

return result;

}

}IMPORTANT: f(best) is modi�ed when RBFS produ
es a result.

117



Re
ursive best-�rst sear
h (RBFS): an exampleThis fun
tion is 
alled using RBFS(startState, infinity) to begin thepro
ess.Fun
tion 
all number 1:

37 4 5best1 fLimit1 =∞ nextBest1 = 5

Now perform the re
ursive fun
tion 
all (result2, f ′) = RBFS(best1, 5)so f(best1) takes the returned value f ′
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Re
ursive best-�rst sear
h (RBFS): an exampleFun
tion 
all number 2:

37 4 5best1 nextBest1 = 5

fLimit2 = 5

fLimit1 =∞

5 9 10best2 nextBest2 = 9

Now perform the re
ursive fun
tion 
all (result3, f ′) = RBFS(best2, 5)so f(best2) takes the returned value f ′
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Re
ursive best-�rst sear
h (RBFS): an exampleFun
tion 
all number 3:

37 4 5best1 nextBest1 = 5

fLimit2 = 5

fLimit1 =∞

5 9 10best211 12 10best3
5 repla
ed by 10 nextBest2 = 9

fLimit3 = 5

nextBest3 = 11Now f(best3) > fLimit3 so the fun
tion 
all returns (fail, 10) into (result3, f ′)and f(best2) = 10.
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Re
ursive best-�rst sear
h (RBFS): an exampleThe while loop for fun
tion 
all 2 now repeats:
37 4 5best1 nextBest1 = 5

fLimit2 = 5

fLimit1 =∞

5 9 1011 12 10

5 repla
ed by 10 best2
4 repla
ed by 9

Now f(best2) > fLimit2 so the fun
tion 
all returns (fail, 9) into (result2, f ′)and f(best1) = 9.
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Re
ursive best-�rst sear
h (RBFS): an exampleThe while loop for fun
tion 
all 1 now repeats:
37 4 5fLimit1 =∞

5 9 1011 12 10

5 repla
ed by 10

4 repla
ed by 9 best1nextBest1 = 7

We do a further fun
tion 
all to expand the new best node, and so on...
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Re
ursive best-�rst sear
h (RBFS)Some ni
e properties:� If h is admissible then RBFS is optimal.� Memory requirement is O(bd)� Generally more eÆ
ient than IDA⋆.And some less ni
e ones:� Time 
omplexity is hard to analyse, but 
an be exponential.� Can spend a lot of time re-generating nodes .
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Other methods for getting around the memory problemTo some extent IDA⋆ and RBFS throw the baby out with the bathwater.� They limit memory too harshly, so...� ...we 
an try to use all available memory .MA⋆ and SMA⋆ will not be 
overed in this 
ourse...
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Solving problems by sear
h: playing gamesHow might an agent a
t when the out
omes of its a
tions are not knownbe
ause an adversary is trying to hinder it?� This is essentially a more realisti
 kind of sear
h problem be
ause wedo not know the exa
t out
ome of an a
tion.� This is a 
ommon situation when playing games : in 
hess, draughts,and so on an opponent responds to our moves.� We don't know what their response will be, and so the out
ome of ourmoves is not 
lear.Game playing has been of interest in AI be
ause it provides an idealisationof a world in whi
h two agents a
t to redu
e ea
h other's well-being.
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Playing games: sear
h against an adversaryDespite the fa
t that games are an idealisation, game playing 
an be anex
ellent sour
e of hard problems. For instan
e with 
hess:� The average bran
hing fa
tor is roughly 35.� Games 
an rea
h 50 moves per player.� So a rough 
al
ulation gives the sear
h tree 35100 nodes.� Even if only di�erent, legal positions are 
onsidered it's about 1040.So: in addition to the un
ertainty due to the opponent:� We 
an't make a 
omplete sear
h to �nd the best move...� ... so we have to a
t even though we're not sure about the best thingto do.
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Playing games: sear
h against an adversaryAnd 
hess isn't even very hard:� Go is mu
h harder than 
hess.� The bran
hing fa
tor is about 360.Until very re
ently it has resisted all attempts to produ
e a good AI player.See:

senseis.xmp.net/?MoGoand others.
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Playing games: sear
h against an adversaryIt seems that games are a step 
loser to the 
omplexities inherent in theworld around us than are the standard sear
h problems 
onsidered so far.The study of games has led to some of the most 
elebrated appli
ationsand te
hniques in AI.We now look at:� How game-playing 
an be modelled as sear
h .� The minimax algorithm for game-playing.� Some problems inherent in the use of minimax.� The 
on
ept of α − β pruning .Reading: Russell and Norvig 
hapter 6.
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Perfe
t de
isions in a two-person gameSay we have two players. Traditionally, they are 
alled Max and Min forreasons that will be
ome 
lear.� We'll use noughts and 
rosses as an initial example.� Max moves �rst.� The players alternate until the game ends.� At the end of the game, prizes are awarded. (Or punishments administered|EVIL ROBOT is starting up his favourite 
hainsaw...)This is exa
tly the same game format as 
hess, Go, draughts and so on.
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Perfe
t de
isions in a two-person gameGames like this 
an be modelled as sear
h problems as follows:� There is an initial state .

Max to move

� There is a set of operators . Here, Max 
an pla
e a 
ross in any emptysquare, or Min a nought.� There is a terminal test . Here, the game ends when three noughts orthree 
rosses are in a row, or there are no unused spa
es.� There is a utility or payo� fun
tion. This tells us, numeri
ally, whatthe out
ome of the game is.This is enough to model the entire game.
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Perfe
t de
isions in a two-person gameWe 
an 
onstru
t a tree to represent a game. From the initial state Max
an make nine possible moves:

.          .          .

Then it's Min's turn...
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Perfe
t de
isions in a two-person gameFor ea
h of Max's opening moves Min has eight replies:
.          .          .

.          .          .

And so on...This 
an be 
ontinued to represent all possibilities for the game.
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Perfe
t de
isions in a two-person game
.          .          .

.          .          .

+1
0

−1

At the leaves a player has won or there are no spa
es. Leaves are labelledusing the utility fun
tion.
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Perfe
t de
isions in a two-person gameHow 
an Max use this tree to de
ide on a move? Consider a mu
h simplertree:

4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4
Labels on the leaves denote utility.High values are preferred by Max.Low values are preferred by Min.

If Max is rational he will play to rea
h a position with the biggest utilitypossibleBut if Min is rational she will play to minimise the utility available toMax.
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The minimax algorithmThere are two moves: Max then Min. Game theorists would 
all this onemove, or two ply deep.The minimax algorithm allows us to infer the best move that the 
urrentplayer 
an make, given the utility fun
tion, by working ba
kward from theleaves.

4 5 20 20 15 7 4 10 9 5 8 52
2

6
6

1
1

4
4

As Min plays the last move, she minimises the utility available to Max.
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The minimax algorithmMin takes the �nal move:� If Min is in game position 1, her best 
hoi
e is move 3. So from Max'spoint of view this node has a utility of 2.� If Min is in game position 2, her best 
hoi
e is move 3. So from Max'spoint of view this node has a utility of 6.� If Min is in game position 3, her best 
hoi
e is move 1. So from Max'spoint of view this node has a utility of 1.� If Min is in game position 4, her best 
hoi
e is move 4. So from Max'spoint of view this node has a utility of 4.
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The minimax algorithmMoving one further step up the tree:
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

1 42 6 6

We 
an see that Max's best opening move is move 2, as this leads to thenode with highest utility.
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The minimax algorithmIn general:� Generate the 
omplete tree and label the leaves a

ording to the utilityfun
tion.� Working from the leaves of the tree upward, label the nodes dependingon whether Max or Min is to move.� If Min is to move label the 
urrent node with the minimum utility ofany des
endant.� If Max is to move label the 
urrent node with the maximum utility ofany des
endant.If the game is p ply and at ea
h point there are q available moves then thispro
ess has (surprise, surprise) O(qp) time 
omplexity and spa
e 
omplex-ity linear in p and q.
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Making imperfe
t de
isionsWe need to avoid sear
hing all the way to the end of the tree. So:� We generate only part of the tree: instead of testing whether a node isa leaf we introdu
e a 
ut-o� test telling us when to stop.� Instead of a utility fun
tion we introdu
e an evaluation fun
tion forthe evaluation of positions for an in
omplete game.The evaluation fun
tion attempts to measure the expe
ted utility of the
urrent game position.
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Making imperfe
t de
isionsHow 
an this be justi�ed?� This is a strategy that humans 
learly sometimes make use of.� For example, when using the 
on
ept of material value in 
hess.� The e�e
tiveness of the evaluation fun
tion is 
riti
al ...� ... but it must be 
omputable in a reasonable time.� (In prin
iple it 
ould just be done using minimax.)The importan
e of the evaluation fun
tion 
an not be understated|it isprobably the most important part of the design.
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The evaluation fun
tionDesigning a good evaluation fun
tion 
an be extremely tri
ky:� Let's say we want to design one for 
hess by giving ea
h pie
e its materialvalue: pawn = 1, knight/bishop = 3, rook = 5 and so on.� De�ne the evaluation of a position to be the di�eren
e between thematerial value of bla
k's and white's pie
eseval(position) =
∑bla
k's pie
es pi

value of pi −
∑white's pie
es qi

value of qi

This seems like a reasonable �rst attempt. Why might it go wrong?
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The evaluation fun
tionConsider what happens at the start of a game:� Until the �rst 
apture the evaluation fun
tion gives 0, so in fa
t wehave a 
ategory 
ontaining many di�erent game positions with equalestimated utility.� For example, all positions where white is one pawn ahead.� The evaluation fun
tion for su
h a 
ategory should perhaps representthe probability that a position 
hosen at random from it leads to a win.So in fa
t this seems highly naive...
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The evaluation fun
tionIdeally, we should 
onsider individual positions .If on the basis of past experien
e a position has 50% 
han
e of winning,10% 
han
e of losing and 40% 
han
e of rea
hing a draw, we might give itan evaluation ofeval(position) = (0.5 × 1) + (0.1 × −1) + (0.4 × 0) = 0.4.Extending this to the evaluation of 
ategories, we should then weight thepositions in the 
ategory a

ording to their likelihood of o

urring.Of 
ourse, we don't know what any of these likelihoods are...
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The evaluation fun
tionUsing material value 
an be thought of as giving us a weighted linearevaluation fun
tion eval(position) =

n∑

i=1

wifiwhere the wi are weights and the fi represent features of the position. Inthis example

fi = value of the ith pie
e
wi = number of ith pie
es on the boardwhere bla
k and white pie
es are regarded as di�erent and the fi are positivefor one and negative for the other.
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The evaluation fun
tionEvaluation fun
tions of this type are very 
ommon in game playing.There is no systemati
 method for their design.Weights 
an be 
hosen by allowing the game to play itself and using learn-ing te
hniques to adjust the weights to improve performan
e.By using more 
arefully 
rafted features we 
an give di�erent evaluationsto individual positions .
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α − β pruningEven with a good evaluation fun
tion and 
ut-o� test, the time 
omplexityof the minimax algorithm makes it impossible to write a good 
hess programwithout some further improvement.� Assuming we have 150 se
onds to make ea
h move, for 
hess we wouldbe limited to a sear
h of about 3 to 4 ply whereas...� ...even an average human player 
an manage 6 to 8.Lu
kily, it is possible to prune the sear
h tree without a�e
ting the out-
ome and without having to examine all of it .
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α − β pruningReturning for a moment to the earlier, simpli�ed example:
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4The sear
h is depth-�rst and left to right.
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α − β pruningThe sear
h 
ontinues as previously for the �rst 8 leaves.
4 5 2 20 20 15 6 7 1 4 10 9 5 8 5 4

2 6 ≤ 1

Then we note: if Max plays move 3 then Min 
an rea
h a leaf with utilityat most 1.So: we don't need to sear
h any further under Max's opening move 3.This is be
ause the sear
h has already established thatMax 
an do betterby making opening move 2.
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α − β pruning in general

m

Tree= Player= Opponent

nm ′

then this node will never be rea
hed.If n < m or n < m ′ here

So: on
e you've established that n is suÆ
iently small, you don't need toexplore any more of the 
orresponding node's 
hildren.
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α − β pruning in general

m

Tree= Player= Opponent

nm ′

then this node will never be rea
hed.If n > m or n > m ′ here

So: on
e you've established that n is suÆ
iently large, you don't need toexplore any more of the 
orresponding node's 
hildren.
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α − β pruning in generalThe sear
h is depth-�rst, so we're only ever looking at one path throughthe tree .We need to keep tra
k of the values α and β where
α = the highest utility seen so far on the path for Max
β = the lowest utility seen so far on the path for MinAssume Max begins . Initial values for α and β are

α = −∞and

β = +∞.
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α − β pruning in generalSo: we start with the fun
tion 
all

max(−∞, +∞, root)where max is the fun
tion

max(alpha,beta,node) {

if (node is at cut-off)

return evaluation(node);

else {

for (each successor n’ of node) {

alpha = maximum(alpha,min(alpha,beta,n’));

if (alpha >= beta)

return beta; // pruning happens here.

}

return alpha;

}

}
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α − β pruning in generalThe fun
tion min is

min(alpha,beta,node) {

if (node is at cut-off)

return evaluation(node);

else {

for (each successor n’ of node) {

beta = minimum(beta,max(alpha,beta,n’));

if (beta <= alpha)

return alpha; // pruning happens here.

}

return beta;

}

}
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α − β pruning in generalApplying this to the earlier example and keeping tra
k of the values for αand β you should obtain:

4 5 2 20 20 15 6 7 1

2 6

Return 2

α = −∞ = 2 = 6

β = +∞Return 6

α = 2

β = +∞ = 6

α = −∞

β = +∞ = 2

α = 6

β = +∞ = 1

Return 6
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How e�e
tive is α − β pruning?(Warning: the theoreti
al results that follow are somewhat idealised.)A qui
k inspe
tion should 
onvin
e you that the order in whi
h moves arearranged in the tree is 
riti
al.So, it seems sensible to try good moves �rst:� If you were to have a perfe
t move-ordering te
hnique then α−β pruningwould be O(qp/2) as opposed to O(qp).� so the bran
hing fa
tor would e�e
tively be √
q instead of q.� We would therefore expe
t to be able to sear
h ahead twi
e as manymoves as before .However, this is not realisti
: if you had su
h an ordering te
hnique you'dbe able to play perfe
t games!
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How e�e
tive is α − β pruning?If moves are arranged at random then α − β pruning is:� O((q/ log q)p) asymptoti
ally when q > 1000 or...� ...about O(q3p/4) for reasonable values of q.In pra
ti
e simple ordering te
hniques 
an get 
lose to the best 
ase. Forexample, if we try 
aptures, then threats, then moves forward et
.Alternatively, we 
an implement an iterative deepening approa
h and usethe order obtained at one iteration to drive the next.
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A further optimisation: the transposition tableFinally, note that many games 
orrespond to graphs rather than treesbe
ause the same state 
an be arrived at in di�erent ways.� This is essentially the same e�e
t we saw in heuristi
 sear
h: re
allgraph sear
h versus tree sear
h .� It 
an be addressed in a similar way: store a state with its evaluationin a hash table|generally 
alled a transposition table|the �rst timeit is seen.The transposition table is essentially equivalent to the 
losed list intro-du
ed as part of graph sear
h.This 
an vastly in
rease the e�e
tiveness of the sear
h pro
ess, be
ause wedon't have to evaluate a single state multiple times.
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Constraint satisfa
tion problems (CSPs)The sear
h s
enarios examined so far seem in some ways unsatisfa
tory.� States were represented using an arbitrary and problem-spe
i�
 datastru
ture.� Heuristi
s were also problem-spe
i�
.� It would be ni
e to be able to transform general sear
h problems intoa standard format .CSPs standardise the manner in whi
h states and goal tests are repre-sented...
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Constraint satisfa
tion problems (CSPs)By standardising like this we bene�t in several ways:� We 
an devise general purpose algorithms and heuristi
s.� We 
an look at general methods for exploring the stru
ture of the prob-lem.� Consequently it is possible to introdu
e te
hniques for de
omposingproblems.� We 
an try to understand the relationship between the stru
ture of aproblem and the diÆ
ulty of solving it .Note: another method of interest in AI that allows us to do similar thingsinvolves transforming to a propositional satis�ability problem. We'll seean example of this in AI II.
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Introdu
tion to 
onstraint satisfa
tion problemsWe now return to the idea of problem solving by sear
h and examine itfrom this new perspe
tive.Aims:� To introdu
e the idea of a 
onstraint satisfa
tion problem (CSP) as ageneral means of representing and solving problems by sear
h.� To look at a ba
ktra
king algorithm for solving CSPs.� To look at some general heuristi
s for solving CSPs.� To look at more intelligent ways of ba
ktra
king .Reading: Russell and Norvig, 
hapter 5.
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Constraint satisfa
tion problemsWe have:� A set of n variables V1, V2, . . . , Vn.� For ea
h Vi a domain Di spe
ifying the values that Vi 
an take.� A set of m 
onstraints C1, C2, . . . , Cm.Ea
h 
onstraint Ci involves a set of variables and spe
i�es an allowable
olle
tion of values .� A state is an assignment of spe
i�
 values to some or all of the variables.� An assignment is 
onsistent if it violates no 
onstraints.� An assignment is 
omplete if it gives a value to every variable.A solution is a 
onsistent and 
omplete assignment.
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ExampleWe will use the problem of 
olouring the nodes of a graph as a runningexample.
1 2 8

653 4
7 7

5 643
1 2 8

Ea
h node 
orresponds to a variable . We have three 
olours and dire
tly
onne
ted nodes should have di�erent 
olours.
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ExampleThis translates easily to a CSP formulation:� The variables are the nodes

Vi = node i� The domain for ea
h variable 
ontains the values bla
k, red and 
yan
Di = {B, R, C}� The 
onstraints enfor
e the idea that dire
tly 
onne
ted nodes musthave di�erent 
olours. For example, for variables V1 and V2 the 
on-straints spe
ify

(B, R), (B,C), (R, B), (R,C), (C,B), (C, R)� Variable V8 is un
onstrained.
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Di�erent kinds of CSPThis is an example of the simplest kind of CSP: it is dis
rete with �nitedomains . We will 
on
entrate on these.We will also 
on
entrate on binary 
onstraints ; that is, 
onstraints be-tween pairs of variables .� Constraints on single variables|unary 
onstraints|
an be handled byadjusting the variable's domain. For example, if we don't want Vi to bered , then we just remove that possibility from Di.� Higher-order 
onstraints applying to three or more variables 
an 
er-tainly be 
onsidered, but...� ...when dealing with �nite domains they 
an always be 
onverted to setsof binary 
onstraints by introdu
ing extra auxiliary variables .How does that work?
166



Auxiliary variablesExample: three variables ea
h with domain {B, R,C}.A single 
onstraint

(C,C, C), (R, B, B), (B, R, B), (B, B, R)

V1 V1V2

V3The original 
onstraint 
onne
ts allthree variables.

V2

V3

A = 3

New, binary 
onstraints:
(A = 1, V1 = C), (A = 1, V2 = C), (A = 1, V3 = C)
(A = 2, V1 = R), (A = 2, V2 = B), (A = 2, V3 = B)
(A = 3, V1 = B), (A = 3, V2 = R), (A = 3, V3 = B)
(A = 4, V1 = B), (A = 4, V2 = B), (A = 4, V3 = R)

Introdu
ing auxiliary variable A with domain {1, 2, 3, 4} allows us to 
onvertthis to a set of binary 
onstraints.
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Ba
ktra
king sear
hConsider what happens if we try to solve a CSP using a simple te
hniquesu
h as breadth-�rst sear
h .The bran
hing fa
tor is nd at the �rst step, for n variables ea
h with dpossible values.Step 2: (n − 1)dStep 3: (n − 2)d...Step n: d






Number of leaves = nd × (n − 1)d × · · · × 1

= n!dn

BUT: only dn assignments are possible.The order of assignment doesn't matter, and we should assign to one vari-able at a time.
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Ba
ktra
king sear
hUsing the graph 
olouring example:The sear
h now looks something like this...
1=B1=B1=B

2=R 2=R2=R
3=B 3=R 3=C

1=B 1= R 1=C

1=B 1=B 1=B
2=B 2=R 2=C

...and new possibilities appear.
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Ba
ktra
king sear
hBa
ktra
king sear
h sear
hes depth-�rst, assigning a single variable at atime, and ba
ktra
king if no valid assignment is available.
1

2

3
4

5
6

7

8

1=B
2=R
3=C
4=B
5=R

6=B

Nothing is available for 7, so 
either assign 8 or backtrack

Rather than using problem-spe
i�
 heuristi
s to try to improve sear
hing,we 
an now explore heuristi
s appli
able to general CSPs.
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Ba
ktra
king sear
h

Result backTrack(problem) {

return bt ([], problem);

}

Result bt(assignmentList, problem) {

if (assignmentList is complete)

return assignmentList;

nextVar = getNextVar(assignmentList, problem);

for (all v in orderVariables(nextVar, assignmentList, problem)) {

if (v is consistent with assignmentList) {

add "nextVar = v" to assignmentList;

solution = bt(assignmentList, problem);

if (solution is not "fail")

return solution;

remove "nextVar = v" from assignmentList;

}

}

return "fail";
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Ba
ktra
king sear
h: possible heuristi
sThere are several points we 
an examine in an attempt to obtain generalCSP-based heuristi
s:� In what order should we try to assign variables?� In what order should we try to assign possible values to a variable?Or being a little more subtle:� What e�e
t might the values assigned so far have on later attemptedassignments?� When for
ed to ba
ktra
k, is it possible to avoid the same failure lateron?
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Heuristi
s I: Choosing the order of variable assignments and valuesSay we have 1 = B and 2 = R

1

2

3
4

5
6

8

?

7

At this point there is only one possible assignmentfor 3, whereas the others have more 
exibility.

Assigning su
h variables �rst is 
alled the minimum remaining values(MRV) heuristi
.(Alternatively, the most 
onstrained variable or fail �rst heuristi
.)
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Heuristi
s I: Choosing the order of variable assignments and valuesHow do we 
hoose a variable to begin with?The degree heuristi
 
hooses the variable involved in the most 
onstraintson as yet unassigned variables.
1

2

3
4

5
6

8

Start with 3, 5 or 7.

7

MRV is usually better but the degree heuristi
 is a good tie breaker.

174



Heuristi
s I: Choosing the order of variable assignments and valuesOn
e a variable is 
hosen, in what order should values be assigned?

1

2

3
4

5
6

8

?
The heuristic prefers 1=B

7

Choosing 1 = C is bad as it removesthe �nal possibility for 3.

The least 
onstraining value heuristi
 
hooses �rst the value that leavesthe maximum possible freedom in 
hoosing assignments for the variable'sneighbours.
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Heuristi
s II: forward 
he
king and 
onstraint propagationContinuing the previous slide's progress, now add 1 = C.
3

4

5
6

8

2 and 3.

7

C is ruled out as an assignment to 

2

1Ea
h time we assign a value to a variable, it makes sense to delete thatvalue from the 
olle
tion of possible assignments to its neighbours .This is 
alled forward 
he
king . It works ni
ely in 
onjun
tion with MRV.
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Heuristi
s II: forward 
he
king and 
onstraint propagationWe 
an visualise this pro
ess as follows:1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

2 = B RC = B RC RC BRC BRC BRC BRC

3 = R C = B = R RC BC BRC BC BRC

6 = B C = B = R RC C = B C BRC

5 = C C = B = R R = C = B ! BRCAt the fourth step 7 has no possible assignments left .However, we 
ould have dete
ted a problem a little earlier...
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Heuristi
s II: forward 
he
king and 
onstraint propagation...by looking at step three.1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

2 = B RC = B RC RC BRC BRC BRC BRC

3 = R C = B = R RC BC BRC BC BRC

6 = B C = B = R RC C = B C BRC

5 = C C = B = R R = C = B ! BRC� At step three, 5 
an be C only and 7 
an be C only.� But 5 and 7 are 
onne
ted.� So we 
an't progress, but this hasn't been dete
ted.� Ideally we want to do 
onstraint propagation .Trade-o�: time to do the sear
h, against time to explore 
onstraints.
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Constraint propagationAr
 
onsisten
y:Consider a 
onstraint as being dire
ted . For example 4→ 5.In general, say we have a 
onstraint i→ j and 
urrently the domain of i is
Di and the domain of j is Dj.

i→ j is 
onsistent if

∀d ∈ Di,∃d ′ ∈ Dj su
h that i→ j is valid
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Constraint propagationExample:In step three of the table, D4 = {R, C} and D5 = {C}.� 5→ 4 in step three of the table is 
onsistent .� 4→ 5 in step three of the table is not 
onsistent .
4→ 5 
an be made 
onsistent by deleting C from D4.Or in other words, regardless of what you assign to i you'll be able to �ndsomething valid to assign to j.
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Enfor
ing ar
 
onsisten
yWe 
an enfor
e ar
 
onsisten
y ea
h time a variable i is assigned.� We need to maintain a 
olle
tion of ar
s to be 
he
ked .� Ea
h time we alter a domain, we may have to in
lude further ar
s inthe 
olle
tion.This is be
ause if i → j is in
onsistent resulting in a deletion from Di wemay as a 
onsequen
e make some ar
 k→ i in
onsistent.Why is this?
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Enfor
ing ar
 
onsisten
y
with i = R.{R} kK→ i is no longer 
onsistent

i→ j is now 
onsistent.i→ j is not 
onsistent sodelete B from the domainof i.

{R} kK→ i is 
onsistent but

kK = R 
an only be pairedwith i = B. be
ause kK = R 
an not be paired{B}{R}{R, B} {B}
ji

...

k1

k2

kK

ji

...

k1

k2

kK

� i→ j in
onsistent means removing a value from Di.� ∃d ∈ Di su
h that there is no valid d ′ ∈ Dj so delete d ∈ Di.However some d ′′ ∈ Dk may only have been pairable with d.We need to 
ontinue until all 
onsequen
es are taken 
are of.
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The AC-3 algorithm

NewDomains AC-3 (problem) {

Queue toCheck = all arcs i->j;

while (toCheck is not empty) {

i->j = next(toCheck);

if (removeInconsistencies(Di,Dj)) {

for (each k that is a neighbour of i)

add k->i to toCheck;

}

}

}

Bool removeInconsistencies (domain1, domain2) {

Bool result = false;

for (each d in domain1) {

if (no d’ in domain2 valid with d) {

remove d from domain1;

result = true;

}

}

return result;

} 183



Enfor
ing ar
 
onsisten
yComplexity:� A binary CSP with n variables 
an have O(n2) dire
tional 
onstraints
i→ j.� Any i → j 
an be 
onsidered at most d times where d = maxk |Dk|be
ause only d things 
an be removed from Di.� Che
king any single ar
 for 
onsisten
y 
an be done in O(d2).So the 
omplexity is O(n2d3).Note: this setup in
ludes 3SAT.Consequen
e: we 
an't 
he
k for 
onsisten
y in polynomial time, whi
hsuggests this doesn't guarantee to �nd all in
onsisten
ies.

184



A more powerful form of 
onsisten
yWe 
an de�ne a stronger notion of 
onsisten
y as follows:� Given: any k − 1 variables and any 
onsistent assignment to these.� Then: We 
an �nd a 
onsistent assignment to any kth variable.This is known as k-
onsisten
y .Strong k-
onsisten
y requires the we be k-
onsistent, k − 1-
onsistent et
as far down as 1-
onsistent.If we 
an demonstrate strong n-
onsisten
y (where as usual n is the numberof variables) then an assignment 
an be found in O(nd).Unfortunately, demonstrating strong n-
onsisten
y will be worst-
ase ex-ponential .
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Ba
kjumpingThe basi
 ba
ktra
king algorithm ba
ktra
ks to the most re
ent assign-ment . This is known as 
hronologi
al ba
ktra
king . It is not always thebest poli
y:

2

3
4

5
6

8

7

1

3

5

7

4

1

???

Say we've assigned 1 = B, 3 = R, 5 = C and 4 = B and now we wantto assign something to 7. This isn't possible so we ba
ktra
k, howeverre-assigning 4 
learly doesn't help.
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Ba
kjumpingWith some 
areful bookkeeping it is often possible to jump ba
k multiplelevels without sa
ri�
ing the ability to �nd a solution.We need some de�nitions:� When we set a variable Vi to some value d ∈ Di we refer to this as theassignment Ai = (Vi ← d).� A partial instantiation Ik = {A1, A2, . . . , Ak} is a 
onsistent set ofassignments to the �rst k variables...� ... where 
onsistent means that no 
onstraints are violated.Hen
eforth we shall assume that variables are assigned in the order V1, V2, . . . , Vnwhen formally presenting algorithms.
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Gas
hnig's algorithmGas
hnig's algorithm works as follows. Say we have a partial instantiation
Ik:� When 
hoosing a value for Vk+1 we need to 
he
k that any 
andidatevalue d ∈ Dk+1, is 
onsistent with Ik.� When testing potential values for d, we will generally dis
ard one ormore possibilities, be
ause they 
on
i
t with some member of Ik� We keep tra
k of the most re
ent assignment Aj for whi
h this hashappened.Finally, if no value for Vk+1 is 
onsistent with Ik then we ba
ktra
k to Vj.If there are no possible values left to try for Vj then we ba
ktra
k 
hrono-logi
ally .
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Gas
hnig's algorithmExample:

2

3
4

5
6

8

7

1

1

3

5

4

7

Ba
ktra
k to 5
7 = 7 = 7 =

82
???

If there's no value left to try for 5 then ba
ktra
k to 3 and so on.
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Graph-based ba
kjumpingThis allows us to jump ba
k multiple levels when we initially dete
t a
on
i
t .Can we do better than 
hronologi
al ba
ktra
king thereafter?Some more de�nitions:� We assume an ordering V1, V2, . . . , Vn for the variables.� Given V ′ = {V1, V2, . . . , Vk} where k < n the an
estors of Vk+1 are themembers of V ′ 
onne
ted to Vk+1 by a 
onstraint.� The parent P(V) of Vk+1 is its most re
ent an
estor.The an
estors for ea
h variable 
an be a

umulated as assignments aremade.Graph-based ba
kjumping ba
ktra
ks to the parent of Vk+1.
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Graph-based ba
kjumping
2

3
4

5
6

8

7

1

1

3

1

3

5

4

1

3

5

1

3

5

4

7

{1}

{3}

{1} {1}

{3}

{5}

{1}

{3}

{5}

{4}

{1, 3, 4, 8}

{1, 3, 5}

82
???

At this point, ba
kjump to the parent for 7, whi
h is 5.
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Ba
kjumping and forward 
he
kingIf we use forward 
he
king : say we're assigning to Vk+1 by making Vk+1 =

d:� Forward 
he
king removes d from the Di of all Vi 
onne
ted to Vk+1 bya 
onstraint.� When doing graph-based ba
kjumping, we'd also add Vk+1 to the an-
estors of Vi.In fa
t, use of forward 
he
king 
an make some forms of ba
kjumping re-dundant .Note: there are in fa
t many ways of 
ombining 
onstraint propagationwith ba
kjumping , and we will not explore them in further detail here.
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Ba
kjumping and forward 
he
king
2

3
4

5
6

8

7

1

3

5

7

4

1

8 − {}

3 − {1}

1 − {}

3

4 − {  }

6 − {  }
7 − {1,    ,  }5

5
5 − {  }3

5

32 − {1,  , 4}

An
estors???

1 2 3 4 5 6 7 8Start BRC BRC BRC BRC BRC BRC BRC BRC

1 = B = B RC RC BRC BRC BRC RC BRC

3 = R = B C = R BRC BC BRC C BRC

5 = C = B C = R BR = C BR ! BRC

4 = B = B C = R BR = C BR ! BRCForward 
he
king �nds the problem before ba
ktra
king does .
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Graph-based ba
kjumpingWe're not quite done yet though. What happens when there are no as-signments left for the parent we just ba
kjumped to?
V4

V3

V2

V1

V7

V6

V5

V4

V3

V2

V1

???
???

Ba
kjumping from V7 to V4 is �ne. However we shouldn't then just ba
k-jump to V2, be
ause 
hanging V3 
ould �x the problem at V7.

194



Graph-based ba
kjumpingTo des
ribe an algorithm in this 
ase is a little involved.

Leaf dead-end

I6.
Leaf dead-end variable V7

V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

???
???

Given an instantiation Ik and Vk+1, if there is no 
onsistent d ∈ Dk+1 we
all Ik a leaf dead-end and Vk+1 a leaf dead-end variable .
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Graph-based ba
kjumpingAlso
Leaf dead-end Internal dead-end

I4.

I6.
Leaf dead-end variable V7

Internal dead-end variable V4V4

V3

V2

V1

V6

V5

V4

V3

V2

V1

???
???

If Vi was ba
ktra
ked to from a later leaf dead-end and there are no morevalues to try for Vi then we refer to it as an internal dead-end variableand 
all Ii−1 an internal dead-end .
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Graph-based ba
kjumpingTo keep tra
k of exa
tly where to jump to we also need the de�nitions:� The session of a variable V begins when the sear
h algorithm visits itand ends when it ba
ktra
ks through it to an earlier variable.� The 
urrent session of a variable V is the set of all variables visitingduring its session.� In parti
ular, the 
urrent session for any V 
ontains V.� The relevant dead-ends for the 
urrent session R(V) for a variable Vare:1. If V is a leaf dead-end variable then R(V) = {V}.2. If V was ba
ktra
ked to from a dead-end V ′ then R(V) = R(V)∪R(V ′).And we're not done yet...
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Graph-based ba
kjumpingExample:

Session of V4 = {V4, V5, V6, V7}.

Session starts
Session starts

Session of V7 = {V7}.

R(V7) = {V7}

R(V4) = {V7}

As expe
ted, the relevant dead-end for V4 is {V7}.
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Graph-based ba
kjumpingOne more bun
h of de�nitions before the pain stops. Say Vk is a dead-end:� The indu
ed an
estors ind(Vk) of Vk are de�ned as

ind(Vk) = {V1, V2, . . . , Vk−1} ∩





⋃

V∈R(Vk)

an
estors(V)





� The 
ulprit for Vk is the most re
ent V ′ ∈ ind(Vk).Note that these de�nitions depend on R(Vk).FINALLY: graph-based ba
kjumping ba
kjumps to the 
ulprit .
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Graph-based ba
kjumpingExample:

Session of V4 = {V4, V5, V6, V7}.

Ba
kjump from V7to V4.

R(V4) = {V7}ind(V4) = {V3}

Nothing left to try!

As expe
ted, we ba
k jump to V3 instead of V2. Hooray!
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Con
i
t-dire
ted ba
kjumpingGas
hnig's algorithm and graph-based ba
kjumping 
an be 
ombined toprodu
e 
on
i
t-dire
ted ba
kjumping .We will not explore 
on
i
t-dire
ted ba
kjumping in this 
ourse.For 
onsiderable further detail on algorithms for CSPs see:\Constraint Pro
essing," Rina De
hter. Morgan Kaufmann, 2003.
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Varieties of CSPWe have only looked at dis
rete CSPs with �nite domains . These are thesimplest. We 
ould also 
onsider:1. Dis
rete CSPs with in�nite domains :� We need a 
onstraint language . For example
V3 ≤ V10 + 5� Algorithms are available for integer variables and linear 
onstraints.� There is no algorithm for integer variables and nonlinear 
onstraints.2. Continuous domains|using linear 
onstraints de�ning 
onvex regionswe have linear programming . This is solvable in polynomial time in n.3. We 
an introdu
e preferen
e 
onstraints in addition to absolute 
on-straints , and in some 
ases an obje
tive fun
tion .
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Knowledge representation and reasoning using FOLWe now look at how an agent might represent knowledge about its envi-ronment using �rst order logi
 (FOL), and reason with this knowledge toa
hieve its goals.Aims:� To show how FOL 
an be used to represent knowledge about an en-vironment in the form of both ba
kground knowledge and knowledgederived from per
epts .� To show how this knowledge 
an be used to derive non-per
eivedknowledge about the environment using a theorem prover .� To introdu
e the situation 
al
ulus and demonstrate its appli
ation ina simple environment as a means by whi
h an agent 
an work out whatto do next.
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Interesting readingReading: Russell and Norvig, 
hapters 7 to 10.Knowledge representation based on logi
 is a vast subje
t and 
an't be
overed in full in the le
tures.In parti
ular:� Te
hniques for representing further kinds of knowledge .� Te
hniques for moving beyond the idea of a situation .� Reasoning systems based on 
ategories .� Reasoning systems using default information .� Truth maintenan
e systems .Happy reading :-)
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Knowledge representation and reasoningEarlier in the 
ourse we looked at what an agent should be able to do.It seems that all of us|and all intelligent agents|should use logi
al rea-soning to help us intera
t su

essfully with the world.Any intelligent agent should:� Possess knowledge about the environment and about how its a
tionsa�e
t the environment .� Use some form of logi
al reasoning to maintain its knowledge as per-
epts arrive.� Use some form of logi
al reasoning to dedu
e a
tions to perform inorder to a
hieve goals .
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Knowledge representation and reasoningThis raises some important questions:� How do we des
ribe the 
urrent state of the world?� How do we infer from our per
epts, knowledge of unseen parts of theworld?� How does the world 
hange as time passes?� How does the world stay the same as time passes? (The frame prob-lem .)� How do we know the e�e
ts of our a
tions? (The quali�
ation andrami�
ation problems .)We'll now look at one way of answering some of these questions.
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Logi
 for knowledge representationFOL (arguably?) seems to provide a good way in whi
h to represent therequired kinds of knowledge:� It is expressive|anything you 
an program 
an be expressed.� It is 
on
ise .� It is unambiguous� It 
an be adapted to di�erent 
ontexts .� It has an inferen
e pro
edure , although a semide
idable one.In addition is has a well-de�ned syntax and semanti
s .
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Logi
 for knowledge representationProblem: it's quite easy to talk about things like set theory using FOL.For example, we 
an easily write axioms like

∀S . ∀S ′ . ((∀x . (x ∈ S⇔ x ∈ S ′))⇒ S = S ′)But how would we go about representing the proposition that if you havea bu
ket of water and throw it at your friend they will get wet, havea bump on their head from being hit by a bu
ket, and the bu
ket willnow be empty and dented?More importantly, how 
ould this be represented within a wider frameworkfor reasoning about the world?It's time to introdu
e my friend, The Wumpus ...
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Wumpus worldAs a simple test s
enario for a knowledge-based agent we will make use ofthe Wumpus World .
Evil Robot

Wumpus

The Wumpus World is a 4 by 4 grid-based 
ave.EVIL ROBOT wants to enter the 
ave, �nd some gold, and get out againun-s
athed.
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Wumpus worldThe rules of Wumpus World :� Unfortunately the 
ave 
ontains a number of pits, whi
h EVIL ROBOT
an fall into. Eventually his batteries will fail, and that's the end ofhim.� The 
ave also 
ontains the Wumpus, who is armed with state of the artEvil Robot Obliteration Te
hnology .� The Wumpus itself knows where the pits are and never falls into one.

211



Wumpus worldEVIL ROBOT 
an move around the 
ave at will and 
an per
eive thefollowing:� In a position adja
ent to the Wumpus, a sten
h is per
eived. (Wumpusesare famed for their la
k of personal hygiene .)� In a position adja
ent to a pit, a breeze is per
eived.� In the position where the gold is, a glitter is per
eived.� On trying to move into a wall, a bump is per
eived.� On killing the Wumpus a s
ream is per
eived.In addition, EVIL ROBOT has a single arrow, with whi
h to try to kill theWumpus.\Adja
ent" in the following does not in
lude diagonals.
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Wumpus worldSo we have:Per
epts: stench, breeze, glitter, bump, scream.A
tions: forward, turnLeft, turnRight, grab, release, shoot, climb.Of 
ourse, our aim now is not just to design an agent that 
an performwell in a single 
ave layout.We want to design an agent that 
an usually perform well regardless ofthe layout of the 
ave.
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Some nomen
latureThe 
hoi
e of knowledge representation language tends to lead to two im-portant 
ommitments:� Ontologi
al 
ommitments : what does the world 
onsist of?� Epistemologi
al 
ommitments : what are the allowable states of knowl-edge?Propositional logi
 is useful for introdu
ing some fundamental ideas, butits ontologi
al 
ommitment|that the world 
onsists of fa
ts|sometimesmakes it too limited for further use.FOL has a di�erent ontologi
al 
ommitment|the world 
onsists of fa
ts ,obje
ts and relations .
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Logi
 for knowledge representationThe fundamental aim is to 
onstru
t a knowledge base KB 
ontaining a
olle
tion of statements about the world|expressed in FOL|su
h thatuseful things 
an be derived from it.Our 
entral aim is to generate senten
es that are true , if the senten
es inthe KB are true .This pro
ess is based on 
on
epts familiar from your introdu
tory logi

ourses:� Entailment: KB |= α means that the KB entails α.� Proof: KB ⊢i α means that α is derived from the KB using i. If i is soundthen we have a proof .� i is sound if it 
an generate only entailed α.� i is 
omplete if it 
an �nd a proof for any entailed α.
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Example: PrologYou have by now learned a little about programming in Prolog . For exam-ple:

concat([],L,L).

concat([H|T],L,[H|L2]) :- concat(T,L,L2).is a program to 
on
atenate two lists. The query
concat([1,2,3],[4,5],X).results in

X = [1, 2, 3, 4, 5].What's happening here? Well, Prolog is just a more limited form of FOLso...
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Example: Prolog... we are in fa
t doing inferen
e from a KB:� The Prolog programme itself is the KB. It expresses some knowledgeabout lists .� The query is expressed in su
h a way as to derive some new knowledge .How does this relate to full FOL? First of all the list notation is nothingbut synta
ti
 sugar . It 
an be removed: we de�ne a 
onstant 
alled emptyand a fun
tion 
alled cons.Now [1,2,3] just means cons(1, cons(2, cons(3, empty)))) whi
h isa term in FOL.I will assume the use of the synta
ti
 sugar for lists from now on.
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Prolog and FOLThe program when expressed in FOL, says

∀x . concat(empty, x, x)∧

∀h, t, l1, l2 . concat(t, l1, l2) =⇒ concat(cons(h, t), l1, cons(h, l2))The rule is simple|given a Prolog program:� Universally quantify all the unbound variables in ea
h line of theprogram and ...� ... form the 
onjun
tion of the results .If the universally quanti�ed lines are L1, L2, . . . , Ln then the Prolog pro-gramme 
orresponds to the KB
KB = L1 ∧ L2 ∧ · · · ∧ LnNow, what does the query mean?
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Prolog and FOLWhen you give the query

concat([1,2,3],[4,5],X).to Prolog it responds by trying to prove the following statement
KB =⇒ ∃x . concat([1, 2, 3], [4, 5], x)So: it tries to prove that the KB implies the query , and variables in thequery are existentially quanti�ed.When a proof is found, it supplies a value for x that makes the inferen
etrue .
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Prolog and FOLProlog di�ers from FOL in that, amongst other things:� It restri
ts you to using Horn 
lauses .� Its inferen
e pro
edure is not a full-blown proof pro
edure .� It does not deal with negation 
orre
tly.However the 
entral idea also works for full-blown theorem provers .If you want to experiment, you 
an obtain Prover9 from
http://www.cs.unm.edu/∼mccune/mace4/We'll see a brief example now, and a more extensive example of its uselater, time permitting...
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Prolog and FOLExpressed in Prover9, the above Prolog program and query look like this:
set(prolog_style_variables).

% This is the translated Prolog program for list concatenation.

% Prover9 has its own syntactic sugar for lists.

formulas(assumptions).

concat([], L, L).

concat(T, L, L2) -> concat([H:T], L, [H:L2]).

end_of_list.

% This is the query.

formulas(goals).

exists X concat([1, 2, 3], [4, 5], X).

end_of_list.Note: it is assumed that unbound variables are universally quanti�ed .
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Prolog and FOLYou 
an try to infer a proof using

prover9 -f file.inand the result is (in addition to a lot of other information):
1 concat(T,L,L2) -> concat([H:T],L,[H:L2]) # label(non_clause). [assumption].

2 (exists X concat([1,2,3],[4,5],X)) # label(non_clause) # label(goal). [goal].

3 concat([],A,A). [assumption].

4 -concat(A,B,C) | concat([D:A],B,[D:C]). [clausify(1)].

5 -concat([1,2,3],[4,5],A). [deny(2)].

6 concat([A],B,[A:B]). [ur(4,a,3,a)].

7 -concat([2,3],[4,5],A). [resolve(5,a,4,b)].

8 concat([A,B],C,[A,B:C]). [ur(4,a,6,a)].

9 $F. [resolve(8,a,7,a)].This shows that a proof is found but doesn't expli
itly give a value for

X|we'll see how to extra
t that later...
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The fundamental ideaSo the basi
 idea is: build a KB that en
odes knowledge about the world ,the e�e
ts of a
tions and so on.The KB is a 
onjun
tion of pie
es of knowledge, su
h that:� A query regarding what our agent should do 
an be posed in the form
∃actionList . Goal(... actionList ...)� Proving that

KB =⇒ ∃actionList . Goal(... actionList ...)instantiates actionList to an a
tual list of a
tions that will a
hievea goal represented by the Goal predi
ate.We sometimes use the notation ask and tell to refer to querying andadding to the KB.
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Using FOL in AI: the triumphant return of the WumpusWe want to be able to spe
ulate about the past and about possible futures .So:

Evil Robot

Wumpus

� We in
lude situations in the logi
al language used by our KB.� We in
lude axioms in our KB that relate to situations.This gives rise to situation 
al
ulus .
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Situation 
al
ulusIn situation 
al
ulus :� The world 
onsists of sequen
es of situations .� Over time, an agent moves from one situation to another.� Situations are 
hanged as a result of a
tions .In Wumpus World the a
tions are: forward, shoot, grab, climb, release,

turnRight, turnLeft.� A situation argument is added to items that 
an 
hange over time. Forexample At(lo
ation, s)Items that 
an 
hange over time are 
alled 
uents .� A situation argument is not needed for things that don't 
hange. Theseare sometimes referred to as eternal or atemporal .
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Representing 
hange as a result of a
tionsSituation 
al
ulus uses a fun
tionresult(action, s)to denote the new situation arising as a result of performing the spe
i�eda
tion in the spe
i�ed situation.result(grab, s0) = s1result(turnLeft, s1) = s2result(shoot, s2) = s3result(forward, s3) = s4...
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Axioms I: possibility axiomsThe �rst kind of axiom we need in a KB spe
i�es when parti
ular a
tionsare possible .We introdu
e a predi
ate Poss(action, s)denoting that an a
tion 
an be performed in situation s.We then need a possibility axiom for ea
h a
tion. For example:At(l, s) ∧Available(gold, l, s) =⇒ Poss(grab, s)Remember that unbound variables are universally quanti�ed .
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Axioms II: e�e
t axiomsGiven that an a
tion results in a new situation, we 
an introdu
e e�e
taxioms to spe
ify the properties of the new situation.For example, to keep tra
k of whether EVIL ROBOT has the gold we neede�e
t axioms to des
ribe the e�e
t of pi
king it up:Poss(grab, s) =⇒ Have(gold, result(grab, s))E�e
t axioms des
ribe the way in whi
h the world 
hanges .We would probably also in
lude
¬Have(gold, s0)in the KB, where s0 is the starting state .Important : we are des
ribing what is true in the situation that resultsfrom performing an a
tion in a given situation .
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Axioms III: frame axiomsWe need frame axioms to des
ribe the way in whi
h the world stays thesame .Example:Have(o, s) ∧

¬(a = release∧ o = gold) ∧ ¬(a = shoot∧ o = arrow)

=⇒ Have(o, result(a, s))des
ribes the e�e
t of having something and not dis
arding it .In a more general setting su
h an axiom might well look di�erent. Forexample

¬Have(o, s) ∧

(a 6= grab(o) ∨ ¬(Available(o, s) ∧ Portable(o)))

=⇒ ¬Have(o, result(a, s))des
ribes the e�e
t of not having something and not pi
king it up.
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The frame problemThe frame problem has histori
ally been a major issue.Representational frame problem : a large number of frame axioms arerequired to represent the many things in the world whi
h will not 
hangeas the result of an a
tion.We will see how to solve this in a moment.Inferential frame problem : when reasoning about a sequen
e of situations,all the un
hanged properties still need to be 
arried through all the steps.This 
an be alleviated using planning systems that allow us to reasoneÆ
iently when a
tions 
hange only a small part of the world. There arealso other remedies, whi
h we will not 
over.
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Su

essor-state axiomsE�e
t axioms and frame axioms 
an be 
ombined into su

essor-state ax-ioms .One is needed for ea
h predi
ate that 
an 
hange over time.A
tion a is possible =⇒
(true in new situation ⇐⇒
(you did something to make it true ∨it was already true and you didn't make it false))For examplePoss(a, s) =⇒

(Have(o, result(a, s)) ⇐⇒ ((a = grab ∧ Available(o,s)) ∨

(Have(o, s) ∧ ¬(a = release ∧ o = gold) ∧

¬(a = shoot ∧ o = arrow))))
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Knowing where you areIf s0 is the initial situation we know thatAt((1, 1), s0)I am assuming that we've added axioms allowing us to deal with thenumbers 0 to 5 and pairs of su
h numbers. (Exer
ise: do this.)We need to keep tra
k of what way we're fa
ing. Say north is 0, south is

2, east is 1 and west is 3. fa
ing(s0) = 0We need to know how motion a�e
ts lo
ationforwardResult((x, y), north) = (x, y + 1)forwardResult((x, y), east) = (x + 1, y)...and At(l, s) =⇒ goForward(s) = forwardResult(l, fa
ing(s))
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Knowing where you areThe 
on
ept of adja
en
y is very important in the Wumpus worldAdja
ent(l1, l2) ⇐⇒ ∃d forwardResult(l1, d) = l2We also know that the 
ave is 4 by 4 and surrounded by wallsWallHere((x, y)) ⇐⇒ (x = 0 ∨ y = 0 ∨ x = 5 ∨ y = 5)It is only possible to 
hange lo
ation by moving, and this only works ifyou're not fa
ing a wall. So......we need a su

essor-state axiom:Poss(a, s) =⇒At(l, result(a, s)) ⇐⇒ (l = goForward(s)

∧ a = forward

∧ ¬WallHere(l))
∨ (At(l, s) ∧ a 6= forward)
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Knowing where you areIt is only possible to 
hange orientation by turning. Again, we need asu

essor-state axiomPoss(a, s) =⇒fa
ing(result(a, s)) = d ⇐⇒
(a = turnRight∧ d = mod(fa
ing(s) + 1, 4))

∨ (a = turnLeft∧ d = mod(fa
ing(s) − 1, 4))

∨ (fa
ing(s) = d ∧ a 6= turnRight∧ a 6= turnLeft)and so on...
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The quali�
ation and rami�
ation problemsQuali�
ation problem : we are in general never 
ompletely 
ertain what
onditions are required for an a
tion to be e�e
tive.Consider for example turning the key to start your 
ar.This will lead to problems if important 
onditions are omitted from axioms.Rami�
ation problem : a
tions tend to have impli
it 
onsequen
es thatare large in number.For example, if I pi
k up a sandwi
h in a dodgy sandwi
h shop, I willalso be pi
king up all the bugs that live in it. I don't want to model thisexpli
itly.
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Solving the rami�
ation problemThe rami�
ation problem 
an be solved by modifying su

essor-state ax-ioms .For example: Poss(a, s) =⇒
(At(o, l, result(a, s)) ⇐⇒

(a = go(l ′, l) ∧

[o = robot ∨ Has(robot, o, s)]) ∨

(At(o, l, s) ∧

[¬∃l ′′ . a = go(l, l ′′) ∧ l 6= l ′′ ∧

{o = robot ∨ Has(robot, o, s)}]))des
ribes the fa
t that anything EVIL ROBOT is 
arrying moves aroundwith him.
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Dedu
ing properties of the world: 
ausal rulesIf you know where you are, then you 
an think about pla
es rather thanjust situations .Syn
hroni
 rules relate properties shared by a single state of the world.There are two kinds: 
ausal and diagnosti
.Causal rules : some properties of the world will produ
e per
epts.WumpusAt(l1) ∧ Adja
ent(l1, l2) =⇒ Sten
hAt(l2)PitAt(l1) ∧ Adja
ent(l1, l2) =⇒ BreezeAt(l2)Systems reasoning with su
h rules are known as model-based reasoningsystems.
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Dedu
ing properties of the world: diagnosti
 rulesDiagnosti
 rules : infer properties of the world from per
epts.For example: At(l, s) ∧ Breeze(s) =⇒ BreezeAt(l)At(l, s) ∧ Stench(s) =⇒ StenchAt(l)These may not be very strong.The di�eren
e between model-based and diagnosti
 reasoning 
an be im-portant. For example, medi
al diagnosis 
an be done based on symptomsor based on a model of disease.
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General axioms for situations and obje
tsNote : in FOL, if we have two 
onstants robot and gold then an interpre-tation is free to assign them to be the same thing.This is not something we want to allow.Unique names axioms state that ea
h pair of distin
t items in our modelof the world must be di�erent

robot 6= gold

robot 6= arrow

robot 6= wumpus...
wumpus 6= gold...
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General axioms for situations and obje
tsUnique a
tions axioms state that a
tions must share this property, so forea
h pair of a
tions

go(l, l ′) 6= grab

go(l, l ′) 6= drop(o)...

drop(o) 6= shoot...and in addition we need to de�ne equality for a
tions, so for ea
h a
tion

go(l, l ′) = go(l ′′, l ′′′) ⇐⇒ l = l ′′ ∧ l ′ = l ′′′

drop(o) = drop(o ′) ⇐⇒ o = o ′...
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General axioms for situations and obje
tsThe situations are ordered so

s0 6= result(a, s)and situations are distin
t soresult(a, s) = result(a ′, s ′) ⇐⇒ a = a ′ ∧ s = s ′Stri
tly speaking we should be using a many-sorted version of FOL.In su
h a system variables 
an be divided into sorts whi
h are impli
itlyseparate from one another.
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The start stateFinally, we're going to need to spe
ify what's true in the start state .For example At(robot, [1, 1], s0)At(wumpus, [3, 4], s0)Has(robot, arrow, s0)...and so on.
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Sequen
es of situationsWe know that the fun
tion result tells us about the situation resulting fromperforming an a
tion in an earlier situation.How 
an this help us �nd sequen
es of a
tions to get things done?De�ne Sequen
e([], s, s ′) = s ′ = sSequen
e([a], s, s ′) = Poss(a, s) ∧ s ′ = result(a, s)Sequen
e(a :: as, s, s ′) = ∃t . Sequen
e([a], s, t) ∧ Sequen
e(as, t, s ′)To obtain a sequen
e of a
tions that a
hieves Goal(s) we 
an use thequery

∃a ∃s . Sequen
e(a, s0, s) ∧ Goal(s)
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Knowledge representation and reasoningIt should be 
lear that generating sequen
es of a
tions by inferen
e in FOLis highly non-trivial.Ideally we'd like to maintain an expressive language while restri
ting itenough to be able to do inferen
e eÆ
iently .Further aims :� To give a brief introdu
tion to semanti
 networks and frames forknowledge representation.� To see how inheritan
e 
an be applied as a reasoning method.� To look at the use of rules for knowledge representation, along withforward 
haining and ba
kward 
haining for reasoning.Further reading : The Essen
e of Arti�
ial Intelligen
e , Alison Cawsey.Prenti
e Hall, 1998.
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Frames and semanti
 networksFrames and semanti
 networks represent knowledge in the form of 
lassesof obje
ts and relationships between them :� The sub
lass and instan
e relationships are emphasised.� We form 
lass hierar
hies in whi
h inheritan
e is supported and pro-vides the main inferen
e me
hanism .As a result inferen
e is quite limited.We also need to be extremely 
areful about semanti
s .The only major di�eren
e between the two ideas is notational .
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Example of a semanti
 network
has

Jake Mayhem

instance

Ear problems

volume

has

subclass

Musician

subclass
hasInstrument

Person

has

has

Right arm

subclass volume

has

hair_length Any

Sheet music

Quiet

instance

Violet Scroot
has

Oboe

has

Axe

Long

Loud
Rock musician

hair_length

Head

Left arm

Classical musician
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FramesFrames on
e again support inheritan
e through the sub
lass relationship.
volume:      loud

has:             ear problems
hairlength:  long

subclass:     Musician

Rock musician

subclass:  Person
has:          instrument

Musician

has, hairlength, volume et
 are slots .
long, loud, instrument et
 are slot values .These are a dire
t prede
essor of obje
t-oriented programming languages .
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DefaultsBoth approa
hes to knowledge representation are able to in
orporate de-faults :

has:                ear problems
* hairlength:  long

subclass:        Musician

* volume:      loud

subclass:    Rock musician
hairlength: short
image:       gothic

Rock musician
Dementia Evilperson

Starred slots are typi
al values asso
iated with sub
lasses and instan
es,but 
an be overridden .
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Multiple inheritan
eBoth approa
hes 
an in
orporate multiple inheritan
e , at a 
ost:
instanceinstance

Classical musicianRock musician

Cornelius Cleverchap

� What is hairlength for Cornelius if we're trying to use inheritan
e toestablish it?� This 
an be over
ome initially by spe
ifying whi
h 
lass is inheritedfrom in preferen
e when there's a 
on
i
t.� But the problem is still not entirely solved|what if we want to preferinheritan
e of some things from one 
lass, but inheritan
e of others froma di�erent one?
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Other issues� Slots and slot values 
an themselves be frames. For example Dementiamay have an instrument slot with the value Electric harp, whi
h itselfmay have properties des
ribed in a frame.� Slots 
an have spe
i�ed attributes . For example, we might spe
ify that
instrument 
an have multiple values, that ea
h value 
an only be aninstan
e of Instrument, that ea
h value has a slot 
alled owned by andso on.� Slots may 
ontain arbitrary pie
es of program. This is known as pro
e-dural atta
hment . The fragment might be exe
uted to return the slot'svalue, or update the values in other slots et
.
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Rule-based systemsA rule-based system requires three things:1. A set of if-then rules . These denote spe
i�
 pie
es of knowledge aboutthe world.They should be interpreted similarly to logi
al impli
ation.Su
h rules denote what to do or what 
an be inferred under given
ir
umstan
es.2. A 
olle
tion of fa
ts denoting what the system regards as 
urrently trueabout the world.3. An interpreter able to apply the 
urrent rules in the light of the 
urrentfa
ts.
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Forward 
hainingThe �rst of two basi
 kinds of interpreter begins with established fa
tsand then applies rules to them .This is a data-driven pro
ess. It is appropriate if we know the initial fa
tsbut not the required 
on
lusion.Example: XCON|used for 
on�guring VAX 
omputers.In addition:� We maintain a working memory , typi
ally of what has been inferredso far.� Rules are often 
ondition-a
tion rules , where the right-hand side spe
i-�es an a
tion su
h as adding or removing something from working mem-ory, printing a message et
.� In some 
ases a
tions might be entire program fragments.
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Forward 
hainingThe basi
 algorithm is:1. Find all the rules that 
an �re, based on the 
urrent working memory.2. Sele
t a rule to �re. This requires a 
on
i
t resolution strategy .3. Carry out the a
tion spe
i�ed, possibly updating the working memory.Repeat this pro
ess until either no rules 
an be used or a halt appears inthe working memory.
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Example
dry_mouth
working

InterpreterWorking memory

Condition−action rules

no_work −> DELETE working
working −> ADD no_work
get_drink AND no_work −> ADD go_bar
thirsty −> ADD get_drink
dry_mouth −> ADD thirsty
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ExampleProgress is as follows:1. The rule

dry mouth =⇒ ADD thirsty�res adding thirsty to working memory.2. The rule

thirsty =⇒ ADD get drink�res adding get drink to working memory.3. The rule

working =⇒ ADD no work�res adding no work to working memory.4. The rule

get drink AND no work =⇒ ADD go bar�res, and we establish that it's time to go to the bar.
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Con
i
t resolutionClearly in any more realisti
 system we expe
t to have to deal with as
enario where two or more rules 
an be �red at any one time :� Whi
h rule we 
hoose 
an 
learly a�e
t the out
ome.� We might also want to attempt to avoid inferring an abundan
e of use-less information.We therefore need a means of resolving su
h 
on
i
ts .
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Con
i
t resolutionCommon 
on
i
t resolution strategies are:� Prefer rules involving more re
ently added fa
ts.� Prefer rules that are more spe
i�
. For example
patient coughing =⇒ ADD lung problemis more general than

patient coughing AND patient smoker =⇒ ADD lung cancer.This allows us to de�ne ex
eptions to general rules.� Allow the designer of the rules to spe
ify priorities.� Fire all rules simultaneously|this essentially involves following all
hains of inferen
e at on
e.
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Reason maintenan
eSome systems will allow information to be removed from the working mem-ory if it is no longer justi�ed .For example, we might �nd that

patient coughingand

patient smokerare in working memory, and hen
e �re
patient coughing AND patient smoker =⇒ ADD lung cancerbut later infer something that 
auses patient coughing to be withdrawnfrom working memory.The justi�
ation for lung cancer has been removed, and so it should per-haps be removed also.
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Pattern mat
hingIn general rules may be expressed in a slightly more 
exible form involvingvariables whi
h 
an work in 
onjun
tion with pattern mat
hing .For example the rule

coughs(X) AND smoker(X) =⇒ ADD lung cancer(X)
ontains the variable X.If the working memory 
ontains coughs(neddy) and smoker(neddy) then

X = neddyprovides a mat
h and

lung cancer(neddy)is added to the working memory.
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Ba
kward 
hainingThe se
ond basi
 kind of interpreter begins with a goal and �nds a rulethat would a
hieve it.It then works ba
kwards , trying to a
hieve the resulting earlier goals inthe su

ession of inferen
es.Example: MYCIN|medi
al diagnosis with a small number of 
onditions.This is a goal-driven pro
ess. If you want to test a hypothesis or youhave some idea of a likely 
on
lusion it 
an be more eÆ
ient than forward
haining.
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Example

get drink
no work

thirsty
no work

working

dry mouth
no work

dry mouth
working

Try �rst to establish get drink. This

so we're done.

Working memory Goal

go bar


an be done by establishing thirsty.

These are the new goals.establish get drink and no work.To establish go bar we have to
thirsty 
an be established by establishing

dry mouth. This is in the working memoryFinally, we 
an establish no work byestablishing working. This is in the workingmemory so the pro
ess has �nished.

261



Example with ba
ktra
kingIf at some point more than one rule has the required 
on
lusion then we
an ba
ktra
k .Example: Prolog ba
ktra
ks, and in
orporates pattern mat
hing. It ordersattempts a

ording to the order in whi
h rules appear in the program.Example: having added

up early =⇒ ADD tiredand

tired AND lazy =⇒ ADD go barto the rules, and up early to the working memory:
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Example with ba
ktra
king
thirsty
no work

get drink
no work

working

dry mouth
no work

dry mouth
working
up early

Pro
ess pro
eeds as before
go bar

lazy

lazy
up early

lazy
tired

di�erent approa
h.
by establishing tired andAttempt to establish go bar

lazy.This 
an be done by establishing
up early and lazy.so we're done.up early is in the working memoryWe 
an not establisg lazyand so we ba
ktra
k and try a

GoalWorking memory
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Problem solving is di�erent to planningIn sear
h problems we:� Represent states : and a state representation 
ontains everything that'srelevant about the environment.� Represent a
tions : by des
ribing a new state obtained from a 
urrentstate.� Represent goals : all we know is how to test a state either to see if it'sa goal, or using a heuristi
.� A sequen
e of a
tions is a `plan' : but we only 
onsider sequen
es of
onse
utive a
tions .Sear
h algorithms are good for solving problems that �t this framework.However for more 
omplex problems they may fail 
ompletely...
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Problem solving is di�erent to planningRepresenting a problem su
h as: `go out and buy some pies' is hopeless:� There are too many possible a
tions at ea
h step.� A heuristi
 
an only help you rank states. In parti
ular it does not helpyou ignore useless a
tions.� We are for
ed to start at the initial state, but you have to work out howto get the pies|that is, go to town and buy them, get online and �nda web site that sells pies et
|before you 
an start to do it .Knowledge representation and reasoning might not help either: althoughwe end up with a sequen
e of a
tions|a plan|there is so mu
h 
exibilitythat 
omplexity might well be
ome an issue.
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Introdu
tion to planningWe now look at how an agent might 
onstru
t a plan enabling it to a
hievea goal.Aims :� To look at how we might update our 
on
ept of knowledge represen-tation and reasoning to apply more spe
i�
ally to planning tasks.� To look in detail at the basi
 partial-order planning algorithm .Reading : Russell and Norvig, 
hapter 11.
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Planning algorithms work di�erentlyDi�eren
e 1 :� Planning algorithms use a spe
ial purpose language|often based onFOL or a subset| to represent states, goals, and a
tions.� States and goals are des
ribed by senten
es, as might be expe
ted, but...� ...a
tions are des
ribed by stating their pre
onditions and their e�e
ts .So if you know the goal in
ludes (maybe among other things)Have(pie)and a
tion Buy(x) has an e�e
t Have(x) then you know that a plan in
lud-ing Buy(pie)might be reasonable.
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Planning algorithms work di�erentlyDi�eren
e 2 :� Planners 
an add a
tions at any relevant point at all between thestart and the goal , not just at the end of a sequen
e starting at thestart state.� This makes sense: I may determine that Have(carKeys) is a good stateto be in without worrying about what happens before or after �ndingthem.� By making an important de
ision like requiring Have(carKeys) early onwe may redu
e bran
hing and ba
ktra
king.� State des
riptions are not 
omplete|Have(carKeys) des
ribes a 
lassof states|and this adds 
exibility.So: you have the potential to sear
h both forwards and ba
kwards withinthe same problem.
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Planning algorithms work di�erentlyDi�eren
e 3 :It is assumed that most elements of the environment are independent ofmost other elements .� A goal in
luding several requirements 
an be atta
ked with a divide-and-
onquer approa
h.� Ea
h individual requirement 
an be ful�lled using a subplan...� ...and the subplans then 
ombined.This works provided there is not signi�
ant intera
tion between the sub-plans.Remember: the frame problem .
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Running example: gorilla-based mis
hiefWe will use the following simple example problem, whi
h as based on asimilar one due to Russell and Norvig.The intrepid little s
amps in the Cambridge University Roof-ClimbingSo
iety wish to atta
h an in
atable gorilla to the spire of a FamousCollege . To do this they need to leave home and obtain:� An in
atable gorilla : these 
an be pur
hased from all good joke shops.� Some rope : available from a hardware store.� A �rst-aid kit : also available from a hardware store.They need to return home after they've �nished their shopping.How do they go about planning their jolly es
apade?
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The STRIPS languageSTRIPS: \Stanford Resear
h Institute Problem Solver" (1970).States : are 
onjun
tions of ground literals . They must not in
lude fun
-tion symbols . At(home) ∧ ¬Have(gorilla)
∧ ¬Have(rope)
∧ ¬Have(kit)Goals : are 
onjun
tions of literals where variables are assumed existen-tially quanti�ed . At(x) ∧ Sells(x, gorilla)A planner �nds a sequen
e of a
tions that when performed makes the goaltrue. We are no longer employing a full theorem-prover.
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The STRIPS languageSTRIPS represents a
tions using operators . For example

At(y), ¬At(x)

At(x),Path(x, y)Go(y)

Op(A
tion: Go(y),Pre: At(x) ∧ Path(x, y),E�e
t: At(y) ∧ ¬At(x))All variables are impli
itly universally quanti�ed. An operator has:� An a
tion des
ription : what the a
tion does.� A pre
ondition : what must be true before the operator 
an be used. A
onjun
tion of positive literals .� An e�e
t : what is true after the operator has been used. A 
onjun
tionof literals .
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The spa
e of plansWe now make a 
hange in perspe
tive|we sear
h in plan spa
e :� Start with an empty plan .� Operate on it to obtain new plans. In
omplete plans are 
alled partialplans . Re�nement operators add 
onstraints to a partial plan. Allother operators are 
alled modi�
ation operators .� Continue until we obtain a plan that solves the problem.Operations on plans 
an be:� Adding a step.� Instantiating a variable .� Imposing an ordering that pla
es a step in front of another.� and so on...
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Representing a plan: partial order plannersWhen putting on your shoes and so
ks:� It does not matter whether you deal with your left or right foot �rst.� It does matter that you pla
e a so
k on before a shoe, for any givenfoot.It makes sense in 
onstru
ting a plan not to make any 
ommitment towhi
h side is done �rst if you don't have to.Prin
iple of least 
ommitment : do not 
ommit to any spe
i�
 
hoi
esuntil you have to. This 
an be applied both to ordering and to instantiationof variables. A partial order planner allows plans to spe
ify that somesteps must 
ome before others but others have no ordering. A linearisationof su
h a plan imposes a spe
i�
 sequen
e on the a
tions therein.
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Representing a plan: partial order plannersA plan 
onsists of:1. A set {S1, S2, . . . , Sn} of steps . Ea
h of these is one of the availableoperators .2. A set of ordering 
onstraints . An ordering 
onstraint Si < Sj denotesthe fa
t that step Si must happen before step Sj. Si < Sj < Sk andso on has the obvious meaning. Si < Sj does not mean that Si mustimmediately pre
ede Sj.3. A set of variable bindings v = x where v is a variable and x is either avariable or a 
onstant.4. A set of 
ausal links or prote
tion intervals Si
c→ Sj. This denotes thefa
t that the purpose of Si is to a
hieve the pre
ondition c for Sj.A 
ausal link is always paired with an equivalent ordering 
onstraint.
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Representing a plan: partial order plannersThe initial plan has:� Two steps, 
alled Start and Finish.� a single ordering 
onstraint Start < Finish.� No variable bindings .� No 
ausal links .In addition to this:� The step Start has no pre
onditions, and its e�e
t is the start state forthe problem.� The step Finish has no e�e
t, and its pre
ondition is the goal.� Neither Start or Finish has an asso
iated a
tion.We now need to 
onsider what 
onstitutes a solution ...
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Solutions to planning problemsA solution to a planning problem is any 
omplete and 
onsistent partiallyordered plan.Complete : ea
h pre
ondition of ea
h step is a
hieved by another step inthe solution.A pre
ondition c for S is a
hieved by a step S ′ if:1. The pre
ondition is an e�e
t of the step
S ′ < S and c ∈ E�e
ts(S ′)and...2. ... there is no other step that 
an 
an
el the pre
ondition:no S ′′ exists where S ′ < S ′′ < S and ¬c ∈ E�e
ts(S ′′)
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Solutions to planning problemsConsistent : no 
ontradi
tions exist in the binding 
onstraints or in theproposed ordering. That is:1. For binding 
onstraints, we never have v = X and v = Y for distin
t
onstants X and Y.2. For the ordering, we never have S < S ′ and S ′ < S.Returning to the roof-
limber's shopping expedition, here is the basi
 ap-proa
h:� Begin with only the Start and Finish steps in the plan.� At ea
h stage add a new step.� Always add a new step su
h that a 
urrently non-a
hieved pre
ondi-tion is a
hieved .� Ba
ktra
k when ne
essary.
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An example of partial-order planningHere is the initial plan :

Start

Finish

At(Home) ∧ Have(G) ∧ Have(R) ∧ Have(FA)

At(Home) ∧ Sells(JS,G) ∧ Sells(HS,R) ∧ Sells(HS,FA)

Thin arrows denote ordering.
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An example of partial-order planningThere are two a
tions available :

Go(y)

At(y), ¬At(x)

Buy(y)

At(x), Sells(x, y)

Have(y)

At(x)

A planner might begin, for example, by adding a Buy(G) a
tion in order toa
hieve the Have(G) pre
ondition of Finish.Note : the following order of events is by no means the only one availableto a planner.It has been 
hosen for illustrative purposes.
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An example of partial-order planningIn
orporating the suggested step into the plan:

Start

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

At(x), Sells(x, G)

Thi
k arrows denote 
ausal links. They always have a thin arrow under-neath.Here the new Buy step a
hieves the Have(G) pre
ondition of Finish.
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An example of partial-order planningThe planner 
an now introdu
e a se
ond 
ausal link from Start to a
hievethe Sells(x, G) pre
ondition of Buy(G).

Start

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(JS), Sells(JS,G)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)
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An example of partial-order planningThe planner's next obvious move is to introdu
e a Go step to a
hieve theAt(JS) pre
ondition of Buy(G).

Buy(G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)At(x)

Go(JS)

Start

At(JS), Sells(JS,G)

And we 
ontinue...
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An example of partial-order planningInitially the planner 
an 
ontinue quite easily in this manner:� Add a 
ausal link from Start to Go(JS) to a
hieve the At(x) pre
ondi-tion.� Add the step Buy(R) with an asso
iated 
ausal link to the Have(R)pre
ondition of Finish.� Add a 
ausal link from Start to Buy(R) to a
hieve the Sells(HS, R) pre-
ondition.But then things get more interesting...
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An example of partial-order planning
Start

At(JS), Sells(JS,G)

Finish

At(Home), Have(G), Have(R), Have(FA)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)

At(HS), Sells(HS,R)

At(Home)

Buy(G)

Go(JS)

At this point it starts to get tri
ky...The At(HS) pre
ondition in Buy(R) is not a
hieved.
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An example of partial-order planning
Start

At(JS), Sells(JS,G)

Finish

At(Home), Have(G), Have(R), Have(FA)

Sells(HS,R), At(HS)

Go(HS)

At(x)

¬At(x)
Go(JS)

Buy(G) Buy(R)

At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)At(Home)

The At(HS) pre
ondition is easy to a
hieve. But if we introdu
e a 
ausallink from Start to Go(HS) then we risk invalidating the pre
ondition forGo(JS).
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An example of partial-order planningA step that might invalidate (sometimes the word 
lobber is employed) apreviously a
hieved pre
ondition is 
alled a threat .
Threat

Promotion

Demotion

c

¬c

cc

¬c

¬c

A planner 
an try to �x a threat by introdu
ing an ordering 
onstraint.
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An example of partial-order planningThe planner 
ould ba
ktra
k and try to a
hieve the At(x) pre
onditionusing the existing Go(JS) step.

Start

At(JS), Sells(JS,G)

Go(JS)

Finish

Go(HS)
At(Home) At(Home), Sells(JS,G), Sells(HS,R), Sells(HS,FA)

Buy(R)Buy(G)

¬At(JS)

At(JS)

At(Home), Have(G), Have(R), Have(FA)

Sells(HS,R), At(HS)

This involves a threat, but one that 
an be �xed using promotion.
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The algorithmSimplifying slightly to the 
ase where there are no variables .Say we have a partially 
ompleted plan and a set of the pre
onditions thathave yet to be a
hieved.� Sele
t a pre
ondition p that has not yet been a
hieved and is asso
iatedwith an a
tion B.� At ea
h stage the partially 
omplete plan is expanded into a new
olle
tion of plans .� To expand a plan, we 
an try to a
hieve p either by using an a
tionthat's already in the plan or by adding a new a
tion to the plan. Ineither 
ase, 
all the a
tion A.We then try to 
onstru
t 
onsistent plans where A a
hieves p.
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The algorithmThis works as follows:� For ea
h possible way of a
hieving p:

– Add Start < A, A < Finish, A < B and the 
ausal link A
p→ B to theplan.

– If the resulting plan is 
onsistent we're done, otherwise generate allpossible ways of removing in
onsisten
ies by promotion or demo-tion and keep any resulting 
onsistent plans .At this stage:� If you have no further pre
onditions that haven't been a
hieved thenany plan obtained is valid .
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The algorithmBut how do we try to enfor
e 
onsisten
y?When you attempt to a
hieve p using A:� Find all the existing 
ausal links A ′ ¬p→ B ′ that are 
lobbered by A.� For ea
h of those you 
an try adding A < A ′ or B ′ < A to the plan.� Find all existing a
tions C in the plan that 
lobber the new 
ausal link

A
p→ B.� For ea
h of those you 
an try adding C < A or B < C to the plan.� Generate every possible 
ombination in this way and retain any 
on-sistent plans that result.
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Possible threatsWhat about dealing with variables?If at any stage an e�e
t ¬At(x) appears, is it a threat to At(JS)?Su
h an o

urren
e is 
alled a possible threat and we 
an deal with it byintrodu
ing inequality 
onstraints : in this 
ase x 6= JS.� Ea
h partially 
omplete plan now has a set I of inequality 
onstraintsasso
iated with it.� An inequality 
onstraint has the form v 6= X where v is a variable and

X is a variable or a 
onstant.� Whenever we try to make a substitution we 
he
k I to make sure wewon't introdu
e a 
on
i
t.If we would introdu
e a 
on
i
t then we dis
ard the partially 
ompletedplan as in
onsistent.
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Did you heed the DIRE WARNING?At the beginning of the 
ourse I suggested making sure you 
an answerthe following two questions:1. Let

f(x1, . . . , xn) =

n∑

i=1

aix
2
iwhere the ai are 
onstants. Compute ∂f/∂xj where 1 ≤ j ≤ n?Answer: As

f(x1, . . . , xn) = a1x
2
1 + · · · + ajx

2
j + · · · + anx2

nonly one term in the sum depends on xj, so all the other terms di�er-entiate to give 0 and
∂f

∂xj

= 2ajxj
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Did you heed the DIRE WARNING?2. Let f(x1, . . . , xn) be a fun
tion. Now assume xi = gi(y1, . . . , ym) for ea
h
xi and some 
olle
tion of fun
tions gi. Assuming all requirements fordi�erentiability and so on are met, 
an you write down an expressionfor ∂f/∂yj where 1 ≤ j ≤ m?Answer: this is just the 
hain rule for partial di�erentiation

∂f

∂yj

=

n∑

i=1

∂f

∂gi

∂gi

∂yj

296



Supervised learning with neural networksWe now look at how an agent might learn to solve a general problem byseeing examples .Aims :� To present an outline of supervised learning as part of AI.� To introdu
e mu
h of the notation and terminology used.� To introdu
e the 
lassi
al per
eptron .� To introdu
e multilayer per
eptrons and the ba
kpropagation algo-rithm for training them.Reading : Russell and Norvig 
hapter 20.
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An exampleA 
ommon sour
e of problems in AI is medi
al diagnosis .Imagine that we want to automate the diagnosis of an Embarrassing Disease(
all it D) by 
onstru
ting a ma
hine:

0 otherwise1 if the patient su�ers from DMeasurements taken from thepatient: heart rate, blood pressure,presen
e of green spots et
. Ma
hine

Could we do this by expli
itly writing a program that examines the mea-surements and outputs a diagnosis?Experien
e suggests that this is unlikely.
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An example, 
ontinued...An alternative approa
h: ea
h 
olle
tion of measurements 
an be writtenas a ve
tor,

x
T = ( x1 x2 · · · xn )where,

x1 = heart rate

x2 = blood pressure
x3 = 1 if the patient has green spots

0 otherwise... and so on

(Note : it's a 
ommon 
onvention that ve
tors are 
olumn ve
tors by de-fault. This is why the above is written as a transpose .)
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An example, 
ontinued...A ve
tor of this kind 
ontains all the measurements for a single patient andis 
alled a feature ve
tor or instan
e .The measurements are attributes or features .Attributes or features generally appear as one of three basi
 types:� Continuous : xi ∈ [xmin, xmax] where xmin, xmax ∈ R.� Binary : xi ∈ {0, 1} or xi ∈ {−1, +1}.� Dis
rete : xi 
an take one of a �nite number of values, say xi ∈ {X1, . . . , Xp}.
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An example, 
ontinued...Now imagine that we have a large 
olle
tion of patient histories (m in total)and for ea
h of these we know whether or not the patient su�ered from D.� The ith patient history gives us an instan
e xi.� This 
an be paired with a single bit|0 or 1|denoting whether or notthe ith patient su�ers from D. The resulting pair is 
alled an exampleor a labelled example .� Colle
ting all the examples together we obtain a training sequen
e

s = ((x1, 0), (x2, 1), . . . , (xm, 0))
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An example, 
ontinued...In supervised ma
hine learning we aim to design a learning algorithmwhi
h takes s and produ
es a hypothesis h.
Learning Algorithms h

Intuitively, a hypothesis is something that lets us diagnose new patients.This is IMPORTANT : we want to diagnose patients that the system hasnever seen .The ability to do this su

essfully is 
alled generalisation .
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An example, 
ontinued...In fa
t, a hypothesis is just a fun
tion that maps instan
es to labels .
x

Classi�er

h(x) LabelAttribute ve
tor

As h is a fun
tion it assigns a label to any x and not just the ones thatwere in the training sequen
e .What we mean by a label here depends on whether we're doing 
lassi�
a-tion or regression .

303



Supervised learning: 
lassi�
ationIn 
lassi�
ation we're assigning x to one of a set {ω1, . . . , ωc} of c 
lasses .For example, if x 
ontains measurements taken from a patient then theremight be three 
lasses:

ω1 = patient has disease

ω2 = patient doesn't have disease
ω3 = don't ask me buddy, I'm just a 
omputer!The binary 
ase above also �ts into this framework, and we'll often spe-
ialise to the 
ase of two 
lasses, denoted C1 and C2.
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Supervised learning: regressionIn regression we're assigning x to a real number h(x) ∈ R.For example, if x 
ontains measurements taken regarding today's weatherthen we might have

h(x) = estimate of amount of rainfall expe
ted tomorrowFor the two-
lass 
lassi�
ation problem we will also refer to a situationsomewhat between the two, where

h(x) = Pr(x is in C1)and so we would typi
ally assign x to 
lass C1 if h(x) > 1/2.
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SummaryWe don't want to design h expli
itly.
Training sequen
e

h = L(s)

Labelh(x)

s

Learner
L

Classi�erAttribute ve
tor

x

So we use a learner L to infer it on the basis of a sequen
e s of trainingexamples .
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Neural networksThere is generally a set H of hypotheses from whi
h L is allowed to sele
t
h

L(s) = h ∈ H
H is 
alled the hypothesis spa
e .The learner 
an output a hypothesis expli
itly or|as in the 
ase of a neuralnetwork|it 
an output a ve
tor

w
T =

(

w1 w2 · · · wW

)of weights whi
h in turn spe
ify h

h(x) = f(w;x)where w = L(s).
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Types of learningThe form of ma
hine learning des
ribed is 
alled supervised learning .This introdu
tion will 
on
entrate on this kind of learning. In parti
ular,the literature also dis
usses:1. Unsupervised learning .2. Learning using membership queries and equivalen
e queries .3. Reinfor
ement learning .Some of this further material will be 
overed in AI 2.
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Some further examples� Spee
h re
ognition .� De
iding whether or not to give 
redit .� Dete
ting 
redit 
ard fraud .� De
iding whether to buy or sell a sto
k option .� De
iding whether a tumour is benign .� Data mining : extra
ting interesting but hidden knowledge from ex-isting, large databases. For example, databases 
ontaining �nan
ialtransa
tions or loan appli
ations .� De
iding whether driving 
onditions are dangerous .� Automati
 driving . (See Pomerleau, 1989, in whi
h a 
ar is driven for90 miles at 70 miles per hour, on a publi
 road with other 
ars present,but with no assistan
e from humans.)
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This is very similar to 
urve �ttingThis pro
ess is in fa
t very similar to 
urve �tting .Think of the pro
ess as follows:� Nature pi
ks an h ′ ∈ H but doesn't reveal it to us.� Nature then shows us a training sequen
e s where ea
h xi is labelled as
h ′(xi) + ǫi where ǫi is noise of some kind.Our job is to try to infer what h ′ is on the basis of s only .This is easy to visualise in one dimension: it's just �tting a 
urve to somepoints .
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Curve �ttingExample : if H is the set of all polynomials of degree 3 then nature mightpi
k

h ′(x) =
1

3
x3 −

3

2
x2 + 2x −

1

2

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

The line is dashed to emphasise the fa
t that we don't get to see it .
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Curve �ttingWe 
an now use h ′ to obtain a training sequen
e s in the manner suggested..

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

Here we have,

s
T = ((x1, y1), (x2, y2), . . . , (xm, ym))where ea
h xi and yi is a real number.
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Curve �ttingWe'll use a learning algorithm L that operates in a reasonable-lookingway: it pi
ks an h ∈ H minimising the following quantity,
E =

m∑

i=1

(h(xi) − yi)
2

In other words

h = L(s) = argmin
h∈H

m∑

i=1

(h(xi) − yi)
2Why is this sensible?1. Ea
h term in the sum is 0 if h(xi) is exa
tly yi.2. Ea
h term in
reases as the di�eren
e between h(xi) and yi in
reases.3. We add the terms for all examples.
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Curve �ttingIf we pi
k h using this method then we get:
0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

The 
hosen h is 
lose to the target h ′, even though it was 
hosen usingonly a small number of noisy examples .It is not quite identi
al to the target 
on
ept.However if we were given a new point x
′ and asked to guess the value h ′(x ′)then guessing h(x ′) might be expe
ted to do quite well.
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Curve �ttingProblem : we don't know what H nature is using . What if the one we
hoose doesn't mat
h? We 
an make our H `bigger' by de�ning it as
H = {h : h is a polynomial of degree at most 5}If we use the same learning algorithm then we get:

0.5 1 1.5 2 2.5 3

-0.2

0.2

0.4

0.6

The result in this 
ase is similar to the previous one: h is again quite 
loseto h ′, but not quite identi
al.
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Curve �ttingSo what's the problem? Repeating the pro
ess with,
H = {h : h is a polynomial of degree at most 1}gives the following:

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

In e�e
t, we have made our H too `small'. It does not in fa
t 
ontain anyhypothesis similar to h ′.
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Curve �ttingSo we have to make H huge, right? WRONG!!! With
H = {h : h is a polynomial of degree at most 25}we get:

0.5 1 1.5 2 2.5 3

-0.4

-0.2

0.2

0.4

0.6

0.8

BEWARE!!! This is known as over�tting .
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Curve �ttingAn experiment to gain some further insight : using
h ′(x) =

1

10
x10 −

1

12
x8 +

1

15
x6 +

1

3
x3 −

3

2
x2 + 2x −

1

2
.as the unknown underlying fun
tion.We 
an look at how the degree of the polynomial the training algorithm
an output a�e
ts the generalisation ability of the resulting h.We use the same training algorithm, and we train using

H = {h : h is a polynomial of degree at most d}for values of d ranging from 1 to 30
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Curve �tting� Ea
h time we obtain an h of a given degree|
all it hd|we assess itsquality using a further 100 inputs x
′
i generated at random and 
al-
ulating

q(d) =
1

100

100∑

i=1

(h ′(x ′
i) − hd(x

′
i))

2

� As the values q(d) are found using inputs that are not ne
essarily in-
luded in the training sequen
e they measure generalisation .� To smooth out the e�e
ts of the random sele
tion of examples we repeatthis pro
ess 100 times and average the values q(d).
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Curve �ttingHere is the result:

5 10 15 20 25 30
d

5

10

15

20

25

30

Log of average q

Clearly: we need to 
hoose H sensibly if we want to obtain good generali-sation performan
e .
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The per
eptronThe example just given illustrates mu
h of what we want to do. Howeverin pra
ti
e we deal with more than a single dimension .The simplest form of hypothesis used is the linear dis
riminant , alsoknown as the per
eptron . Here

h(w;x) = σ

(

w0 +

m∑

i=1

wixi

)

= σ (w0 + w1x1 + w2x2 + · · · + wnxn)So: we have a linear fun
tion modi�ed by the a
tivation fun
tion σ.The per
eptron's in
uen
e 
ontinues to be felt in the re
ent and ongoingdevelopment of support ve
tor ma
hines .
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The per
eptron a
tivation fun
tion IThere are three standard forms for the a
tivation fun
tion:1. Linear : for regression problems we often use
σ(z) = z2. Step: for two-
lass 
lassi�
ation problems we often use

σ(z) =

{
C1 if z > 0

C2 otherwise.3. Sigmoid/Logisti
: for probabilisti
 
lassi�
ation we often usePr(x is in C1) = σ(z) =
1

1 + exp(−z)
.The step fun
tion is important but the algorithms involved are somewhatdi�erent to those we'll be seeing. We won't 
onsider it further.The sigmoid/logisti
 fun
tion plays a major role in what follows.
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The sigmoid/logisti
 fun
tion
−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5
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1
The logistic function σ(z) = 1

1+exp(−z)

z

σ
(z

)
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0.8

1

Input x1

Logistic σ(z) applied to the output of a linear function

Input x2

P
r(
x

is
in

C
1
)
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Gradient des
entA method for training a basi
 per
eptron works as follows. Assume we'redealing with a regression problem and using σ(z) = z.We de�ne a measure of error for a given 
olle
tion of weights. For example
E(w) =

m∑

i=1

(yi − h(w;xi))
2

Modifying our notation slightly so that
x

T = ( 1 x1 x2 · · · xn )

w
T = ( w0 w1 w2 · · · wn )lets us write

E(w) =

m∑

i=1

(yi − w
T
xi)

2
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Gradient des
entWe want to minimise E(w).One way to approa
h this is to start with a random w0 and update it asfollows:

wt+1 = wt − η
∂E(w)

∂w

∣

∣

∣

∣

wtwhere

∂E(w)

∂w

=
(

∂E(w)

∂w0

∂E(w)

∂w1
· · · ∂E(w)

∂wn

)Tand η is some small positive number.The ve
tor

−
∂E(w)

∂wtells us the dire
tion of the steepest de
rease in E(w).
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Gradient des
entWith

E(w) =

m∑

i=1

(yi − w
T
xi)

2we have

∂E(w)

∂wj

=
∂

∂wj

(

m∑

i=1

(yi − w
T
xi)

2

)

=

m∑

i=1

(

∂

∂wj

(yi − w
T
xi)

2

)

=

m∑

i=1

(

2(yi − w
T
xi)

∂

∂wj

(

−w
T
xi

)

)

= −x
(j)

i

m∑

i=1

2
(

yi − w
T
xi

)

where x
(j)

i is the jth element of xi.
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Gradient des
entThe method therefore gives the algorithm

wt+1 = wt + 2η

m∑

i=1

(

yi − w
T
t xi

)

xiSome things to note:� In this 
ase E(w) is paraboli
 and has a unique global minimum andno lo
al minima so this works well.� Gradient des
ent in some form is a very 
ommon approa
h to this kindof problem.� We 
an perform a similar 
al
ulation for other a
tivation fun
tionsand for other de�nitions for E(w).� Su
h 
al
ulations lead to di�erent algorithms .
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Per
eptrons aren't very powerful: the parity problemThere are many problems a per
eptron 
an't solve.
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We need a network that 
omputes more interesting fun
tions .
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The multilayer per
eptronEa
h node in the network is itself a per
eptron:
aj zj

σ(aj)

w0

w1

w2

wn

...
Node j

z1

z2

zn

∑n

i=0 wizi

z0 = 1

� Weights wi 
onne
t nodes together.� aj is the weighted sum or a
tivation for node j.� σ is the a
tivation fun
tion .� The output is zj = σ(aj).
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The multilayer per
eptronReminder :We'll 
ontinue to use the notation

z
T = ( 1 z1 z2 · · · zn )

w
T = ( w0 w1 w2 · · · wn )So that

n∑

i=0

wizi = w0 +

n∑

i=1

wizi

= w
T
z
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The multilayer per
eptronIn the general 
ase we have a 
ompletely unrestri
ted feedforward stru
-ture : Feature ve
tor x Node i Node j
wi→j Output y = h(w;x)

x1

x2

xn

...

Ea
h node is a per
eptron. No spe
i�
 layering is assumed.

wi→j 
onne
ts node i to node j. w0 for node j is denoted w0→j.
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Ba
kpropagationAs usual we have:� Instan
es x
T = (x1, . . . , xn).� A training sequen
e s = ((x1, y1), . . . , (xm, ym)).We also de�ne a measure of training error

E(w) = measure of the error of the network on swhere w is the ve
tor of all the weights in the network .Our aim is to �nd a set of weights that minimises E(w) using gradientdes
ent .
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Ba
kpropagation: the general 
aseThe 
entral task is therefore to 
al
ulate

∂E(w)

∂wTo do that we need to 
al
ulate the individual quantities
∂E(w)

∂wi→jfor every weight wi→j in the network .Often E(w) is the sum of separate 
omponents, one for ea
h example in s

E(w) =

m∑

p=1

Ep(w)in whi
h 
ase

∂E(w)

∂w

=

m∑

p=1

∂Ep(w)

∂wWe 
an therefore 
onsider examples individually.
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Ba
kpropagation: the general 
asePla
e example p at the input and 
al
ulate aj and zj for all nodes in
ludingthe output y. This is forward propagation .We have

∂Ep(w)

∂wi→j

=
∂Ep(w)

∂aj

∂aj

∂wi→jwhere aj =
∑

k wk→jzk.Here the sum is over all the nodes 
onne
ted to node j. As
∂aj

∂wi→j

=
∂

∂wi→j

(

∑

k

wk→jzk

)

= ziwe 
an write

∂Ep(w)

∂wi→j

= δjziwhere we've de�ned
δj =

∂Ep(w)

∂aj
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Ba
kpropagation: the general 
aseSo we now need to 
al
ulate the values for δj...When j is the output node|that is, the one produ
ing the output y =

h(w;xp) of the network|this is easy as zj = y and
δj =

∂Ep(w)

∂aj

=
∂Ep(w)

∂y

∂y

∂aj

=
∂Ep(w)

∂y
σ ′(aj)using the fa
t that y = σ(aj).
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Ba
kpropagation: the general 
aseThe �rst term is in general easy to 
al
ulate for a given E as the erroris generally just a measure of the distan
e between y and the label in thetraining sequen
e.Example: when

Ep(w) = (y − yp)
2we have

∂Ep(w)

∂y
= 2(y − yp)

= 2(h(w;xp) − yp)
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Ba
kpropagation: the general 
aseWhen j is not an output node we need something di�erent:
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We're interested in

δj =
∂Ep(w)

∂ajAltering aj 
an a�e
t several other nodes k1, k2, . . . , kq ea
h of whi
h 
anin turn a�e
t Ep(w).
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Ba
kpropagation: the general 
ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

We have

δj =
∂Ep(w)

∂aj

=
∑

k∈{k1,k2,...,kq}

∂Ep(w)

∂ak

∂ak

∂aj

=
∑

k∈{k1,k2,...,kq}

δk

∂ak

∂ajwhere k1, k2, . . . , kq are the nodes to whi
h node j sends a 
onne
tion.
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Ba
kpropagation: the general 
ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

Be
ause we know how to 
ompute δj for the output node we 
an workba
kwards 
omputing further δ values.We will always know all the values δk for nodes ahead of where we are .Hen
e the term ba
kpropagation .
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Ba
kpropagation: the general 
ase
j

... ...aj ak2

ak1

σ

σ

σ

σ

akq

k1

k2

kq

∂ak

∂aj

=
∂

∂aj

(

∑

i

wi→kσ(ai)

)

= wj→kσ
′(aj)and

δj =
∑

k∈{k1,k2,...,kq}

δkwj→kσ
′(aj) = σ ′(aj)

∑

k∈{k1,k2,...,kq}

δkwj→k
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Ba
kpropagation: the general 
aseSummary : to 
al
ulate ∂Ep(w)

∂w

for the pth pattern:1. Forward propagation : apply xp and 
al
ulate outputs et
 for all thenodes in the network .2. Ba
kpropagation 1 : for the output node
∂Ep(w)

∂wi→j

= ziδj = ziσ
′(aj)

∂Ep(w)

∂ywhere y = h(w;xp).3. Ba
kpropagation 2 : For other nodes
∂Ep(w)

∂wi→j

= ziσ
′(aj)

∑

k

δkwj→kwhere the δk were 
al
ulated at an earlier step.
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Ba
kpropagation: a spe
i�
 exampleHidden nodes re
eiveinputs from all features
Output node re
eivesinputs from all hiddennodes

y = h(w;x)......x2

x1

xn

For the output: σ(a) = a. For the hidden nodes σ(a) = 1
1+exp(−a)

.
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Ba
kpropagation: a spe
i�
 exampleFor the output: σ(a) = a so σ ′(a) = 1.For the hidden nodes:

σ(a) =
1

1 + exp(−a)so

σ ′(a) = σ(a) [1 − σ(a)]We'll 
ontinue using the same de�nition for the error
E(w) =

m∑

p=1

(yp − h(w;xp))
2

Ep(w) = (yp − h(w;xp))
2
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Ba
kpropagation: a spe
i�
 exampleFor the output : the equation is

∂Ep(w)

∂wi→output = ziδoutput = ziσ
′(aoutput)∂Ep(w)

∂ywhere y = h(w;xp). So as

∂Ep(w)

∂y
=

∂

∂y

(

(yp − y)2
)

= 2(y − yp)

= 2 [h(w;xp) − yp]and σ ′(a) = 1 so

δoutput = 2 [h(w;xp) − yp]and

∂Ep(w)

∂wi→output = 2zi(h(w;xp) − yp)
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Ba
kpropagation: a spe
i�
 exampleFor the hidden nodes : the equation is

∂Ep(w)

∂wi→j

= ziσ
′(aj)

∑

k

δkwj→kHowever there is only one output so

∂Ep(w)

∂wi→j

= ziσ(aj) [1 − σ(aj)] δoutputwj→outputand we know that

δoutput = 2 [h(w;xp) − yp]so

∂Ep(w)

∂wi→j

= 2ziσ(aj) [1 − σ(aj)] [h(w;xp) − yp]wj→output

= 2xizj(1 − zj) [h(w;xp) − yp] wj→output
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Putting it all togetherWe 
an then use the derivatives in one of two basi
 ways:Bat
h : (as des
ribed previously)

∂E(w)

∂w

=

m∑

p=1

∂Ep(w)

∂wthen

wt+1 = wt − η
∂E(w)

∂w

∣

∣

∣

∣

wtSequential : using just one pattern at on
e
wt+1 = wt − η

∂Ep(w)

∂w

∣

∣

∣

∣

wtsele
ting patterns in sequen
e or at random .
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Example: the parity problem revisitedAs an example we show the result of training a network with:� Two inputs.� One output.� One hidden layer 
ontaining 5 units.� η = 0.01.� All other details as above.The problem is the parity problem. There are 40 noisy examples.The sequential approa
h is used, with 1000 repetitions through the entiretraining sequen
e.
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Example: the parity problem revisited
−1 0 1 2

−1

−0.5

0

0.5

1

1.5

2
Before training

x1

x
2

−1 0 1 2
−1

−0.5

0

0.5

1

1.5

2
After training

x1

x
2

348



Example: the parity problem revisited
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Example: the parity problem revisited
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