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Introduction: what’s Al for?

What is the purpose of Artificial Intelligence (AI)?
If you're a philosopher or a psychologist then:

e To understand intelligence.

e To understand ourselves.

However, we're neither—we're scientists/engineers, so while we might have
some interest in such pursuits...



Introduction: what’s Al for?

From our perspective:

e To understand why our brain is small and (arguably) slow, but in-
credibly good at some tasks—we want to understand a specific form of
computation.

e To construct intelligent systems.

e To make and sell cool stuff.

This view seems to be the more successful.

AT 1s entering our lives almost without us being aware of it.



Introduction: now is a fantastic time to investigate Al

In many ways this is a young field, having only really got under way in
1956 with the Dartmouth Conference.

www—-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

e This means we can actually do things.

e Also, we know what we're trying to do is possible.

Philosophy has addressed similar problems for at least 2000 years.

e Can we do AI? Should we do AI?

o Is Al vmpossible? (Note: I didn’t write possible here, for a good rea-
son...)

Arguably, philosophy has had relatively little success.



Aside I: philosophy (428 B.C. to present)

e Socrates wanted an algorithm (!) for “piety”. The rules governing
rational thought. Syllogisms.

e Mechanical reasoning: Ramon Lull’s concept wheels (approx. 1315).
Further attempts at mechanical calculators.

e Mind as a physical system: Rene Descartes (1596-1650). Dualism.

e The opposing position of materialism: Wilhelm Leibnitz (1646-1716).
e An intermediate position: mind is physical but unknowable.

e Where does knowledge come from?

e Francis Bacon (1561-1626): empiricism. Leading to John Locke (1632-
1704): “Nothing s in the understanding, which was not first in the
senses”.

e David Hume (1711-1776). Induction: we obtain rules by repeated ex-
posure. Further developed by Bertrand Russel (1872-1970) and in the
confirmation theory of Carnap and Hempel.



Aside I: philosophy (428 B.C. to present)

Finally: what 1s the connection between knowledge and action? How are
actions justified?

Aristotle: don’t concentrate on the end but the means.

If to achieve the end you need to achieve something intermediate, consider
how to achieve that, and so on.

This approach was implemented in Newell and Simon’s 1957 General Prob-
lem Solver (GPS).



Further reading

Why do people like to argue that Al 1s tmpossible?
Why do people dislike the idea that humanity might not be special.
An excellent article on why this view 1s much more problematic than it

might seem 1is:

“Why people think computers can’t,” Marvin Minsky. Al Magazine,
volume 3 number 4, 1982.



Introduction: what’s happened since 19567

What's made the difference?” We have a huge advantage in having reached a
point where technology has matured sufficiently to allow us to buzld things.

e Perception (vision, speech processing...)

e Logical reasoning (prolog, expert systems, CYC...)

e Playing games (chess, backgammon, go...)

e Diagnosis of illness (in various contexts...)

e Theorem proving (Robbin’s conjecture...)

e Literature and music (automated writing and composition...)

e And many more...

The simple ability to try things out has led to huge advances in a relatively
short time. So: don't believe the critics...



Aside II: computer engineering (1940 to present)

To have AI, you need a means of implementing the intelligence. Com-
puters are (at present) the only devices in the race. (Although quantum
computation is looking interesting...)

AI has had a major effect on computer science:

e Time sharing

e Interactive interpreters

e Linked lists

e Storage management

e Some fundamental ideas in object-oriented programming

e and so on...

When Al has a success, the ideas in question tend to stop being called Al.



The nature of the pursuit

What 1s AI? This is not necessarily a straightforward question.
It depends on who you ask...

We can find many definitions and a rough categorisation can be made
depending on whether we are interested in:

e The way in which a system acts or the way in which 1t thinks.

e Whether we want it to do this in a human way or a rational way.

Here, the word rational has a special meaning: it means doing the correct
thing wn grven circumstances.

10



Acting like a human

What 1s Al, version one: acting like a human

Alan Turing proposed what is now known as the Turing Test.

e A human judge is allowed to interact with an Al program via a terminal.
e This 1s the only method of interaction.
e If the judge can’t decide whether the interaction is produced by a ma-

chine or another human then the program passes the test.

In the unrestricted Turing test the Al program may also have a camera
attached, so that objects can be shown to it, and so on.
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Acting like a human

The Turing test is informative, and (very!) hard to pass.

e It requires many abilities that seem necessary for Al, such as learning.
BUT": a human child would probably not pass the test.

e Sometimes an Al system needs human-like acting abilities—for example
expert systems often have to produce explanations—but not always.

See the Loebner Prize in Artifictal Intelligence:

www.loebner.net/Prizef/loebner-prize.html
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Thinking like a human

What 1s Al, version two: thinking like a human

There 1s always the possibility that a machine acting like a human does
not actually think. The cognitive modelling approach to Al has tried to:

e Deduce how humans think—Ifor example by introspection or psycho-
logical experiments.

e Copy the process by mimicking it within a program.

An early example of this approach i1s the General Problem Solver pro-
duced by Newell and Simon in 1957. They were concerned with whether
or not the program reasoned in the same manner that a human did.

Computer Science + Psychology = Cognitive Science
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Aside III: psychology (1879 to present)

e Begins with the study of the human visual system. Hermann von
Helmholtz (1821-1894).

e The first exzperimental psychology founded by Wilhelm Wundt (1832-
1920).

— The lab conducted careful, controlled experiments on human sub-
jects.

— The i1dea was for the subject to perform some task and introspect
about their thought processes.

Other labs followed this lead. BUT': a strange—and fatal—effect ap-
peared.

For each lab, the introspections of the subjects turned out to conform
to the preferred theories of the lab.
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Aside III: psychology (1879 to present)

The main response to this effect was behaviourism.Watson (1878-1958)
Thorndike (1874-1949).

e They regarded evidence based on introspection as fundamentally unre-
liable, so they simply rejected all theories based on any form of mental
process.

e They considered only objective measures of stimulus and response.

They learnt a LOT of interesting things about rats and pigeons!

The more sophisticated view of the brain as an wnformation process-
wng device—the view of cognitive psychology—was steamrollered by be-
haviourism until Craik’s The Nature of Explanation (1943).

The idea that concepts such as reasoning, beliefs, goals etc are important
1s re-stated.

Critically: the system contains a model of the world and of the way its
actions affect the world.
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Aside III: psychology (1879 to present)

stimull converted to internal representation

!

cognitive processes manipulate internal representations

!

internal representations converted into actions
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Thinking rationally: the “laws of thought”

What 1s Al, version three: thinking rationally

The idea that intelligence reduces to rational thinking is a very old one,
going at least as far back as Aristotle as we’ve already seen.

The general field of logic made major progress in the 19th and 20th cen-
turies, allowing it to be applied to Al

e We can represent and reason about many different things.

e The logicist approach to Al

This 1s a very appealing idea. Howewver...
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Thinking rationally: the “laws of thought”

Unfortunately there are obstacles to any naive application of logic. It is
hard to:

e Represent commonsense knowledge.
e Deal with uncertainty.

e Reason without being tripped up by computational complexity.

These will be recurring themes in this course, and in Al II.

Logic alone also falls short because:

e Sometimes 1t’s necessary to act when there’s no logical course of action.

e Sometimes inference is unnecessary (reflex actions).
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Further reading

The Fifth Generation Computer System project has most certainly earned
the badge of “heroic failure”.

It 1s an example of how much harder the logicist approach is than you might
think:

“Overview of the Fifth Generation Computer Project,” Tohru
Moto-oka. ACM SIGARCH Computer Architecture News, volume 11,
number 3, 1983.
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Aside III: mathematics (800 to present)

e To be scientific about Al we need computation, logic, and probability.

e Aristotle knew about logic, but as a philosophical rather than mathe-
matical pursuit.

e George Boole (1815-1864) made it into mathematics.

e Gottlob Frege (1848-1925) founded all the essential parts of first-order
logic.

e Alfred Tarski (1902-1983). The theory of reference: what is the rela-
tionship between real and logical objects.

e Computation begins with algorithms: Arab mathematician al- Khowarazms:.

e The limits of algorithms: David Hilbert (1862-1943). The entschei-
dungsproblem.

e Solved by Turing, who (with others) formulated precisely what an al-
gorithm 1s. Intractability.

o Kurt Godel (1906-1978): theorems on completeness and incompleteness.
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Aside III: mathematics (800 to present)

Probability:

e Gerolamo Cardano (1501-1576): gambling outcomes.
e Further developed by Fermat, Pascal, Bernoulli, Laplace...
e Bernoulli (1654-1705): probability as a measure of degree of belief.

e Bayes (1702-1761): updating a degree of belief when new evidence is
available.

e Probability forms the basis for the modern treatment of uncertainty.

e Decision theory. Von Neumann and Morgenstern (1944): combine
uncertainty with action.
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Acting rationally

What 1s Al, version four: acting rationally

Basing Al on the idea of acting rationally means attempting to design
systems that act to achieve their goals given their beliefs.

What might be needed?

e To make good decisions in many different situations we need to rep-
resent and reason with knowledge.

e We need to deal with natural language.
e We need to be able to plan.
e We need vision.

e We need learning.

And so on, so all the usual AI bases seem to be covered.
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Acting rationally

The 1dea of acting rationally has several advantages:

e The concepts of action, goal and belief can be defined precisely making
the field suitable for scientific study.

This 1s important: if we try to model Al systems on humans, we can’t even
propose any sensible definition of what a belief or goal 1s.

In addition, humans are a system that is still changing and adapted to a
very specific environment.

Rational acting does not have these limitations.
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Acting rationally

Rational acting also seems to include two of the alternative approaches:

e All of the things needed to pass a Turing test seem necessary for rational
acting, so this seems preferable to the acting ltke a human approach.

e The logicist approach can clearly form part of what's required to act
rationally, so this seems preferable to the thinking rationally approach
alone.

As a result, we will focus on the idea of designing systems that act ratio-
nally.
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Other contributions

Linguistics (1957 to present)

e Skinner’s Verbal Behaviour (1951). The approach to language devel-
oped by the behaviourists.

e Noam Chomsky showed it could not explain understanding or produc-
tion of sentences not previously heard.

e Chomsky’s own theory—based on syntactic models—did not suffer in
this way. It was also formal, and could be programmed.

This overall problem is considerably harder than was realised in 1957.

It requires knowledge representation, and the fields have informed one an-
other.

A classic example: “Tw'me flies litke an arrow” and “Fruit flies like a
banana”
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Other contributions

Economics (1776 to present)

e How should I act, perhaps in the presence of adversaries, to obtain
something nice in the future?

e When we say “something nice,” how can the “degree of niceness” be
measured?

e This leads to the idea of wtility as a mathematical concept. Walras
(1834-1910), Ramsey (1931) and Von Neumann and Morgenstern (1944).

e Large economies: Probability theory + utility theory = decision theory

e Game theory is more applicable to small economies. Sometimes it’s
rational to act (apparently) randomly.

e [uture gains resulting from a sequence of actions. Operations research.
Bellman (1957): Markov decision processes.

e Unfortunately it is computationally hard to act rationally.

e Herbert Simon (1916-2001): Nobel Prize for Economics. Satisficing is
a better way of describing the actual behaviour of humans.
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Other contributions

Neuroscience (1861 to present)

Nasty bumps on the head

!

We know that the brain has something to do with consciousness

Experiments by Paul Broca (1824-1880) led to the understanding that lo-
calised regions have different tasks.

Around that time the presence of neurons was understood but there were
still major problems.

For example, even now there i1s no complete understanding of how our
brains store a single memory.

More recently: EEG, MRI and the study of single cells.
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Other contributions

Cybernetics and control theory (1948 to present)

o Ktesibios of Alexandria (250 BC). First machine able to modify its own
behaviour. (Water clock containing a mechanism for controlling the flow
of water.)

e James Watt (1736-1819): governor for steam engines.
e Cornelius Drebbel (1572-1633): thermostat.

e Control theory as a mathematical subject: Norbert Wiener (1894-1964)
and others.

e Interesting behaviour caused by a control system minimising error =
difference between goal and current situation.

e More recently: stochastic optimal control. Maximisation over time of
an objective function.

e Connected directly to Al, but the latter moves away from linear, con-
tinuous scenarios.
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What's in this course?

This course introduces some of the fundamental areas that make up Al:

e An outline of the background to the subject.

e An introduction to the idea of an agent.

e Solving problems in an intelligent way by search.

e Solving problems represented as constraint satisfaction problems.
e Playing games.

e Knowledge representation, and reasoning.

e Planning.

e Learning using neural networks.

Strictly speaking, AI I covers what is often referred to as “Good Old-
Fashioned AI”.

The nature of the subject changed a great deal when the importance of un-
certainty became fully appreciated. Al II covers this more recent material.
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What'’s not in this course?

e The classical Al programming languages prolog and [lisp.
e A great deal of all the areas on the last slide!

e Perception: vision, hearing and speech processing, touch (force sens-
ing, knowing where your limbs are, knowing when something is bad),
taste, smell.

e Natural language processing.

e Acting on and in the world: robotics (effectors, locomotion, manipula-
tion), control engineering, mechanical engineering, navigation.

e Areas such as genetic algorithms/programmang, swarm intelligence,
artifictal i1mmune systems and fuzzy logic, for reasons that I will ex-
pand upon during the lectures.

e Uncertainty and much further probabilistic material. (You’ll have to
wait until next year.)
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Text book

The course 1s based on the relevant parts of:

Artificial Intelligence: A Modern Approach, Second Edition (2003).
Stuart Russell and Peter Norvig, Prentice Hall International Editions.

NOTE: the 3rd edition has recently become available. This i1s also fine.
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Interesting things on the web

A few interesting web starting points:

The Honda Asimo robot: world.honda.com/ASIMO

Al at Nasa Ames: www.nasa.gov/centers/ames/research/exploringtheuniverse/spiffy.html
DARPA Grand Challenge: ai.stanford.edu/~dstavens/aaaiO6/montemerlo etal _aaaiO6.pdf
2007 DARPA Urban Challenge: cs.stanford.edu/group/roadrunner

The CYC project: WWW.CyC.Ccom

Human-like robots: www.ai.mit. edu/projects/humanoid-robotics-group

SOIlY robots: support.sony-europe.com/aibo

NEC “PaPeRo”: Www.nec.co. jp/products/robot/en

32



Prerequisites

The prerequisites for the course are: first order logic, some algorithms and
data structures, discrete and continuous mathematics, basic computational
complexity.

DIRE WARNING:

In the lectures on machine learning I will be talking about neural net-
works.

This means you will need to be able to differentiate and also handle vectors
and matrices.

If you've forgotten how to do this you WILL get lost—I guarantee 1t!!!
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Prerequisites

Self test:

1. Let n
f(X1,...,%Xn) = Zaixiz
i1

where the a; are constants. Can you compute 0f/0x; where 1 <j < n?

2. Let f(xq,...,%x,) be a function. Now assume x; = gi(y1,...,yn) for each
x; and some collection of functions g;. Assuming all requirements for
differentiability and so on are met, can you write down an expression
for of /0y; where 1 <j < m?

If the answer to either of these questions is “no” then it’s time for some
revision. (You have about three weeks notice, so I'll assume you know it!)
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Artificial Intelligence I

Dr Sean Holden

An introduction to Agents

Copyright (© Sean Holden 2002-2010.
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Agents

There are many different definitions for the term agent within Al

Allow me to introduce

MUST ENSLAVE EARTH!!
DR HOLDEN WILL BE OUR
GLORIOUS LEADER!!

We will use the following simple definition: an agent s any device that
can sense and act upon 1ts environment.
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Agents

This definition can be very widely applied: to humans, robots, pieces of
software, and so on.

We are taking quite an applied perspective. We want to make things
rather than copy humans, so to be scientific there are some issues to be

addressed:
e How can we judge an agent’s performance?
e How can an agent’s enwvironment affect its design?
e Are there sensible ways in which to think about the structure of an
agent?
Recall that we are interested in devices that act rationally, where ‘rational’

means doing the correct thing under given circumstances.

Reading: Russell and Norvig, chapter 2.

37



Measuring performance

How can we judge an agent’s performance? Any measure of performance
1s likely to be problem-specific.

Ezxzample: For a chess playing agent, we might use its rating.

Ezxample: For a mail-filtering agent, we might devise a measure of how
well 1t blocks spam, but allows interesting email to be read.

Ezxample: For a car driving agent the measure needs considerable sophis-
tication: we need to take account of comfort, journey time, safety etc.

So: the choice of a performance measure is itself worthy of careful consid-
eration.
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Measuring performance

We're usually interested in expected, long-term performance.

e Fixpected performance because usually agents are not omniscient—
they don’t infallibly know the outcome of their actions.

e It 1s rational for you to enter this lecture theatre even if the roof falls
in today.

An agent capable of detecting and protecting itself from a falling roof might
be more successful than you, but not more rational.

e Long-term performance because it tends to lead to better approxima-
tions to what we’d consider rational behaviour.

e We probably don’t want our car driving agent to be outstandingly
smooth and safe for most of the time, but have episodes of driving
through the local orphanage at 150 mph.
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Environments

How can an agent’s environment affect its design? Ezample: the environ-
ment for a chess program 1s vastly different to that for an autonomous
deep-space vehicle. Some common attributes of an environment have a
considerable influence on agent design.

o Accessible/inaccessible: do percepts tell you everything you need to
know about the world?

e Determainistic/non-deterministic: does the future depend predictably
on the present and your actions?

e [pisodic/non-episodic is the agent run in independent episodes.

e Static/dynamic: can the world change while the agent is deciding what
to do?

e Discrete/continuous: an environment is discrete if the sets of allowable
percepts and actions are finite.
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Environments

All of this assumes there is only one agent.

When multiple agents are involved we need to consider:

e Whether the situation i1s competitive or cooperative.

e Whether communzication required?
An example of multiple agents:

news.bbc.co.uk/1 /hi/technology/3486335.stm
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Basic structures for intelligent agents

Are there sensible ways in which to think about the structure of an agent?
Again, this 1s likely to be problem-specific, although perhaps to a lesser
extent.

So far, an agent i1s based on percepts, actions and goals.
Ezxzample: Aircraft piloting agent.

Percepts: sensor information regarding height, speed, engines etc, audio
and video inputs, and so on.

Actions: manipulation of the aircraft’s controls.
Also, perhaps talking to the passengers etc.

Goals: get to the necessary destination as quickly as possible with minimal
use of fuel, without crashing etc.
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Programming agents

A basic agent can be thought of as working on a straightforward underlying
process:

e GGather perceptions.

e Update working memory to take account of them.

e On the basis of what’s in the working memory, choose an action to
perform.

e Update the working memory to take account of this action.

e Do the chosen action.

Obviously, this hides a great deal of complexity.

Also, 1t ignores subtleties such as the fact that a percept might arrive while
an action is being chosen.
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Programming agents

We'll initially look at two hopelessly limited approaches, because they do
suggest a couple of important points.

Hopelessly limited approach number 1: use a table to map percept se-
quences to actions. This can quickly be rejected.

e The table will be huge for any problem of interest. About 35'°° entries
for a chess player.

e We don’t usually know how to fill the table.

e Biven if we allow table entries to be learned it will take too long.

e The system would have no autonomy.

We can attempt to overcome these problems by allowing agents to reason.

Autonomy 1s an interesting issue though...
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Autonomy

If an agent’s behaviour depends in some manner on its own experience of
the world via 1ts percept sequence, we say it 1s autonomous.

e An agent using only built-in knowledge would seem not to be success-
ful at Al in any meaningful sense: its behaviour is predefined by its
designer.

e On the other hand some built-in knowledge seems essential, even to
humans.

Not all animals are entirely autonomous.

For example: dung beetles.
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Reflex agents

Hopelessly limited approach number 2:try extracting pertinent informa-
tion and using rules based on this.

Condition-action rules: if a certain state i1s observed then perform some
action

Some points immediately present themselves regarding why reflex agents
are unsatisfactory:

e We can’t always decide what to do based on the current percept.

e However storing all past percepts might be undesirable (for example
requiring too much memory) or just unnecessary.

e Reflex agents don’t maintain a description of the state of their envi-
ronment...

e ..however this seems necessary for any meaningful AIl. (Consider au-
tomating the task of driving.)

This 1s all the more important as usually percepts don’t tell you everything
about the state.
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Keeping track of the environment

It seems reasonable that an agent should maintain:

e A description of the current state of its environment.
e Knowledge of how the environment changes independently of the agent.

e Knowledge of how the agent’s actions affect i1ts environment.

This requires us to do knowledge representation and reasoning.
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Goal-based agents

It seems reasonable that an agent should choose a rational course of action
depending on its goal.

e If an agent has knowledge of how its actions affect the environment,
then 1t has a basis for choosing actions to achieve goals.

e To obtain a sequence of actions we need to be able to search and to
plan.

This 1s fundamentally different from a reflex agent.

For example: by changing the goal you can change the entire behaviour.
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Goal-based agents

We now have a basic design that looks something like this:

Percept

—

Descrlptlon current environment
Descrlptlon effect of actions

Descrlptlon behaviour of environment

Description of Goal

Action/Action sequence

49



Utility-based agents

Introducing goals is still not the end of the story.

There may be many sequences of actions that lead to a given goal, and
some may be preferable to others.

A utility function maps a state to a number representing the desirability
of that state.
e We can trade-oftf conflicting goals, for example speed and safety.

e If an agent has several goals and 1s not certain of achieving any of them,
then i1t can trade-off likelihood of reaching a goal against the desirability
of getting there.

Mazimaising expected utility over time forms a fundamental model for the
design of agents. However we don’t get as far as that until AI II.
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Learning agents

It seems reasonable that an agent should learn from ezperience.

Percept

—

Descrlptlon current environment

Action/Action sequence
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Learning agents

This requires two additions:

e The learner needs some form of feedback on the agent’s performance.
This can come in several different forms.

e In general, we also need a means of generating new behaviour in order
to find out about the world.

This in turn implies a trade-off: should the agent spend time exploiting
what 1t’s learned so far, or ezploring the environment on the basis that it
might learn something really useful?
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What have we learned? (No pun intended...)

The crucial things that should be taken away from this lecture are:

e The nature of an agent depends on its environment and performance
measure.

e We're usually interested in expected, long-term performance.

e Autonomy requires that an agent in some way behaves depending on
1ts experience of the world.

e There 1s a natural basic structure on which agent design can be based.

e Consideration of that structure leads naturally to the basic areas covered
in this course.

Those basic areas are: knowledge representation and reasoning, search,
planning and lea'rm'ng . Oh, and finally, we've learned NOT TO MESS WITH ... he’s a VERY BAD

ROBOT!
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Artificial Intelligence I

Dr Sean Holden

Notes on problem solving by search

Copyright (© Sean Holden 2002-2010.
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Problem solving by search

We begin with what is perhaps the simplest collection of AI techniques:
those allowing an agent existing within an enwvironment to search for a
sequence of actions that achieves a goal.

The algorithms can, crudely, be divided into two kinds: uninformed and
informed.

Not surprisingly, the latter are more effective and so we’ll look at those in
more detail.

Reading: Russell and Norvig, chapters 3 and 4.
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Problem solving by search

As with any area of computer science, some degree of abstraction 1s nec-
essary when designing Al algorithms.

Search algorithms apply to a particularly simple class of problems—we
need to identify:
e An wnitial state: what 1s the agent’s situation to start with?

e A set of actions: these are modelled by specifying what state will result
on performing any available action from any known state.

e A goal test: we can tell whether or not the state we're in corresponds
to a goal.

Note that the goal may be described by a property rather than an explicit
state or set of states, for example checkmate.
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Problem solving by search

A simple example: the 8-puzzle.

Start State

1 EE

Goal State

(A good way of keeping kids quiet...)
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Problem solving by search

Start state: a randomly-selected configuration of the numbers 1 to 8 ar-
ranged on a 3 X 3 square grid, with one square empty.

(GGoal state: the numbers in ascending order with the bottom right square
empty.

Actions: left, right, up, down. We can move any square adjacent to the
empty square into the empty square. (It’s not always possible to choose
from all four actions.)

Path cost: 1 per move.

The 8-puzzle is very simple. However general sliding block puzzles are a
good test case. The general problem is NP-complete. The 5 x 5 version has
about 10%° states, and a random instance is in fact quite a challenge.
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Problem solving by basic search

has found himself in an unfamiliar building:

Evil Robot

X Teleport

He wants the ODIN (Oblivion Device of Indescribable Nastiness).
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Problem solving by search

Start state: 1s in the top left corner.
Goal state: 1s in the area containing the ODIN.

Actions: left, right, up, down. We can move as long as there’s no wall in
the way. (Again, it’s not always possible to choose from all four actions.)

Path cost: 1 per move. If you step on a teleport then you move to the
other one with a cost of 0.
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Problem solving by search

Problems of this kind are very simple, but a surprisingly large number of
applications have appeared:

e route-finding/tour-finding

e layout of VLSI systems

e navigation systems for robots

e sequencing for automatic assembly

e searching the internet

e design of proteins

and many others...

Problems of this kind continue to form an active research area.
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Problem solving by search

It’s worth emphasising that a lot of abstraction has taken place here:

e Can the agent know it’s current state in full?

e Can the agent know the outcome of its actions in full?
Single-state problems: the state 1s always known precisely, as is the effect
of any action. There is therefore a single outcome state.

Multiple-state problems: The effects of actions are known, but the state
can not reliably be inferred, or the state is known but not the effects of the
actions.
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Problem solving by search

Single and multiple state problems can be handled using these search tech-
niques.

In the latter, we must reason about the set of states that we could be in:

e In this case we have an initial set of states.
e Flach action leads to a further set of states.

e The goal 1s a set of states all of which are valid goals.
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Problem solving by search

Contingency problems

In some situations it is necessary to perform sensing while the actions are
being carried out in order to guarantee reaching a goal.

(It's good to keep your eyes open while you cross the road!)
This kind of problem requires planning and will be dealt with later.

Sometimes it 1s actively beneficial to act and see what happens, rather than
to try to consider all possibilities in advance in order to obtain a perfect

plan.
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Problem solving by search

Ezploration problems

Sometimes you have no knowledge of the effect that your actions have on
the environment.

Babies in particular have this experience.

This means you need to experiment to find out what happens when you
act.

This kind of problem requires reinforcement learning for a solution. We
will not cover reinforcement learning in this course. (Although it is in Al
I1.)
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Search trees

The basic idea should be familiar from your (current) Algorithms I course,
and also from Foundations of Computer Science.

e We build a tree with the start state as root node.

e A node is ezpanded by applying actions to it to generate new states.

e A path 1s a sequence of actions that lead from state to state.

e The aim is to find a goal state within the tree.

e A solution 1s a path beginning with the initial state and ending in a

goal state.

We may also be interested in the path cost as some solutions might be
better than others.

Path cost will be denoted by p.
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Search trees versus search graphs

We need to make an important distinction between search trees and search
graphs. For the time being we assume that it's a tree as opposed to a graph
that we're dealing with.

as opposed to

(There is a good reason for this, which we’ll get to in a moment...)

In a tree only one path can lead to a given state. In a graph a state can
be reached via possibly multiple paths.
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Search trees

Basic approach:

e Test the root to see if it 1s a goal.

e If not then expand it by generating all possible successor states accord-
ing to the available actions.

e If there i1s only one outcome state then move to it. Otherwise choose
one of the outcomes and expand it.

e The way in which this choice is made defines a search strategy.

e Repeat until you find a goal.

The collection of states generated but not yet expanded is called the fringe
or frontier and is generally stored as a queue.
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The basic tree-search algorithm

In pseudo-code, the algorithm looks like this:

function treeSearch {
fringe = queue containing only the start state;
while() {
if (empty(fringe))
return fail;
node = head(fringe);
if (goal(node))
return solution(node);
fringe = insert(expand(node), fringe);
+
¥

The search strategy 1s set by using a priority queue.

The definition of priority then sets the way in which the tree is searched.
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The basic tree-search algorithm

. Expanded

O In the fringe, but not expande:

@  Not yet investigated
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The basic tree-search algorithm

We can immediately define some familiar tree search algorithms:

e New nodes are added to the head of the queue. This 1s depth-first
search.

e New nodes are added to the tail of the queue. This is breadth-first
search.

We will not dwell on these, as they are both completely hopeless in prac-
tice.

Why is that?
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The performance of search techniques

How might we judge the performance of a search technique?

We are interested 1in:

e Whether a solution is found.
e Whether the solution found is a good one in terms of path cost.

e The cost of the search in terms of time and memory.

the total cost = path cost 4 search cost

If a problem is highly complex it may be worth settling for a sub-optimal
solution obtained in a short time.
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Eivaluation of search strategies

We are also interested in:
Completeness: does the strategy guarantee a solution is found?
Optimality: does the strategy guarantee that the best solution is found?

Once we start to consider these, things get a lot more interesting...

74



Breadth-first search

Why 1s breadth-first search hopeless?

e The procedure is complete: i1t 1s guaranteed to find a solution if one
exists.

e The procedure is optimal if the path cost i1s a non-decreasing function
of node-depth. (Exercise: why is this?)

e The procedure has exponential complexity for both memory and time.
A branching factor b requires

bd+1_1
1+b+b"+b° 4 4+ b= o

nodes if the shortest path has depth d.

In practice it is the memory requirement that is problematic.
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Depth-first search

With depth-first search: for a given branching factor b and depth d the
memory requirement is O(bd).

This 1s because we need to store nodes on the current path and the other
unexpanded nodes.

The time complexity is O(b?). Despite this, if there are many solutions we
stand a chance of finding one quickly, compared with breadth-first search.
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Backtracking search

We can sometimes improve on depth-first search by using backtracking
search.

e If each node knows how to generate the next possibility then memory
is improved to O(d).

e Even better, if we can work by making modifications to a state de-
scription then the memory requirement is:

— One full state description, plus...
— ... O(d) actions (in order to be able to undo actions).

How does this work?
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No backtracking With backtracking

Trying: up, down, left, right: If we have:

and so on...
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Depth-first, depth-limited, and iterative deepening search

Depth-first search is clearly dangerous if the tree 1s very deep or infinite.

Depth-limited search simply imposes a limit on depth. For example if
we're searching for a route on a map with n cities we know that the maxi-
mum depth will be n. However:
e We still risk finding a suboptimal solution.
e The procedure becomes problematic if we impose a depth limit that is
too small.

Usually we do not know a reasonable depth limit in advance.

Iterative deepening search repeatedly runs depth-limited search for in-
creasing depth limits 0, 1,2, ...
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Iterative deepening search

Iterative deepening search:

e Hissentially combines the advantages of depth-first and breadth-first
search.

e It 1s complete and optimal.

e [t has a memory requirement similar to that of depth-first search.

Importantly, the fact that you're repeating a search process several times
1s less significant than it might seem.

It’s still not a good practical method, but it does point us in the direction
of one...
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Iterative deepening search

Iterative deepening depends on the fact that the vast majority of the
nodes wn a tree are in the bottom level:

e In a tree with branching factor b and depth d the number of nodes is

bd+1 —1
b—1

e A complete iterative deepening search of this tree generates the final
layer once, the penultimate layer twice, and so on down to the root,

which is generated d + 1 times. The total number of nodes generated is
therefore

fy(b,d) = (d+1)+db+ (d—1)b*+ (d —2)b° +--- +2b%" + b

f1(b,d) =14+b+b*+b> +--- +bd =
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Iterative deepening search

Example:

e For b =20 and d =5 we have
f1(b,d) = 3,368,421
fo(b,d) = 3,545,706

which represents a 5 percent increase with iterative deepening search.
e The overhead gets smaller as b increases. However the time complexity

1s still exponential.

For problems where the search space is large and the solution depth is not
known, this can be a good method.
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Iterative deepening search

Further insight can be gained if we note that
fZ(b>d) — f](b>0) —l_f](b)]) + - —l_f](b)d)
as we generate the root, then the tree to depth 1, and so on. Thus

b1+1 1
Zf] b l g b ]

d
:ﬁZbW —1 :b% [(me> —(d+1)
1=0

1=0

Noting that
bf] (b, d) — b _|_ b2 _|_ bd—i—] Z bl—i—]

we have b 4+
fZ(b>d) — b_ 1f1(b>d) _ﬁ

so f»(b, d) is about equal to f;(b, d) for large b.
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Bidirectional search

In some problems we can simultaneously search:
forward from the start state

backward from the goal state

until the searches meet.

This 1s potentially a very good idea:

e If the search methods have complexity O(b?) then...
e ...we are converting this to O(2b%?) = O(b¥/?).

(Here, we are assuming the branching factor is b in both directions.)
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Bidirectional search - beware!

e It 1s not always possible to generate efficiently predecessors as well as
SUCCESSOTs.

e If we only have the description of a goal, not an ezplicit goal, then
generating predecessors can be hard. (For example, consider the concept
of checkmate.)

e We need a way of checking whether or not a node appears in the other
search...

o ... and the figure of O(b%/?) hides the assumption that we can do con-
stant time checking for intersection of the frontiers. (This may be
possible using a hash table).

e We need to decide what kind of search to use in each half. For example,
would depth-first search be sensible? Possibly not...

e ...to guarantee that the searches meet, we need to store all the nodes of

at least one of the searches. Consequently the memory requirement is
O(b%4).
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Uniform-cost search

Breadth-first search finds the shallowest solution, but this is not necessarily
the best one.

Uniform-cost search is a variant. It uses the path cost p(n) as the priority
for the priority queue.

Thus, the paths that are apparently best are explored first, and the best
solution will always be found if

vn (Vn’ € successors(n) . p(n’) > p(n))

Although this is still not a good practical algorithm, it does point the way
forward to informed search...
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Repeated states

With many problems it is easy to waste time by expanding nodes that have
appeared elsewhere in the tree. For example:

The sliding blocks puzzle for example suffers this way.
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Repeated states

For example, in a problem such as finding a route in a map, where all of
the operators are reversible, this is inevitable.

There are three basic ways to avoid this, depending on how you trade off
effectiveness against overhead.

e Never return to the state you came from.

e Avoid cycles: never proceed to a state tdentical to one of your ances-
tors.

e Do not expand any state that has previously appeared.

Graph search 1s a standard approach to dealing with the situation. It uses
the last of these possibilities.
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Graph search

In pseudocode:

function graphSearch() {
closed = {};
fringe = queue containing only the start state;
while () {
if (empty(fringe))
return fail;
node = head(fringe);
if goal(node)
return solution(node);
if (node not a member of closed) {
closed = closed + node;
fringe = insert(expand(node), fringe);

+
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Graph search

There are several points to note regarding graph search:

1. The closed list contains all the expanded nodes.
2. The closed list can be implemented using a hash table.

3. Both worst case time and space are now proportional to the size of the
state space.

4. Memory: depth first and iterative deepening search are no longer linear
space as we need to store the closed list.

5. Optimality: when a repeat is found we are discarding the new possi-
bility even if it i1s better than the first one.

e This never happens for uniform-cost or breadth-first search with con-
stant step costs, so these remain optimal.

e [terative deepening search needs to check which solution is better
and if necessary modify path costs and depths for descendants of the
repeated state.
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Search trees

Everything we've seen so far is an example of uninformed or blind search—
we only distinguish goal states from non-goal states.

(Uniform cost search is a slight anomaly as it uses the path cost as a guide.)

To perform well in practice we need to employ informed or heuristic
search.

This involves exploiting knowledge of the distance between the current
state and a goal.
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Problem solving by informed search

Basic search methods make limited use of any problem-specific knowledge
we might have.

e We have already seen the concept of path cost p(n)

p(n) = cost of path (sequence of actions) from the start state to n

e We can now introduce an evaluation function. This is a function that
attempts to measure the desirability of each node.

The evaluation function will clearly not be perfect. (If it is, there is no
need to search.)

Best-first search simply expands nodes using the ordering given by the
evaluation function.
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Greedy search

We've already seen path cost used for this purpose.

e This 1s misguided as path cost is not in general directed in any sense
toward the goal.

e A heuristic function, usually denoted h(n) is one that estimates the
cost of the best path from any node n to a goal.

e If n is a goal then h(n) = 0.

Using a heuristic function along with best-first search gives us the greedy
search algorithm.
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Example: route-finding

Ezxzample: for route finding a reasonable heuristic function is

h(n) = straight line distance from n to the nearest goal

Accuracy here obviously depends on what the roads are really like.
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Example: route-finding

Greedy search suffers from some problems:

e Its time complexity is O(b?).
e Its space-complexity is O(b?).

e It 1s not optimal or complete.

BUT': greedy search can be effective, provided we have a good h(n).

Wouldn’t it be nice if we could improve it to make it optimal and complete?
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A* search

Well, we can.

A”* search combines the good points of:

e Greedy search—by making use of h(n).

e Uniform-cost search—by being optimal and complete.

It does this in a very simple manner: it uses path cost p(n) and also the
heuristic function h(n) by forming
f(n) =p(n) + h(n)
where
p(n) = cost of path to n

and
h(n) = estimated cost of best path from n

So: f(n) is the estimated cost of a path through n.
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A* search

A™* search:

e A best-first search using f(n).
e It is both complete and optimal...

e ...provided that h obeys some simple conditions.

Definition: an admaissible heuristic h(n) is one that never overestimates
the cost of the best path from n to a goal.

If h(n) is admissible then tree-search A* is optimal.
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A* tree-search is optimal for admissible h(n)

To see that A* search is optimal we reason as follows.
Let Goaly,: be an optimal goal state with
f(Goalopt) — P(Goalopt) = Topt
(because h(Goalyy;) = 0). Let Goal, be a suboptimal goal state with
f(Goaly) = p(Goaly) = f; > fopt

We need to demonstrate that the search can never select Goal,.
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A* tree-search is optimal for admissible h(n)

At some point Goal; is in the fringe.

Can it be selected before n?
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A* tree-search is optimal for admissible h(n)

Let n be a leaf node in the fringe on an optimal path to Goal,y;. So
fopt > P(n) + h(n) = f(n)
because h 1s admissible.
Now say Goal, is chosen for expansion before n. This means that
f(n) > f;
so we've established that
fopt > f2 = p(Goaly).

But this means that Goaly,; 1s not optimal: a contradiction.
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A graph search

Of course, we will generally be dealing with graph search.
Unfortunately the proof breaks in this case.
e Graph search can discard an optimal route if that route is not the first
one generated.

e We could keep only the least expensive path. This means updating,
which is extra work, not to mention messy, but sufficient to insure op-
timality.

e Alternatively, we can impose a further condition on h(n) which forces
the best path to a repeated state to be generated first.

The required condition is called monotonicity. As
monotonicity — admissibility

this 1s an important property.
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Monotonicity

Assume h is admissible. Remember that f(n) = p(n)+h(n) so if n’ follows
n

p(n’) > p(n)
and we expect that h(n’) < h(n) although this does not have to be the
case.

Here f(n) =9 and f(n/) =7 so f(n') < f(n).
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Monotonicity

Monotonicity:

e If it is always the case that f(n') > f(n) then h(n) is called monotonic.

e h(n) is monotonic if and only if it obeys the triangle inequality.

h(n) < cost(n — n') + h(n/)

If h(n) is not monotonic we can make a simple alteration and use
f(n') = max{f(n),p(n’) + h(n')}

This 1s called the pathmaz equation.
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The pathmax equation

Why does the pathmax equation make sense?

The fact that f(n) = 9 tells us the cost of a path through n is at least 9
(because h(n) is admissible).

But n' is on a path through n. So to say that f(n’) = 7 makes no sense.
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A* graph search is optimal for monotonic heuristics

A* graph search is optimal for monotonic heuristics.

The crucial fact from which optimality follows is that if h(n) is monotonic
then the values of f(n) along any path are non-decreasing.

Assume we move from n to n’ using action a. Then
Va.pm') =p(n) + cost(n — n’)
and using the triangle inequality
h(n) < cost(n — n') + h(n/) (1)
Thus

where the inequality follows from equation 1.
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A* graph search is optimal for monotonic heuristics

We therefore have the following situation:

You can’t deal with n’ until everything with

f(n”) < f(n’) has been dealt with.

Consequently everything with f(n”) < f.,; gets explored. Then one or
more things with f,,; get found (not necessarily all goals).
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A” search 1s complete

A* search 1s complete provided:

1. The graph has finite branching factor.

2. There is a finite, positive constant ¢ such that each operator has cost at
least c.

Why is this?

107



A” search 1s complete

The search expands nodes according to increasing f(n). So: the only way

it can fail to find a goal is if there are infinitely many nodes with f(n) <
f(Goal).

There are two ways this can happen:

1. There 1s a node with an infinite number of descendants.

2. There 1s a path with an infinite number of nodes but a finite path cost.
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Complexity

e A” search has a further desirable property: it is optimally efficient.

e This means that no other optimal algorithm that works by constructing
paths from the root can guarantee to examine fewer nodes.

e BUT: despite its good properties we're not done yet...

e ...A” search unfortunately still has exponential time complexity in most
cases unless h(n) satisfies a very stringent condition that is generally

unrealistic:
h(n) —h'(n)] < O(log h'(n))

where h'/(n) denotes the real cost from n to the goal.

e As A* search also stores all the nodes it generates, once again it is
generally memory that becomes a problem before time.
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IDA” - iterative deepening A* search

How might we improve the way in which A* search uses memory?

e I[terative deepening search used depth-first search with a limit on depth
that gradually increased.

e /DA” does the same thing with a limit on f cost.

ActionSequence ida() {
float fLimit = f(root);
root = root node for problem;
while() {
(sequence, fLimit) = contour(root,fLimit,emptySequence);
if (sequence != emptySequence)
return sequence;
if (fLimit == infinity)
return emptySequence;
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IDA” - iterative deepening A* search

The function contour searches from a given node, as far as the specified
f limat. It returns either a solution, or the next biggest value of f to try.

(ActionSequence,float) contour(Node node, float fLimit, ActionSequence s) {
float nextF = infinity;
if (f(node) > fLimit)
return (emptySequence,f(node));
ActionSequence s’ = addToSequence(node,s);
if (goalTest(node))
return (s’,fLimit);
for (each successor n’ of node) {
(sequence,newF) = contour(n’,fLimit,s’);
if (sequence != emptySequence)
return (sequence,fLimit);
nextF = minimum(nextF,newF) ;

+

return (emptySequence,nextF) ;
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IDA” - iterative deepening A* search

This 1s a little tricky to unravel, so here is an example:

Initially, the algorithm looks ahead and finds the smallest f cost that is
greater than its current f cost limit. The new limit is 4.

112



IDA” - iterative deepening A* search

It now does the same again:

Anything with f cost at most equal to the current limit gets explored, and
the algorithm keeps track of the smallest f cost that is greater than its
current limit. The new limit is 5.
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IDA” - iterative deepening A* search

And again:

The new limit 1s 7, so at the next iteration the three arrowed nodes will be

explored.
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IDA” - iterative deepening A* search

Properties of IDA™:

e It is complete and optimal under the same conditions as A*.
e [t is often good if we have step costs equal to 1.

e It does not require us to maintain a sorted queue of nodes.
e It only requires space proportional to the longest path.

e The time taken depends on the number of values h can take.

If h takes enough values to be problematic we can increase f by a fixed €
at each stage, guaranteeing a solution at most € worse than the optimum.
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Recursive best-first search (RBFS)

Another method by which we can attempt to overcome memory limitations
is the Recursiwve best-first search (RBE'S).

Idea: try to do a best-first search, but only use lznear space by doing a
depth-first search with a few modifications:

1. We remember the f(n’) for the best alternative node n’ we’ve seen so
far on the way to the node n we're currently considering.

2. If n has f(n) > f(n'):

e We go back and explore the best alternative...

e ...and as we retrace our steps we replace the f cost of every node
we’ve seen in the current path with f(n).

The replacement of f values as we retrace our steps provides a means of
remembering how good a discarded path might be, so that we can easily
return to it later.
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Recursive best-first search (RBFS)

Note: for simplicity a parameter for the path has been omitted.

function RBFS(Node n, Float fLimit) {
if (goaltest(n))
return n;
if (n has no successors)
return (fail, infinity);
for (each successor n’ of n)
f(n’) = maximum(f(n’), f(n));
while() {
best = successor of n that has the smallest f(n’);
if (f(best) > fLimit)
return (fail, f(best));
nextBest = second smallest f(n’) value for successors of n;
(result, f’) = RBFS(best, minimum(fLimit, nextBest));
f(best) = f’;
if (result !'= fail)
return result;

IMPORTANT: f(best) 1s modified when RBFS produces a result.

117



Recursive best-first search (RBFS): an example

This function 1s called using RBFS(startState, infinity) to begin the
process.

Function call number 1:

R nextBest; =5

Now perform the recursive function call (result,, f’) = RBFS(best;,5)

so f(best;) takes the returned value f’
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Recursive best-first search (RBFS): an example

Function call number 2:

fLimit; = oo
fLimit, =5

<
@
\

Now perform the recursive function call (results, f’) = RBFS(best,,5)

so f(best,) takes the returned value f’
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Recursive best-first search (RBFS): an example

Function call number 3:

fLimit; = oo
fLimit, =5
'mits =

nextBest; = 11 best;

Now f(best;) > fLimitz so the function call returns (fail, 10) into (results, ')
and f(best;) = 10.
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Recursive best-first search (RBFS): an example

The while loop for function call 2 now repeats:

fLimit; = oo
fLimit, =5

4 replaced by 9

5 replaced by 1

Now f(best;) > fLimit, so the function call returns (fail, ?) into (result,, f’)
and f(best;) = 9.
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Recursive best-first search (RBFS): an example

The while loop for function call 1 now repeats:

fLimit; = oo
4 replaced by 9

.-~ nextBest; =7

l 5 replaced by 1
@

7\

We do a further function call to expand the new best node, and so on...
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Recursive best-first search (RBFS)

Some nice properties:

e If h is admissible then RBF'S is optimal.
e Memory requirement is O(bd)

e Generally more efficient than IDA*.
And some less nice ones;:

e Time complexity is hard to analyse, but can be exponential.

e Can spend a lot of time re-generating nodes.
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Other methods for getting around the memory problem

To some extent IDA* and RBF'S throw the baby out with the bathwater.

e They limit memory too harshly, so...

e ...we can try to use all available memory.

MA™* and SMA” will not be covered in this course...
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Solving problems by search: playing games

How might an agent act when the outcomes of its actions are not known
because an adversary 1s trying to hinder 1t?

e This 1s essentially a more realistic kind of search problem because we
do not know the exact outcome of an action.

e This 1s a common situation when playing games: in chess, draughts,
and so on an opponent responds to our moves.

e We don't know what their response will be, and so the outcome of our
moves 1s not clear.

Game playing has been of interest in Al because 1t provides an 2dealisation
of a world in which two agents act to reduce each other’s well-being.
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Playing games: search against an adversary

Despite the fact that games are an idealisation, game playing can be an
excellent source of hard problems. For instance with chess:

e The average branching factor is roughly 35.

e Games can reach 50 moves per player.

5100

e 50 a rough calculation gives the search tree 3 nodes.

e Even if only different, legal positions are considered it’s about 10%.
So: w1n addition to the uncertainty due to the opponent:

e We can’t make a complete search to find the best move...

e ... so we have to act even though we're not sure about the best thing
to do.
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Playing games: search against an adversary

And chess isn’t even very hard:

e (Go 1s much harder than chess.

e The branching factor i1s about 360.

Until very recently it has resisted all attempts to produce a good Al player.

See:
senseis.xmp.net/?MoGo

and others.
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Playing games: search against an adversary

It seems that games are a step closer to the complexities inherent in the
world around us than are the standard search problems considered so far.

The study of games has led to some of the most celebrated applications
and techniques in Al

We now look at:

e How game-playing can be modelled as search.
e The minimazx algorithm for game-playing.
e Some problems inherent in the use of minimax.

e The concept of x — 3 pruning.

Reading: Russell and Norvig chapter 6.
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Perfect decisions in a two-person game

Say we have two players. Traditionally, they are called Maxz and M:in for
reasons that will become clear.

e We'll use noughts and crosses as an initial example.

e Max moves first.

e The players alternate until the game ends.

e At the end of the game, prizes are awarded. (Or punishments administered—

is starting up his favourite chainsaw...)

This 1s exactly the same game format as chess, Go, draughts and so on.
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Perfect decisions in a two-person game

Games like this can be modelled as search problems as follows:

e There i1s an 1n1tial state.

@ Max to move

e There is a set of operators. Here, Max can place a cross in any empty
square, or Min a nought.

e There is a terminal test. Here, the game ends when three noughts or
three crosses are in a row, or there are no unused spaces.

e There 1s a utility or payoff function. This tells us, numerically, what
the outcome of the game is.

This 1s enough to model the entire game.
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Perfect decisions in a two-person game

We can construct a tree to represent a game. From the initial state Max
can make nine possible moves:

Then 1t’s Min’s turn...
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Perfect decisions in a two-person game

For each of Max’s opening moves Min has eight replies:

And so on...

This can be continued to represent all possibilities for the game.
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Perfect decisions in a two-person game

At the leaves a player has won or there are no spaces. Leaves are labelled
using the utility function.
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Perfect decisions in a two-person game

How can Max use this tree to decide on a move? Consider a much simpler
tree:

Labels on the leaves denote utility.
High values are preferred by Max.

Low values are preferred by Min.

If Max is rational he will play to reach a position with the biggest utility
possible

But if Min is rational she will play to minimise the utility available to
Max.
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The minimax algorithm

There are two moves: Max then Min. Game theorists would call this one
move, or two ply deep.

The minimaz algorithm allows us to infer the best move that the current
player can make, given the utility function, by working backward from the

S

leaves.

20 20 15

As Min plays the last move, she minimises the utility available to Max.
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The minimax algorithm

Min takes the final move:
e If Min is in game position 1, her best choice is move 3. So from Max’s
point of view this node has a utility of 2.

e If Min is in game position 2, her best choice is move 3. So from Max’s
point of view this node has a utility of 6.

e If Min is in game position 3, her best choice is move 1. So from Max’s
point of view this node has a utility of 1.

e If Min i1s in game position 4, her best choice is move 4. So from Max’s
point of view this node has a utility of 4.
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The minimax algorithm

Moving one further step up the tree:

Y

FEON

4 5 2 20 20 15 6

We can see that Max’s best opening move is move 2, as this leads to the
node with highest utility.
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The minimax algorithm

In general:

e Generate the complete tree and label the leaves according to the utility
function.

e Working from the leaves of the tree upward, label the nodes depending
on whether Max or Min is to move.

e If Mwn 1s to move label the current node with the minimum utility of
any descendant.

e If Max 1s to move label the current node with the mazimum utility of
any descendant.

If the game 1s p ply and at each point there are g available moves then this
process has (surprise, surprise) O(qP) time complexity and space complex-
1ty linear in p and q.

139



Making imperfect decisions

We need to avoid searching all the way to the end of the tree. So:

e We generate only part of the tree: instead of testing whether a node is
a leaf we introduce a cut-off test telling us when to stop.

e Instead of a utility function we introduce an evaluation function for
the evaluation of positions for an incomplete game.

The evaluation function attempts to measure the expected utility of the
current game position.
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Making imperfect decisions

How can this be justified?

e This i1s a strategy that humans clearly sometimes make use of.

e For example, when using the concept of material value in chess.
e The effectiveness of the evaluation function is critical...

e ... but it must be computable in a reasonable time.

e (In principle it could just be done using minimax.)

The importance of the evaluation function can not be understated—it is
probably the most important part of the design.
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The evaluation function

Designing a good evaluation function can be extremely tricky:

e Let's say we want to design one for chess by giving each piece its material
value: pawn = 1, knight/bishop = 3, rook = 5 and so on.

e Define the evaluation of a position to be the difference between the
material value of black’s and white’s pieces

eval(position) = Z value of p; — Z value of q;

black’s pieces p; white’s pieces g

This seems like a reasonable first attempt. Why might it go wrong?
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The evaluation function

Consider what happens at the start of a game:

e Until the first capture the evaluation function gives O, so in fact we
have a category containing many different game positions with equal
estimated utility.

e For example, all positions where white is one pawn ahead.

e The evaluation function for such a category should perhaps represent
the probability that a position chosen at random from 1t leads to a win.

So 1n fact this seems highly naive...
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The evaluation function

Ideally, we should consider individual positions.

If on the basis of past experience a position has 50% chance of winning,
10% chance of losing and 40% chance of reaching a draw, we might give it
an evaluation of

eval(position) = (0.5 x 1) + (0.1 x —1) + (0.4 x 0) = 0.4.

Extending this to the evaluation of categories, we should then weight the
positions in the category according to their likelihood of occurring.

Of course, we don’t know what any of these likelihoods are...
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The evaluation function

Using material value can be thought of as giving us a weighted linear
evaluation function

eval(position) Z wifi

where the w; are weights and the f; represent features of the position. In
this example
f; = value of the 1th piece

w; = number of ith pieces on the board

where black and white pieces are regarded as different and the f; are positive
for one and negative for the other.
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The evaluation function

Eivaluation functions of this type are very common in game playing.
There 1s no systematic method for their design.

Weights can be chosen by allowing the game to play itself and using learn-
1ng techniques to adjust the weights to improve performance.

By using more carefully crafted features we can give different evaluations
to individual positions.
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X — [3 pruning

Even with a good evaluation function and cut-off test, the time complexity
of the minimax algorithm makes it impossible to write a good chess program
without some further improvement.

e Assuming we have 150 seconds to make each move, for chess we would
be limited to a search of about 3 to 4 ply whereas...

e ...even an average human player can manage 6 to 8.

Luckily, 1t 1s possible to prune the search tree without affecting the out-
come and without having to examine all of it.
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X — [3 pruning

Returning for a moment to the earlier, simplified example:

i

20 20 15 6 7

The search 1s depth-first and left to right.
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X — [3 pruning

The search continues as previously for the first 8 leaves.

Then we note: if Maz plays move 3 then Min can reach a leaf with utility
at most 1.

So: we don’t need to search any further under Maz’s opening move 3.
This 1s because the search has already established that Max can do better
by making opening move 2.
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& — [3 pruning in general

A = Player

v B If n<morn<m' here
= Opponent then this node will never be reached.

So: once you've established that n is sufficiently small, you don’t need to
explore any more of the corresponding node’s children.
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& — [3 pruning in general

v = Player

If n >morn >m' here
A = Opponent then this node will never be reached.

So: once you've established that n is sufficiently large, you don’t need to
explore any more of the corresponding node’s children.

151



& — [3 pruning in general

The search i1s depth-first, so we're only ever looking at one path through
the tree.

We need to keep track of the values o« and 3 where
« = the highest utility seen so far on the path for Mazx
3 = the lowest utility seen so far on the path for Mwn

Assume Mazx begins. Initial values for o« and [3 are
X = —00

and
p = +oo0.
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& — [3 pruning in general

So: we start with the function call
max(—oo, +00, root)

where max 1s the function

max (alpha,beta,node) {
if (node is at cut-off)
return evaluation(node) ;
else {
for (each successor n’ of node) {
alpha = maximum(alpha,min(alpha,beta,n’));
if (alpha >= beta)
return beta; // pruning happens here.

}

return alpha;
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& — [3 pruning in general

The function min 1s

min(alpha,beta,node) {
if (node is at cut-off)
return evaluation(node);
else {
for (each successor n’ of node) {
beta = minimum(beta,max(alpha,beta,n’));
if (beta <= alpha)
return alpha; // pruning happens here.

}

return beta;
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& — [3 pruning in general

Applying this to the earlier example and keeping track of the values for «
and > you should obtain:
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How effective is « — 3 pruning?

(Warning: the theoretical results that follow are somewhat idealised.)

A quick inspection should convince you that the order in which moves are
arranged in the tree is critical.

S0, 1t seems sensible to try good moves first:

e If you were to have a perfect move-ordering technique then o— 3 pruning
would be O(qP/?) as opposed to O(qP).

e so the branching factor would effectively be ,/q instead of q.

e We would therefore expect to be able to search ahead twice as many
moves as before.

However, this is not realistic: if you had such an ordering technique you’d
be able to play perfect games!
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How effective is « — 3 pruning?

If moves are arranged at random then o« — 3 pruning is:

e O((q/log q)?) asymptotically when g > 1000 or...

e ...about O(q°"/*) for reasonable values of q.

In practice simple ordering techniques can get close to the best case. For
example, if we try captures, then threats, then moves forward etc.

Alternatively, we can implement an iterative deepening approach and use
the order obtained at one iteration to drive the next.
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A further optimisation: the transposition table

Finally, note that many games correspond to graphs rather than trees
because the same state can be arrived at in different ways.

e This 1s essentially the same effect we saw in heuristic search: recall
graph search versus tree search.

e It can be addressed in a similar way: store a state with its evaluation
in a hash table—generally called a transposition table—the first time
it 1s seen.

The transposition table is essentially equivalent to the closed list intro-
duced as part of graph search.

This can vastly increase the effectiveness of the search process, because we
don’t have to evaluate a single state multiple times.
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Constraint satisfaction problems (CSPs)

The search scenarios examined so far seem in some ways unsatisfactory.
e States were represented using an arbitrary and problem-specific data
structure.
e Heuristics were also problem-specific.
e It would be nice to be able to transform general search problems into

a standard format.

CSPs standardise the manner in which states and goal tests are repre-
sented...
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Constraint satisfaction problems (CSPs)

By standardising like this we benefit in several ways:

e We can devise general purpose algorithms and heuristics.

e We can look at general methods for exploring the structure of the prob-
lem.

e Consequently 1t is possible to introduce techniques for decomposing
problems.

e We can try to understand the relationship between the structure of a
problem and the difficulty of solving 1t.

Note: another method of interest in Al that allows us to do similar things
involves transforming to a propositional satisfiability problem. We'll see
an example of this in AT II.
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Introduction to constraint satisfaction problems

We now return to the idea of problem solving by search and examine it
from this new perspective.

Aims:

e To introduce the idea of a constraint satisfaction problem (CSP) as a
general means of representing and solving problems by search.

e To look at a backtracking algorithm for solving CSPs.
e To look at some general heuristics for solving CSPs.

e To look at more intelligent ways of backtracking.

Reading: Russell and Norvig, chapter 5.
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Constraint satisfaction problems

We have:

e A set of n variables Vi, Vs, ..., V,.
e For each V; a domain D; specifying the values that V; can take.

e A set of m constraints Cy,Cy, ..., Cp.

Elach constraint C; involves a set of variables and specifies an allowable
collection of values.

e A state 1s an assignment of specific values to some or all of the variables.
e An assignment 1s consistent if i1t violates no constraints.

e An assignment 1s complete if i1t gives a value to every variable.

A solution 1s a consistent and complete assignment.
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Example

We will use the problem of colouring the nodes of a graph as a running
example.

Elach node corresponds to a variable. We have three colours and directly
connected nodes should have different colours.
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Example

This translates easily to a CSP formulation:
e The variables are the nodes
V; = node i
e The domain for each variable contains the values black, red and cyan
Di — {B> R) C}

e The constraints enforce the idea that directly connected nodes must
have different colours. For example, for variables V; and V, the con-
straints specify

(B,R), (B, C),(R,B), (R, C),(C,B),(C,R)

e Variable Vs is unconstrained.
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Different kinds of CSP

This 1s an example of the simplest kind of CSP: it 1s discrete with finite
domains. We will concentrate on these.

We will also concentrate on binary constraints; that is, constraints be-
tween pairs of variables.

e Constraints on single variables—unary constraints—can be handled by
adjusting the variable’s domain. For example, if we don’t want V; to be
red, then we just remove that possibility from D;.

e Higher-order constraints applying to three or more variables can cer-
tainly be considered, but...

e ...when dealing with finite domains they can always be converted to sets
of binary constraints by introducing extra auziliary variables.

How does that work?
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Auxiliary variables

Example: three variables each with domain {B, R, C}.

A single constraint
(C) C’ C)) (R) B) B)) (B) R) B)) (B) B) R)

New, binary constraints:

A=1V,=C)
A:3)V1:B)>
A =4V, =B)

22X O

The original constraint connects all
three variables.

Introducing auxiliary variable A with domain {1, 2, 3,4} allows us to convert

this to a set of binary constraints.
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Backtracking search

Consider what happens if we try to solve a CSP using a simple technique
such as breadth-first search.

The branching factor is nd at the first step, for n variables each with d
possible values.

Step2: (n—1)d )
Step 3: (n—2)d > Number of leaves =nd x (n—1)d x --- x 1
' =n!d"

Step n.: d

/

BUT': only d" assignments are possible.

The order of assignment doesn’t matter, and we should assign to one vari-
able at a time.
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Backtracking search

Using the graph colouring example:

The search now looks something like this...

...and new possibilities appear.
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Backtracking search

Backtracking search searches depth-first, assigning a single variable at a
time, and backtracking if no valid assignment is available.

1=B
2=R
3=C
4=B
5=R

Nothing is available for 7, so
either assign 8 or backtrack

Rather than using problem-specific heuristics to try to improve searching,
we can now explore heuristics applicable to general CSPs.
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Backtracking search

Result backTrack(problem) {
return bt ([], problem);

¥

Result bt(assignmentlList, problem) {
if (assignmentlist is complete)
return assignmentList;
nextVar = getNextVar(assignmentList, problem) ;
for (all v in orderVariables(nextVar, assignmentList, problem)) {
if (v is consistent with assignmentList) {
add "nextVar = v" to assignmentList;
solution = bt(assignmentlList, problem) ;
if (solution is not "fail")
return solution;
remove "mextVar = v" from assignmentList;

+
}

return "fail";
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Backtracking search: possible heuristics

There are several points we can examine in an attempt to obtain general
CSP-based heuristics:

e In what order should we try to assign variables?

e In what order should we try to assign possible values to a variable?
Or being a little more subtle:

e What effect might the values assigned so far have on later attempted
assignments?

e When forced to backtrack, is it possible to avoid the same failure later
on?
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Heuristics I: Choosing the order of variable assignments and values

Say we have 1 =B and 2 =R

At this point there is only one possible assignment
for 3, whereas the others have more flexibility.

Assigning such variables first i1s called the minimum remaining values
(MRV) heuristic.

(Alternatively, the most constrained variable or fail first heuristic.)
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Heuristics I: Choosing the order of variable assignments and values

How do we choose a variable to begin with?

The degree heuristic chooses the variable involved in the most constraints
on as yet unassigned variables.

Start with 3, 5 or 7.

MRYV 1s usually better but the degree heuristic is a good tie breaker.
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Heuristics I: Choosing the order of variable assignments and values

Once a variable i1s chosen, in what order should values be assigned?

Choosing 1 = C is bad as it removes
the final possibility for 3.

The heuristic prefers 1=B

The least constraining value heuristic chooses first the value that leaves
the maximum possible freedom in choosing assignments for the variable’s
neighbours.
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Heuristics II: forward checking and constraint propagation

Continuing the previous slide’s progress, now add 1 = C.

C is ruled out as an assignment
2 and 3.

Elach time we assign a value to a variable, it makes sense to delete that
value from the collection of possible assignments to its neighbours.

This is called forward checking. It works nicely in conjunction with MRV.
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Heuristics II: forward checking and constraint propagation

We can visualise this process as follows:

1 2 3 4 5 6 7 8
Start | BRC | BRC | BRC | BRC | BRC | BRC | BRC | BRC

2=B| RC | =B | RC | RC | BRC | BRC | BRC | BRC
3=R| C | =B | =R | RC | BC | BRC| BC | BRC
6=B| C |=B| =R | RC C |=B| C |BRC
5=C|] C |=B|=R| R |=C | =B I | BRC

At the fourth step 7 has no possible assignments left.

However, we could have detected a problem a little earlier...
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Heuristics II: forward checking and constraint propagation

...by looking at step three.

1 2 3 4 5 6 7 8

Start | BRC | BRC | BRC | BRC | BRC | BRC | BRC | BRC
2=B| RC | =B | RC | RC | BRC | BRC | BRC | BRC
C |=B|=R| RC | BC |BRC| BC | BRC
C |=B|=R| RC C |=B| C |BRC
C | =B|=R| R |=C| =8B I | BRC

U1 oy W
1l
(@N==",

e At step three, 5 can be C only and / can be C only.

e But 5 and / are connected.

e S0 we can’t progress, but this hasn’t been detected.

e Ideally we want to do constraint propagation.

Trade-off: time to do the search, against time to explore constraints.
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Constraint propagation

Arc consistency:

Consider a constraint as being directed. For example 4 — 5.

In general, say we have a constraint 1 — j and currently the domain of 1 is
D; and the domain of j 1s D;.

1 — j 1s consistent if

Vd € Dy, 3d’ € D; such that 1 — j is valid
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Constraint propagation

Ezxample:

In step three of the table, D, = {R, C} and D5 = {C}].

e 5 — 4 in step three of the table s consistent.

e 4 — 5 1n step three of the table 1s not consistent.

4 — 5 can be made consistent by deleting C from D,.

Or in other words, regardless of what you assign to 1 you’ll be able to find
something valid to assign to j.
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Enforcing arc consistency

We can enforce arc consistency each time a variable 1 is assigned.

e We need to maintain a collection of arcs to be checked.
e Fach time we alter a domain, we may have to include further arcs in
the collection.
This i1s because if 1 — j 1s inconsistent resulting in a deletion from D; we

may as a consequence make some arc k — 1 inconsistent.

Why is this?
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Enforcing arc consistency

i1 — j is not consistent so
delete B from the domain

1 — j is now consistent.

kk — 1 is consistent but kx — 1 is no longer consistent
kx = R can only be paired because kx = R can not be paired
with 1 = B. with 1 = R.

e 1 — j inconsistent means removing a value from D;.

e 1d € D; such that there is no valid d’ € D; so delete d € D;.

However some d” € Dy may only have been pairable with d.

We need to continue until all consequences are taken care of.
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The AC-3 algorithm

NewDomains AC-3 (problem) {
Queue toCheck = all arcs i->j;
while (toCheck is not empty) {
i->j = next(toCheck);
if (removeInconsistencies(Di,Dj)) {
for (each k that is a neighbour of i)
add k->i to toCheck;

Bool removelnconsistencies (domainl, domain2) {
Bool result = false;
for (each d in domainl) {
if (no d’ in domain2 valid with d) {
remove d from domaini;
result = true;

+

return result;

}
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Enforcing arc consistency

Complexity:

e A binary CSP with n variables can have O(n’) directional constraints
1— .

e Any i — j can be considered at most d times where d = maxy |Dy
because only d things can be removed from D;.

e Checking any single arc for consistency can be done in O(d?).

So the complexity is O(n?d?).
Note: this setup includes 3SAT.

Consequence: we can’t check for consistency in polynomial time, which
suggests this doesn’t guarantee to find all inconsistencies.
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A more powerful form of consistency

We can define a stronger notion of consistency as follows:

e Given: any k — 1 variables and any consistent assignment to these.

e Then: We can find a consistent assignment to any kth variable.

This 1s known as k-consistency.

Strong k-consistency requires the we be k-consistent, k — 1-consistent etc
as far down as 1-consistent.

If we can demonstrate strong n-consistency (where as usual n is the number
of variables) then an assignment can be found in O(nd).

Unfortunately, demonstrating strong n-consistency will be worst-case ez-
ponential.
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Backjumping

The basic backtracking algorithm backtracks to the most recent assign-
ment. This 1s known as chronological backtracking. It is not always the
best policy:

Say we've assigned 1 = B, 3 = R, 5 = C and 4 = B and now we want
to assign something to /. This isn’t possible so we backtrack, however
re-assigning 4 clearly doesn’t help.
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Backjumping

With some careful bookkeeping it is often possible to jump back multiple
levels without sacrificing the ability to find a solution.

We need some definitions:
e When we set a variable V, to some value d € D; we refer to this as the
assignment A; = (Vi « d).

e A partial instantiation I, = {A1, Ay, ..., Ay} 1s a consistent set of
assignments to the first k variables...

® ... Where consistent means that no constraints are violated.

Henceforth we shall assume that variables are assigned in the order V7, V>, ..., Vi,
when formally presenting algorithms.
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Gaschnig’s algorithm

Gaschnig’s algorithm works as follows. Say we have a partial instantiation
Ikl

e When choosing a value for V). ; we need to check that any candidate
value d € Dy, 1s consistent with Iy.

e When testing potential values for d, we will generally discard one or
more possibilities, because they conflict with some member of I

e We keep track of the most recent assignment A; for which this has
happened.

Finally, if no value for Vi 1s consistent with I, then we backtrack to V;.

If there are no possible values left to try for V; then we backtrack chrono-
logically.
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Gaschnig’s algorithm

Ezxample:

If there’s no value left to try for 5 then backtrack to 3 and so on.
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Graph-based backjumping

This allows us to jump back multiple levels when we wnitially detect a
conflict.

Can we do better than chronological backtracking thereafter?

Some more definitions:

e We assume an ordering Vi, V>, ..., V, for the variables.

e Given V' = {V;, V5, ..., Vi} where k < n the ancestors of Vi, are the
members of V' connected to Vi; by a constraint.

e The parent P(V) of Vi is its most recent ancestor.

The ancestors for each variable can be accumulated as assignments are
made.

Graph-based backjumping backtracks to the parent of Vi ;.
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Graph-based backjumping

At this point, backjump to the parent for /, which is 5.
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Backjumping and forward checking

If we use forward checking: say we're assigning to Vi, by making Vi.; =
d:

e Forward checking removes d from the D; of all V; connected to V. by
a constraint.

e When doing graph-based backjumping, we'd also add V) .; to the an-
cestors of V;.

In fact, use of forward checking can make some forms of backjumping re-

dundant.

Note: there are in fact many ways of combining constraint propagation
with backjumping, and we will not explore them in further detail here.
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Backjumping and forward checking

Ancestors
1-{}

2 -{1,3, 4}
3-{1}
4-{}
5-{3}

6-{}
7-{1,3,
8-{}

1 2 3 4 5 6 7 8
Start | BRC | BRC | BRC | BRC | BRC | BRC | BRC | BRC
1=B|=B | RC | RC | BRC|BRC | BRC| RC |BRC

=R | =B | C | = BRC | BC |BRC| C |BRC
5=C|=B| C | = BR | = BR I | BRC
4=B|=B| C | = BR | = BR I | BRC

Forward checking finds the problem before backtracking does.
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Graph-based backjumping

We're not quite done yet though. What happens when there are no as-
signments left for the parent we just backjumped to?

Backjumping from V; to V, is fine. However we shouldn’t then just back-
jump to V>, because changing V3 could fix the problem at V5.
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Graph-based backjumping

To describe an algorithm in this case is a little involved.

Leaf dead-end variable V-

Leaf dead-end
I¢.

Given an instantiation Iy and Vi i, if there is no consistent d € D, we
call Iy a leaf dead-end and Vi, a leaf dead-end variable.
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Graph-based backjumping

Also

Leaf dead-end variable V-

Internal dead-end
I4.
;1?77?/ Internal dead-end variable V;,
Leaf dead-end
Ig.

If V; was backtracked to from a later leaf dead-end and there are no more
values to try for V; then we refer to it as an internal dead-end variable
and call I;_; an wnternal dead-end.
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Graph-based backjumping

To keep track of exactly where to jump to we also need the definitions:

e The session of a variable V begins when the search algorithm visits it
and ends when i1t backtracks through it to an earlier variable.

e The current session of a variable V is the set of all variables visiting
during its session.

e In particular, the current session for any V contains V.

e The relevant dead-ends for the current session R(V) for a variable V
are:

1. If V is a leaf dead-end variable then R(V) = {V].
2. If V was backtracked to from a dead-end V' then R(V) = R(VJUR(V').

And we’re not done yet...
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Graph-based backjumping

Ezxample:

Session of V; = {V7}.

R(V7) ={V7} ()
Session starts
Session of V, = {V4, Vs, Vg, V7).
Session starts R(Vy) = {V7}

As expected, the relevant dead-end for V; is {V-].
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Graph-based backjumping

One more bunch of definitions before the pain stops. Say Vi is a dead-end:

e The induced ancestors ind(Vy) of Vi are defined as

ind(Vi) ={V1,Va,..., Vi1 N U ancestors(V)
VER(Vk)
e The culprit for Vi is the most recent V' € ind(V4).
Note that these definitions depend on R( V).
FINALLY: graph-based backjumping backjumps to the culprit.
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Graph-based backjumping

Ezxample:

Backjump from V;
to V4.

Session of V4 = {V4, V5, Vg, V7.

Nothing left to try! A R(V4) ={V7}
ind(Va) = {V3}

As expected, we back jump to V; instead of V,. Hooray!
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Conflict-directed backjumping

Gaschnig’s algorithm and graph-based backjumping can be combined to
produce conflict-directed backjumping.

We will not explore conflict-directed backjumping in this course.

For considerable further detail on algorithms for CSPs see:

“Constraint Processing,” Rina Dechter. Morgan Kaufmann, 2003.
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Varieties of CSP

We have only looked at discrete CSPs with finite domains. These are the
simplest. We could also consider:

1. Discrete CSPs with infinite domains:
e We need a constraint language. For example
V3 < Vio+5
e Algorithms are available for integer variables and linear constraints.
e There is no algorithm for integer variables and nonlinear constraints.

2. Continuous domains—using linear constraints defining convex regions
we have linear programmaing. This is solvable in polynomial time in n.

3. We can introduce preference constraints in addition to absolute con-
straints, and in some cases an objective function.
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Knowledge representation and reasoning using FOL

We now look at how an agent might represent knowledge about its envi-
ronment using first order logic (FOL), and reason with this knowledge to
achieve its goals.

Aims:

e To show how FOL can be used to represent knowledge about an en-
vironment in the form of both background knowledge and knowledge
derived from percepts.

e To show how this knowledge can be used to derive non-perceived
knowledge about the environment using a theorem prover.

e To introduce the situation calculus and demonstrate its application in
a simple environment as a means by which an agent can work out what
to do next.
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Interesting reading

Reading: Russell and Norvig, chapters 7 to 10.

Knowledge representation based on logic is a vast subject and can’t be
covered in full in the lectures.

In particular:

e Techniques for representing further kinds of knowledge.
e Techniques for moving beyond the idea of a situation.

e Reasoning systems based on categories.

e Reasoning systems using default information.

e Truth maintenance systems.

Happy reading :-)
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Knowledge representation and reasoning

BElarlier in the course we looked at what an agent should be able to do.

It seems that all of us—and all intelligent agents—should use logical rea-
soning to help us interact successfully with the world.

Any intelligent agent should:

e Possess knowledge about the environment and about how its actions
affect the environment.

e Use some form of logical reasoning to maintain its knowledge as per-
cepts arrive.

e Use some form of logical reasoning to deduce actions to perform in
order to achieve goals.
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Knowledge representation and reasoning

This raises some important questions:

e How do we describe the current state of the world?

e How do we infer from our percepts, knowledge of unseen parts of the
world?

e How does the world change as time passes?

e How does the world stay the same as time passes? (The frame prob-
lem.)

e How do we know the effects of our actions? (The qualification and
ramafication problems.)

We'll now look at one way of answering some of these questions.
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Logic for knowledge representation

FOL (arguably?) seems to provide a good way in which to represent the
required kinds of knowledge:

e It 1s expressive—anything you can program can be expressed.

e It 1s concuse.

e It is unambiguous

e It can be adapted to different contexts.

e It has an inference procedure, although a semidecidable one.

In addition is has a well-defined syntazr and semantics.
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Logic for knowledge representation

Problem: 1t’s quite easy to talk about things like set theory using FOL.
For example, we can easily write axioms like

VS.VS . ((Wx.(xeS&xeS')=S=5

But how would we go about representing the proposition that :f you have
a bucket of water and throw i1t at your friend they will get wet, have
a bump on theiwr head from being hit by a bucket, and the bucket wall
now be empty and dented?

More importantly, how could this be represented within a wider framework
for reasoning about the world?

It’s time to introduce my friend, The Wumpus...
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Wumpus world

As a simple test scenario for a knowledge-based agent we will make use of
the Wumpus World.

Evil Robot

The Wumpus World is a 4 by 4 grid-based cave.

wants to enter the cave, find some gold, and get out again
un-scathed.
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Wumpus world

The rules of Wumpus World:

e Unfortunately the cave contains a number of pits, which
can fall into. Eventually his batteries will fail, and that’s the end of
him.

e The cave also contains the Wumpus, who is armed with state of the art
Evil Robot Obliteration Technology.

e The Wumpus itself knows where the pits are and never falls into one.
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Wumpus world

can move around the cave at will and can perceive the
following:

e In a position adjacent to the Wumpus, a stench is perceived. (Wumpuses
are famed for their lack of personal hygiene.)

e In a position adjacent to a pit, a breeze is perceived.

e In the position where the gold is, a glitter is perceived.

e On trying to move into a wall, a bump 1s perceived.

e On killing the Wumpus a scream is perceived.

In addition, has a single arrow, with which to try to kill the
Wumpus.

“Adjacent” in the following does not include diagonals.
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Wumpus world

So we have:
Percepts: stench, breeze, glitter, bump, scream.
Actions: forward, turnLeft, turnRight, grab, release, shoot, climb.

Of course, our aim now 1s not just to design an agent that can perform
well in a single cave layout.

We want to design an agent that can wusually perform well regardless of
the layout of the cave.
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Some nomenclature

The choice of knowledge representation language tends to lead to two im-
portant commitments:

e Ontological commatments: what does the world consist of?

e Lfpistemological commatments: what are the allowable states of knowl-

edge?

Propositional logic 1s useful for introducing some fundamental ideas, but
1ts ontological commitment—that the world consists of facts—sometimes
makes 1t too limited for further use.

FOL has a different ontological commitment—the world consists of facts,
objects and relations.
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Logic for knowledge representation

The fundamental aim i1s to construct a knowledge base KB containing a
collection of statements about the world—expressed in FOL—such that
useful things can be derived from it.

Our central aim is to generate sentences that are true, if the sentences in
the KB are true.

This process 1s based on concepts familiar from your introductory logic
courses:

e Entailment: KB = « means that the KB entails «.

e Proof: KB -; « means that « i1s derived from the KB using 1. If 1 1s sound
then we have a proof.

e i1s sound if 1t can generate only entailed «.

e 11s complete if 1t can find a proof for any entailed o.
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Example: Prolog

You have by now learned a little about programming in Prolog. For exam-
ple:

concat([],L,L).
concat([H|T],L,[HIL2]) :- concat(T,L,L2).

1s a program to concatenate two lists. The query
concat([1,2,3],[4,5],X).
results in

X=1[1, 2, 3, 4, 8].

What’s happening here? Well, Prolog is just a more limited form of FOL
SO...
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Example: Prolog

.. we are in fact doing inference from a KB:

e The Prolog programme itself is the KB. It expresses some knowledge
about lists.

e The query is expressed in such a way as to derive some new knowledge.

How does this relate to full FOL? First of all the list notation is nothing

but syntactic sugar. It can be removed: we define a constant called empty
and a function called cons.

Now [1,2,3] just means cons(l, cons(2, cons(3, empty)))) which is
a term in FOL.

I unll assume the use of the syntactic sugar for lists from now on.
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Prolog and FOL

The program when expressed in FOL, says

Vx . concat(empty, x,x) /A
Vh,t,1;, L. concat(t, ly,1l,) = concat(cons(h,t), 1, cons(h, 1))

The rule i1s simple—given a Prolog program:

e Unwersally quantify all the unbound wvariables in each line of the
program and ...

e ... form the conjunction of the results.

If the universally quantified lines are [;,[,,...,[, then the Prolog pro-
gramme corresponds to the KB

KB=LiALA---AL,

Now, what does the query mean?
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Prolog and FOL

When you give the query

concat([1,2,3],[4,5],X).

to Prolog it responds by trying to prove the following statement
KB — dx.concat([1, 2, 3], [4, 5], x)

So: 1t tries to prove that the KB vmplies the query, and variables in the
query are existentially quantified.

When a proof is found, it supplies a value for x that makes the inference
true.
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Prolog and FOL

Prolog differs from FOL in that, amongst other things:

e It restricts you to using Horn clauses.
e Its inference procedure is not a full-blown proof procedure.

e It does not deal with negation correctly.

However the central idea also works for full-blown theorem provers.

If you want to experiment, you can obtain Prover9 from
http://www.cs.unm.edu/~mccune/maced/

We'll see a brief example now, and a more extensive example of its use
later, time permitting...
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Prolog and FOL

Expressed in Prover9, the above Prolog program and query look like this:

set (prolog_style_variables).

%» This is the translated Prolog program for list concatenation.
%» Prover9 has its own syntactic sugar for lists.

formulas (assumptions) .
concat([], L, L).
concat(T, L, L2) -> concat([H:T], L, [H:L2]).
end_of_list.
% This is the query.
formulas(goals) .

exists X concat([1, 2, 3], [4, 5], X).
end_of_list.

Note: 1t 1s assumed that unbound wvariables are universally quantified.
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Prolog and FOL

You can try to infer a proof using

prover9 -f file.in

and the result is (in addition to a lot of other information):

concat(T,L,L2) -> concat([H:T],L,[H:L2]) # label(non_clause). [assumption].
(exists X concat([1,2,3],[4,5],X)) # label(non_clause) # label(goal). [goall].
concat([],A,A). [assumption].

-concat(A,B,C) | concat([D:A],B,[D:C]). [clausify(1)].
-concat([1,2,3],[4,5],A). [deny(2)].

concat([A],B,[A:B]). [ur(4,a,3,a)].

-concat([2,3],[4,5],A). [resolve(5,a,4,b)].

concat([A,B],C,[A,B:C]). [ur(4,a,6,a)].

$F. [resolve(8,a,7,a)].

© 00 N O O b W N+~

This shows that a proof is found but doesn’t explicitly give a value for
X—we'll see how to extract that later...
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The fundamental idea

So the basic 1dea 1s: build a KB that encodes knowledge about the world,
the effects of actions and so on.

The KB 1s a conjunction of pieces of knowledge, such that:

e A query regarding what our agent should do can be posed in the form

dJdactionList.Goal(... actionList ...)

e Proving that
KB —> dactionList.Goal(... actionList ...)

instantiates actionlList to an actual list of actions that will achieve
a goal represented by the Goal predicate.

We sometimes use the notation ask and tell to refer to gquerying and
adding to the KB.
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Using FOL in AI: the triumphant return of the Wumpus

We want to be able to speculate about the past and about possible futures.
SO:

Evil Robot

e We include situations in the logical language used by our KB.

e We include azioms in our KB that relate to situations.

This gives rise to situation calculus.
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Situation calculus

In situation calculus:

e The world consists of sequences of situations.
e Over time, an agent moves from one situation to another.

e Situations are changed as a result of actions.

In Wumpus World the actions are: forward, shoot, grab, climb, release,
turnRight, turnlLeft.

e A situation argument is added to items that can change over time. For
example
At(location, s)

Items that can change over time are called fluents.

e A situation argument is not needed for things that don’t change. These
are sometimes referred to as eternal or atemporal.
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Representing change as a result of actions

Situation calculus uses a function
result(action, s)

to denote the new situation arising as a result of performing the specified
action in the specified situation.

result(grab, so) = 7

result(turnLeft,s;) = s;

(

(
result(shoot, sy) = s3
result(forward, s3) = s4
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Axioms I: possibility axioms

The first kind of axiom we need in a KB specifies when particular actions
are possible.

We introduce a predicate
Poss(action, s)
denoting that an action can be performed in situation s.
We then need a possibility aziom for each action. For example:
At(1,s) /\ Available(gold, l,s) = Poss(grab, s)

Remember that unbound variables are uniwversally quantified.
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Axioms II: effect axioms

Given that an action results in a new situation, we can introduce effect
azioms to specify the properties of the new situation.

For example, to keep track of whether has the gold we need
effect axioms to describe the effect of picking it up:

Poss(grab, s) = Have(gold, result(grab, s))
Eiffect axioms describe the way in which the world changes.
We would probably also include
—Have(gold, sp)
in the KB, where s( 1s the starting state.

Important: we are describing what 1s true in the situation that results
from performing an action in a gwen situation.
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Axioms III: frame axioms

We need frame axioms to describe the way in which the world stays the
same.

Example:

Have(o,s) A
—(a =release Ao =gold) A —(a = shoot /A o = arrow)
— Have(o, result(a, s))

describes the effect of having something and not discarding it.

In a more general setting such an axiom might well look different. For
example

—Have(o, s) /\
(a # grab(o) V —(Available(o,s) /\ Portable(o)))
— —Have(o, result(a,s))

describes the effect of not having something and not picking 1t up.
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The frame problem

The frame problem has historically been a major issue.

Representational frame problem: a large number of frame axioms are
required to represent the many things in the world which will not change
as the result of an action.

We will see how to solve this in a moment.

Inferential frame problem: when reasoning about a sequence of situations,
all the unchanged properties still need to be carried through all the steps.

This can be alleviated using planning systems that allow us to reason
efficiently when actions change only a small part of the world. There are
also other remedies, which we will not cover.

230



Successor-state axioms

Effect axioms and frame axioms can be combined into successor-state az-
10ms.

One 1s needed for each predicate that can change over time.

Action a is possible —
(true in new situation <
(you did something to make it true V
it was already true and you didn’t make it false))

For example

Poss(a,s) —
(Have(o, result(a,s)) < ((a = grab /\ Available(o,s)) V
(Have(o,s) /A —(a = release /A 0 =gold) A
—(a = shoot /A 0 = arrow))))
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Knowing where you are

If sy 1s the 1nitial situation we know that
At((1>1)>80)

I am assuming that we've added axioms allowing us to deal with the
numbers O to 5 and pairs of such numbers. (Ezercise: do this.)

We need to keep track of what way we're facing. Say north is 0, south 1is
2, east 1s 1 and west is 3.
facing(sp) =0

We need to know how motion affects location

forwardResult((x,y),north) = (x,y + 1)
forwardResult((x,y),east) = (x + 1,y)

and
At(l,s) = goForward(s) = forwardResult(l, facing(s))
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Knowing where you are

The concept of adjacency is very important in the Wumpus world
Adjacent(1l;,1,) <= dd forwardResult(l;,d) =1,
We also know that the cave 1s 4 by 4 and surrounded by walls
WallHere((x,y)) <& (x=0Vy=0Vx=5Vy=>5)

It 1s only possible to change location by moving, and this only works if
you're not facing a wall. So...

...we need a successor-state axiom:
Poss(a,s) —
At(1, result(a,s)) < (l = goForward(s)
/\ a = forward
/\ —WallHere(1))
V (At(l,s) /A a # forward)
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Knowing where you are

It 1s only possible to change orientation by turning. Again, we need a
successor-state axiom
Poss(a,s) —
facing(result(a,s)) = d <
(a = turnRight A\ d = mod(facing(s) + 1,4))
V (a = turnLeft /A d = mod(facing(s) — 1,4))
V (facing(s) = d /A a # turnRight /\ a # turnLeft)

and so on...
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The qualification and ramification problems

Qualification problem: we are in general never completely certain what
conditions are required for an action to be effective.

Consider for example turning the key to start your car.
This will lead to problems if important conditions are omitted from axioms.

Ramafication problem: actions tend to have implicit consequences that
are large in number.

For example, i1f I pick up a sandwich in a dodgy sandwich shop, I will
also be picking up all the bugs that live in it. I don’t want to model this
explicitly.
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Solving the ramification problem

The ramification problem can be solved by modifying successor-state azx-
10Mms.

For example:

Poss(a,s) —
(At(o, 1, result(a,s)) <
(a=go(l',1) A
lo = robot V Has(robot,o0,s)]) V
(At(o,1,s) A
3" . a=go(L,1") A T#LT"A
{o = robot V Has(robot, o,s)}|))

describes the fact that anything 1s carrying moves around
with him.
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Deducing properties of the world: causal rules

If you know where you are, then you can think about places rather than
just situations.

Synchronic rules relate properties shared by a single state of the world.
There are two kinds: causal and diagnostic.
Causal rules: some properties of the world will produce percepts.
WumpusAt(l;) /A Adjacent(l;,1l,) = StenchAt(1,)
PitAt(l;) A Adjacent(1;,1,) = BreezeAt(1,)

Systems reasoning with such rules are known as model-based reasoning
systems.
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Deducing properties of the world: diagnostic rules

Diagnostic rules: infer properties of the world from percepts.

For example:
At(1,s) /\ Breeze(s) —> BreezeAt(1)

At(1l,s) A Stench(s) =— StenchAt(l)

These may not be very strong.

The difference between model-based and diagnostic reasoning can be im-
portant. For example, medical diagnosis can be done based on symptoms
or based on a model of disease.
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General axioms for situations and objects

Note: in FOL, if we have two constants robot and gold then an interpre-
tation is free to assign them to be the same thing.

This 1s not something we want to allow.

Unique names axioms state that each pair of distinct items in our model
of the world must be different

robot # gold
robot # arrow

robot # wumpus

wumpus # gold
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General axioms for situations and objects

Unique actions azxioms state that actions must share this property, so for
each pair of actions

go(l,1") # grab
go(l,1") # drop(o)

and in addition we need to define equality for actions, so for each action
go(l,1') =go(1",1") &= 1=1"Al=1"
drop(o) = drop(0’) <= o =0
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General axioms for situations and objects

The situations are ordered so
so # result(a, s)
and situations are distinct so
result(a,s) =result(a’ s’) &< a=a' ' As=5s’
Strictly speaking we should be using a many-sorted version of FOL.

In such a system variables can be divided into sorts which are implicitly
separate from one another.
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The start state

Finally, we're going to need to specify what’s true in the start state.

For example
At(robot, [1,1], sg)

At(wumpus, (3, 4], so)
Has(robot, arrow, sg)

and so on.
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Sequences of situations

We know that the function result tells us about the situation resulting from
performing an action in an earlier situation.

How can this help us find sequences of actions to get things done?

Define
Sequence([l,s,s’) =s' =s
Sequence([al,s,s’) = Poss(a,s) /A s’ = result(a, s)
Sequence(a :: as,s,s’) = It . Sequence([al, s, t) /A Sequence(as, t, s’)
To obtain a sequence of actions that achieves Goal(s) we can use the

query
Ja Js . Sequence(a, sg, s) /\ Goal(s)
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Knowledge representation and reasoning

It should be clear that generating sequences of actions by inference in FOL
1s highly non-trivial.

Ideally we'd like to maintain an ezpressive language while restricting it
enough to be able to do inference efficiently.

Further aims:
e To give a brief introduction to semantic networks and frames for
knowledge representation.
e To see how nheritance can be applied as a reasoning method.
e To look at the use of rules for knowledge representation, along with

forward chaining and backward chaining for reasoning.

Further reading: The Essence of Artifictal Intelligence, Alison Cawsey.
Prentice Hall, 1998.
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Frames and semantic networks

Frames and semantic networks represent knowledge in the form of classes
of objects and relationships between them:

e The subclass and 1nstance relationships are emphasised.

e We form class hierarchies in which inheritance i1s supported and pro-
vides the main wnference mechanism.

As a result inference 1s quite limited.
We also need to be extremely careful about semantics.

The only major difference between the two ideas 1s notational.
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Example of a semantic network

has
has
has

subclasd

has

subclass subclass

volume

Ear problem has
volume - - . .\ has
Rock musician Classical musicialp

hair_length _ hair_length
- instance

instance

Jake Mayhe
Cwe D= . nas
Violet Scroot
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Frames

Frames once again support inheritance through the subclass relationship.

Rock musician o
Musician

subclass:  Musician subclass: Person
has: instrument

has: ear problems
hairlength: long
volume: loud

has, hairlength, volume etc are slots.

long, loud, instrument etc are slot values.

These are a direct predecessor of object-oriented programmang languages.
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Defaults

Both approaches to knowledge representation are able to incorporate de-
faults:

Rock musician _ _
Dementia Evilperson

subclass: Musician subclass: Rock musicia

Dasr_ ear problems hairlength: short
hairlength: long image: gothic
*volume:  loud

Starred slots are typical values associated with subclasses and instances,
but can be overridden.
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Multiple inheritance

Both approaches can incorporate multiple inheritance, at a cost:

Rock musician Classical musician

insta:k\ instance
Cornelius Cleverchap

e What is hairlength for Cornelius if we're trying to use inheritance to
establish 1t?

e This can be overcome initially by specifying which class is inherited
from n preference when there’s a conflict.

e But the problem is still not entirely solved—what if we want to prefer
inheritance of some things from one class, but inheritance of others from
a different one?
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Other 1ssues

e Slots and slot values can themselves be frames. For example Dementia
may have an instrument slot with the value Electric harp, which itself
may have properties described in a frame.

e Slots can have specified attributes. For example, we might specify that
instrument can have multiple values, that each value can only be an
instance of Instrument, that each value has a slot called owned by and
SO On.

e Slots may contain arbitrary pieces of program. This is known as proce-
dural attachment. The fragment might be executed to return the slot’s
value, or update the values in other slots etc.
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Rule-based systems

A rule-based system requires three things:

1. A set of 72 f-then rules. These denote specific pieces of knowledge about
the world.

They should be interpreted similarly to logical implication.

Such rules denote what to do or what can be inferred under given
circumstances.

2. A collection of facts denoting what the system regards as currently true
about the world.

3. An interpreter able to apply the current rules in the light of the current
facts.
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Forward chaining

The first of two basic kinds of interpreter begins with established facts
and then applies rules to them.

This 1s a data-driven process. It is appropriate if we know the nitzal facts
but not the required conclusion.

Example: XCON—used for configuring VAX computers.
In addition:
e We maintain a working memory, typically of what has been inferred

so far.

e Rules are often condition-action rules, where the right-hand side speci-
fies an action such as adding or removing something from working mem-
ory, printing a message etc.

e In some cases actions might be entire program fragments.
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Forward chaining

The basic algorithm 1is:

1. Find all the rules that can fire, based on the current working memory.
2. Select a rule to fire. This requires a conflict resolution strategy.

3. Carry out the action specified, possibly updating the working memory.

Repeat this process until either no rules can be used or a halt appears in
the working memory.
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Example

Condition—action rules

dry_mouth —> ADD thirsty

thirsty —> ADD get_drink

get_drink AND no_work —> ADD go_bar
working —> ADD no_work

no_work —> DELETE working

Interpreter

Working memory

dry_mouth
working
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Example

Progress 1s as follows:

1. The rule
dry mouth = ADD thirsty

fires adding thirsty to working memory.

2. The rule
thirsty = ADD get drink

fires adding get drink to working memory.

3. The rule
working —> ADD no work

fires adding no work to working memory.

4. The rule
get drink AND no work = ADD go bar

fires, and we establish that it’s time to go to the bar.
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Conflict resolution

Clearly in any more realistic system we expect to have to deal with a
scenario where two or more rules can be fired at any one time:

e Which rule we choose can clearly affect the outcome.

e We might also want to attempt to avoid inferring an abundance of use-
less information.

We therefore need a means of resolving such conflicts.
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Conflict resolution

Common conflict resolution strategies are:

e Prefer rules involving more recently added facts.

e Prefer rules that are more specific. For example
patient coughing —> ADD lung problem
1s more general than
patient coughing AND patient smoker =— ADD lung cancer.

This allows us to define exceptions to general rules.
e Allow the designer of the rules to specify priorities.

e Fire all rules simultaneously—this essentially involves following all
chains of inference at once.
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Reason maintenance

Some systems will allow information to be removed from the working mem-
ory if it 1s no longer justified.

For example, we might find that
patient _coughing

and
patient smoker

are 1n working memory, and hence fire
patient coughing AND patient smoker —> ADD lung cancer

but later infer something that causes patient coughing to be withdrawn
from working memory.

The justification for 1ung cancer has been removed, and so it should per-
haps be removed also.
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Pattern matching

In general rules may be expressed in a slightly more flexible form involving
variables which can work in conjunction with pattern matching.

For example the rule
coughs(X) AND smoker(X) = ADD lung cancer(X)
contains the variable X.
If the working memory contains coughs(neddy) and smoker(neddy) then
X = neddy

provides a match and
lung_cancer(neddy)

1s added to the working memory.
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Backward chaining

The second basic kind of interpreter begins with a goal and finds a rule
that would achieve it.

It then works backwards, trying to achieve the resulting earlier goals in
the succession of inferences.

Example: MYCIN—medical diagnosis with a small number of conditions.

This 1s a goal-driven process. If you want to test a hypothesis or you
have some idea of a likely conclusion it can be more efficient than forward
chaining.
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Example

Working memory

dry_mouth
working

To establish go_bar we have to

get-drink establish get_drink and no_work.
no_work
These are the new goals.

Try first to establish get_drink. This
thirsty > .
can be done by establishing thirsty.

thirsty can be established by establishing
dry_mouth. This is in the working memory
no_work
so we're done.

Finally, we can establish no_work by

" establishing working. This is in the working
workin,
2 memory so the process has finished.
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Example with backtracking

If at some point more than one rule has the required conclusion then we
can backtrack.

Example: Prolog backtracks, and incorporates pattern matching. It orders
attempts according to the order in which rules appear in the program.

Example: having added
up early = ADD tired

and
tired AND lazy =— ADD go _bar

to the rules, and up early to the working memory:
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Example with backtracking

Working memory

dry_mouth
working
up_early

Attempt to establish go_bar

by establishing tired and
no_work

lazy.

This can be done by establishing

up_early and lazy. thirsty
up_early is in the working memory | [O-WOTkK

so we’re done.

Process proceeds as before

We can not establisg lazy

and so we backtrack and try a
. no_work
different approach.
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Problem solving is different to planning

In search problems we:

e Represent states: and a state representation contains everything that’s
relevant about the environment.

e Represent actions: by describing a new state obtained from a current
state.

e Represent goals: all we know 1s how to test a state either to see if it's
a goal, or using a heuristic.

e A sequence of actions 1s a ‘plan’: but we only consider sequences of
consecutive actions.

Search algorithms are good for solving problems that fit this framework.
However for more complex problems they may fail completely...
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Problem solving is different to planning

Representing a problem such as: ‘go out and buy some pies’ 1s hopeless:

e There are too many possible actions at each step.

e A heuristic can only help you rank states. In particular it does not help
you 2gnore useless actions.

e We are forced to start at the initial state, but you have to work out how
to get the pies—that 1s, go to town and buy them, get online and find
a web site that sells pies etc—before you can start to do 1t.

Knowledge representation and reasoning might not help either: although
we end up with a sequence of actions—a plan—there is so much flexibility
that complexity might well become an issue.
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Introduction to planning

We now look at how an agent might construct a plan enabling it to achieve
a goal.

Aims:

e To look at how we might update our concept of knowledge represen-
tation and reasoning to apply more specifically to planning tasks.

e To look in detail at the basic partial-order planning algorithm.

Reading: Russell and Norvig, chapter 11.
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Planning algorithms work differently

Dafference 1:
e Planning algorithms use a special purpose language—often based on
FOL or a subset— to represent states, goals, and actions.
e States and goals are described by sentences, as might be expected, but...

e ...actions are described by stating their preconditions and their effects.

So if you know the goal includes (maybe among other things)
Have(pie)

and action Buy(x) has an effect Have(x) then you know that a plan nclud-
mng
Buy(pie)

might be reasonable.
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Planning algorithms work differently

Dafference 2:

e Planners can add actions at any relevant point at all between the
start and the goal, not just at the end of a sequence starting at the
start state.

e This makes sense: I may determine that Have(carKeys) is a good state
to be in without worrying about what happens before or after finding
them.

e By making an important decision like requiring Have(carKeys) early on
we may reduce branching and backtracking.

e State descriptions are not complete—Have(carKeys) describes a class
of states—and this adds flexibility.

So: you have the potential to search both forwards and backwards within
the same problem.
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Planning algorithms work differently

Dafference 3:
It 1s assumed that most elements of the environment are independent of

most other elements.

e A goal including several requirements can be attacked with a divide-
and-conquer approach.

e Fach individual requirement can be fulfilled using a subplan...

e ...and the subplans then combined.
This works provided there is not significant interaction between the sub-
plans.

Remember: the frame problem.
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Running example: gorilla-based mischief

We will use the following simple example problem, which as based on a
similar one due to Russell and Norvig.

The intrepid little scamps in the Cambridge University Roof-Climbing
Society wish to attach an inflatable gorilla to the spire of a Famous
College. To do this they need to leave home and obtain:

e An wnflatable gorilla: these can be purchased from all good joke shops.

e Some rope: available from a hardware store.

e A first-aid kit: also available from a hardware store.

They need to return home after they’ve finished their shopping.
How do they go about planning their jolly escapade?
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The STRIPS language

STRIPS: “Stanford Research Institute Problem Solver” (1970).

States: are conjunctions of ground literals. They must not include func-

tzon symbols.
At(home) /A “Have(gorilla)

/\ —Have(rope)
A\ —Have(kit)
Goals: are conjunctions of literals where variables are assumed ezxisten-

trally quantified.
At(x) /A Sells(x, gorilla)

A planner finds a sequence of actions that when performed makes the goal
true. We are no longer employing a full theorem-prover.
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The STRIPS language

STRIPS represents actions using operators. For example

At(x), Path(x,y)

Go(y)

Op(Action: Go(y), Pre: At(x) A Path(x,y), Effect: At(y) /A —At(x))

All variables are implicitly universally quantified. An operator has:

e An action description: what the action does.

e A precondition: what must be true before the operator can be used. A
conjunction of positive literals.

e An effect: what is true after the operator has been used. A conjunction
of literals.
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The space of plans

We now make a change in perspective—we search in plan space:

e Start with an empty plan.

e Operate on 1t to obtain new plans. Incomplete plans are called partial
plans. Refinement operators add constraints to a partial plan. All
other operators are called modification operators.

e Continue until we obtain a plan that solves the problem.
Operations on plans can be:

e Adding a step.
e Instantiating a variable.
e /mposing an ordering that places a step in front of another.

e and so on...

274



Representing a plan: partial order planners

When putting on your shoes and socks:

e It does not matter whether you deal with your left or right foot first.

e [t does matter that you place a sock on before a shoe, for any given
foot.

It makes sense in constructing a plan not to make any commitment to
which side is done first ¢f you don’t have to.

Principle of least commaitment: do not commit to any specific choices
until you have to. This can be applied both to ordering and to instantiation
of variables. A partial order planner allows plans to specify that some
steps must come before others but others have no ordering. A linearisation
of such a plan imposes a specific sequence on the actions therein.
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Representing a plan: partial order planners

A plan consists of:

1. A set {S1,S,,...,S,,} of steps. Each of these is one of the available
operators.

2. A set of ordering constraints. An ordering constraint S; < S; denotes
the fact that step S; must happen before step S;. S; < §; < S¢ and
so on has the obvious meaning. S; < §; does not mean that S; must
immediately precede S;.

3. A set of variable bindings v = x where v is a variable and x is either a
variable or a constant.

4. A set of causal links or protection intervals S; — S;. This denotes the
fact that the purpose of S; 1s to achieve the precondition c for S;.

A causal link 1s always paired with an equivalent ordering constraint.
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Representing a plan: partial order planners

The wnitial plan has:

e T'wo steps, called Start and Finish.
e a single ordering constraint Start < Finish.
e No variable bindings.

e No causal links.
In addition to this:

e The step Start has no preconditions, and its effect is the start state for
the problem.

e The step Finish has no effect, and its precondition is the goal.

e Neither Start or Finish has an associated action.

We now need to consider what constitutes a solution...
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Solutions to planning problems

A solution to a planning problem 1s any complete and consistent partially
ordered plan.

Complete: each precondition of each step is achieved by another step in
the solution.

A precondition c for S is achieved by a step S’ if:

1. The precondition is an effect of the step
S’ < S and ¢ € Effects(S’)

and...

2. ... there is no other step that can cancel the precondition:

no S” exists where S’ < S” < S and —c € Effects(S")
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Solutions to planning problems

Consistent: no contradictions exist in the binding constraints or in the
proposed ordering. That 1is:

1. For binding constraints, we never have v = X and v = Y for distinct
constants X and Y.
2. For the ordering, we never have S < S" and S’ < S.
Returning to the roof-climber’s shopping expedition, here is the basic ap-
proach:
e Begin with only the Start and Finish steps in the plan.

e At each stage add a new step.

e Always add a new step such that a currently non-achieved precond:-
tion 1s achieved.

e Backtrack when necessary.
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An example of partial-order planning

Here 1s the nitial plan:

At (Home) A Sells(JS,G) /A $ells(HS,R) /A Sells(HS,FA)

At (Home) /A Have(G) AHave(R) /A Have (FA)

Thin arrows denote ordering.
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An example of partial-order planning

There are two actions available:

At(x), Sells(x,y)

Buy(y)

Have(y)

A planner might begin, for example, by adding a Buy(G) action in order to
achieve the Have(G) precondition of Finish.

Note: the following order of events is by no means the only one available
to a planner.

It has been chosen for illustrative purposes.
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An example of partial-order planning

Incorporating the suggested step into the plan:

At (Home), Sells(JS,G),Sells(HS,R),Sells(HS,FA)

At (Home) ,Have (G) ,Have (R),Have (FA)

Thick arrows denote causal links. They always have a thin arrow under-
neath.

Here the new Buy step achieves the Have(G) precondition of Finish.
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An example of partial-order planning

The planner can now introduce a second causal link from Start to achieve
the Sells(x, G) precondition of Buy(G).

At (Home), Sells(JS,G), SeNls(HS,R),Sells(HS,FA)

At (JS),Sells(JS,G)

At (Home) ,Have (G),Have (R),Have (FA)
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An example of partial-order planning

The planner’s next obvious move is to introduce a Go step to achieve the
At(JS) precondition of Buy(G).

At (Home), Sells(JS,G), ¥11s(HS,R),Sells(HS,FA)

At (JS),Sells(JS,G)

At (Home) ,Have (G),Have (R),Have (FA)

And we continue...
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An example of partial-order planning

Initially the planner can continue quite easily in this manner:
e Add a causal link from Start to Go(JS) to achieve the At(x) precondi-
tion.

e Add the step Buy(R) with an associated causal link to the Have(R)
precondition of Finish.

e Add a causal link from Start to Buy(R) to achieve the Sells(HS,R) pre-
condition.

But then things get more interesting...
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An example of partial-order planning

At (Home) At (Home), Sells (JS,G)\Sells( Ry, Se11s (HS,FA)

At (JS),Sells(JS,G) At (HS),Sells(HS,R)

IIIHHHHH!II IIIHHHIHHII

At (Home) ,Have (G),Have (R), Have (FA)
IIIHHIHHIII

At this point 1t starts to get tricky...

The At(HS) precondition in Buy(R) is not achieved.
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An example of partial-order planning

At (Home) ) ,G@), T9gR) , Sells (HS,FA)

At (JS),Sells(JS,G) Sells(HS,R), At (HS)

At (Home) ,Have (G),Have (R),Have (FA)

The At(HS) precondition is easy to achieve. But if we introduce a causal

link from Start to Go(HS) then we risk tnvalidating the precondition for
Go(JS).
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An example of partial-order planning

A step that might invalidate (sometimes the word clobber is employed) a
previously achieved precondition is called a threat.

Demotion, ©

A planner can try to fix a threat by introducing an ordering constraint.
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An example of partial-order planning

The planner could backtrack and try to achieve the At(x) precondition
using the existing Go(JS) step.

At (Home) At (Home), Sells (JS,G), MR), Sells (HS,FA)

At (Home) ,Have (G),Have (R),Have (FA)
IIIHIHHIII

This involves a threat, but one that can be fixed using promotion.
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The algorithm

Simplifying slightly to the case where there are no variables.
Say we have a partially completed plan and a set of the preconditions that
have yet to be achieved.

e Select a precondition p that has not yet been achieved and is associated

with an action B.

e At each stage the partially complete plan 1s expanded into a new
collection of plans.

e To expand a plan, we can try to achieve p either by using an action
that’s already in the plan or by adding a new action to the plan. In
either case, call the action A.

We then try to construct consistent plans where A achieves p.
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The algorithm

This works as follows:

e For each possible way of achieving p:
— Add Start < A, A < Finish, A < B and the causal link A = B to the
plan.

— If the resulting plan is consistent we’re done, otherwise generate all
possible ways of removing inconsistencies by promotion or demo-
tion and keep any resulting consistent plans.

At this stage:

e If you have no further preconditions that haven’t been achieved then
any plan obtained 1s valid.
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The algorithm

But how do we try to enforce consistency?

When you attempt to achieve p using A:

e Find all the existing causal links A’ —5 B’ that are clobbered by A.
e For each of those you can try adding A < A’ or B’ < A to the plan.

e F'ind all existing actions C in the plan that clobber the new causal link
A5 B.

e For each of those you can try adding C < A or B < C to the plan.

e Generate every possible combination in this way and retain any con-
sistent plans that result.
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Possible threats

What about dealing with variables?
If at any stage an effect —At(x) appears, is it a threat to At(JS)?
Such an occurrence is called a possible threat and we can deal with it by
introducing tnequality constraints: in this case x # JS.
e Fach partially complete plan now has a set I of inequality constraints

associated with it.

e An inequality constraint has the form v # X where v is a variable and
X 1s a varilable or a constant.

e Whenever we try to make a substitution we check I to make sure we
won't introduce a conflict.

If we would introduce a conflict then we discard the partially completed
plan as inconsistent.
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Did you heed the DIRE WARNING?

At the beginning of the course I suggested making sure you can answer
the following two questions:

1. Let 0
f(X1,...,%Xn) = Zaixiz
i—1

where the a; are constants. Compute 0f/0dx; where 1 <j <n?
Answer: As

2 2 2
(X1, %) = Xy + -+ axj + -+ anxy

only one term in the sum depends on ¥;, so all the other terms differ-

entiate to give O and

of
a_Xj = Za)'X)’
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Did you heed the DIRE WARNING?

2. Let f(x1,...,x,) be a function. Now assume x; = gi(y1,..., Y ) for each
x; and some collection of functions g;. Assuming all requirements for
differentiability and so on are met, can you write down an expression
for of /0y; where 1 <j < m?

Answer: this 1s just the chain rule for partial differentiation
of  Of dg
0y <= 09i0y;

1
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Supervised learning with neural networks

We now look at how an agent might [earn to solve a general problem by
seelng examples.

Aims:

e To present an outline of supervised learning as part of Al

e To introduce much of the notation and terminology used.

e To introduce the classical perceptron.

e To introduce multilayer perceptrons and the backpropagation algo-

rithm for training them.

Reading: Russell and Norvig chapter 20.
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An example

A common source of problems in Al i1s medical diagnosis.

Imagine that we want to automate the diagnosis of an
(call it D) by constructing a machine:

Measurements taken from the

: . 1 if the patient suffers from D
patient: heart rate, blood pressure, Machine

0 otherwise

presence of green spots etc.

Could we do this by ezplicitly writing a program that examines the mea-
surements and outputs a diagnosis?

Experience suggests that this is unlikely.
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An example, continued...

An alternative approach: each collection of measurements can be written
as a vector,

x'=(x1 X2 -+ Xn)
where,
x1 = heart rate
x, = blood pressure
x3 = 1 if the patient has green spots

O otherwise

and so on

(Note: it’s a common convention that vectors are column wvectors by de-
fault. This is why the above is written as a transpose.)
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An example, continued...

A vector of this kind contains all the measurements for a single patient and
1s called a feature vector or instance.

The measurements are attributes or features.

Attributes or features generally appear as one of three basic types:

o Continuous: Xi € [Xmin, Xmax] Where Xmin, Xmax € R.
e Binary: x; € {0,1} or x; € {—1,+1}.

e Discrete: x; can take one of a finite number of values, say x; € {Xj, ..., X,
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An example, continued...

Now imagine that we have a large collection of patient histories (m in total)
and for each of these we know whether or not the patient suffered from D.

e The ith patient history gives us an instance x;.

e This can be paired with a single bit—0 or 1—denoting whether or not
the ith patient suffers from D. The resulting pair is called an ezample
or a labelled example.

e Collecting all the examples together we obtain a training sequence

S — ((X1>O)> (X2>])>°°' ) (Xm>0))
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An example, continued...

In supervised machine learning we aim to design a learning algorithm
which takes s and produces a hypothesis h.

Learning Algorithm

Intuitively, a hypothesis is something that lets us diagnose new patients.

This 1s IMPORTANT': we want to diagnose patients that the system has
never seen.

The ability to do this successfully is called generalisation.
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An example, continued...

In fact, a hypothesis is just a function that maps instances to labels.

Classifier

Attribute vector h(x)

X

As h is a function it assigns a label to any x and not just the ones that
were 1n the training sequence.

What we mean by a label here depends on whether we're doing classifica-
tion or regression.
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Supervised learning: classification

In classification we're assigning x to one of a set {wq, ..., w.} of c classes.

For example, if x contains measurements taken from a patient then there
might be three classes:

w7 = patient has disease
w, = patient doesn’t have disease
w3 = don’t ask me buddy, I'm just a computer!

The binary case above also fits into this framework, and we’ll often spe-
cialise to the case of two classes, denoted C; and C,.
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Supervised learning: regression

In regression we're assigning x to a real number h(x) € R.

For example, if x contains measurements taken regarding today’s weather
then we might have

h(x) = estimate of amount of rainfall expected tomorrow

For the two-class classification problem we will also refer to a situation
somewhat between the two, where

h(x) = Pr(x is in C;)

and so we would typically assign x to class C; if h(x) > 1/2.
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Summary

We don’t want to design h explicitly.

. Classifier
Attribute vector

X

Learner
L

Training sequence
S

So we use a learner L to infer it on the basis of a sequence s of training
examples.
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Neural networks

There i1s generally a set H of hypotheses from which [ 1s allowed to select
h

L(s) =heH
‘H 1s called the hypothesis space.

The learner can output a hypothesis explicitly or—as in the case of a neural
network—it can output a vector

w'! = (w1 wy -+ ww)
of weights which in turn specify h
h(x) = f(w;x)

where w = L(s).
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Types of learning

The form of machine learning described 1s called supervised learning.

This introduction will concentrate on this kind of learning. In particular,
the literature also discusses:

1. Unsupervised learning.
2. Learning using membership queries and equivalence queries.

3. Reinforcement learning.

Some of this further material will be covered in Al 2.
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Some further examples

e Speech recognition.

e Deciding whether or not to give credit.

e Detecting credit card fraud.

e Deciding whether to buy or sell a stock option.
e Deciding whether a tumour s benign.

e Data mining: extracting interesting but hidden knowledge from ex-
isting, large databases. For example, databases containing financial
transactions or loan applications.

e Deciding whether driving conditions are dangerous.

o Automatic driving. (See Pomerleau, 1989, in which a car is driven for
90 miles at 70 miles per hour, on a public road with other cars present,
but with no assistance from humans.)
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This 1s very similar to curve fitting

This process is in fact very similar to curve fitting.

Think of the process as follows:

e Nature picks an h/ € H but doesn’t reveal it to us.

e Nature then shows us a training sequence s where each x; is labelled as
h'/(x;) + €; where ¢; is noise of some kind.

Our job is to try to infer what h' is on the basis of s only.

This 1s easy to visualise in one dimension: it’s just fitting a curve to some
points.
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Curve fitting

Ezxzample: if 'H 1s the set of all polynomials of degree 3 then nature might
pick
1

Lo 2 4 2x— =

h/(x) = =x° —

3¢ T2 2

The line 1s dashed to emphasise the fact that we don’t get to see 1t.
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Curve fitting

We can now use h' to obtain a training sequence s in the manner suggested..

Here we have,

ST — ((X1>y1)) (X2>UZ)> ceey (Xm,gm))

where each x; and y; is a real number.
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Curve fitting

We'll use a learning algorithm L that operates in a reasonable-looking
way: 1t picks an h € H minimising the following quantity,

E=) (h(x)—w)?
i=1
In other words

=L(s) = 0y ) —yi)?
h (s) ar]ir%m;(h(x) Yi)

Why 1s this sensible?

1. Each term in the sum is 0 if h(x;) is exactly ys.
2. BEach term increases as the difference between h(x;) and y; increases.

3. We add the terms for all examples.
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Curve fitting

If we pick h using this method then we get:

The chosen h is close to the target h', even though it was chosen using
only a small number of noisy examples.

It 1s not quite identical to the target concept.

However if we were given a new point x’ and asked to guess the value h'/(x’)
then guessing h(x’) might be expected to do quite well.
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Curve fitting

Problem: we don't know what H nature 1s using. What if the one we
choose doesn’t match? We can make our H ‘bigger’ by defining it as

H ={h:h is a polynomial of degree at most 5}

If we use the same learning algorithm then we get:

The result in this case i1s similar to the previous one: h is again quite close
to h'/, but not quite identical.
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Curve fitting

So what’s the problem? Repeating the process with,
H ={h:h is a polynomial of degree at most 1}

gives the following:

In effect, we have made our H too ‘small’. It does not in fact contain any
hypothesis similar to h'.
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Curve fitting

So we have to make H huge, right? WRONG!!! With
H ={h:his a polynomial of degree at most 25}

we get:

BEWARE!!! This is known as overfitting.
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Curve fitting

An experiment to gain some further insight: using

1 10 1 8 1 6 13 32 1
_ o tsy Ve s oo 1
W e U L s g

as the unknown underlying function.

h'(x)

We can look at how the degree of the polynomzial the training algorithm
can output affects the generalisation ability of the resulting h.

We use the same training algorithm, and we train using
H ={h:his a polynomial of degree at most d}

for values of d ranging from 1 to 30
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Curve fitting

e Fach time we obtain an h of a given degree—call it hy;—we assess its
quality using a further 100 inputs x{ generated at random and cal-
culating

0(8) = g5 2 (Nx) ~ ha(x)?

e As the values q(d) are found using inputs that are not necessarily in-
cluded in the training sequence they measure generalisation.

e To smooth out the effects of the random selection of examples we repeat
this process 100 times and average the values q(d).
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Curve fitting

Here is the result:

Log of average q

Clearly: we need to choose H sensibly if we want to obtain good general:-
sation performance.
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The perceptron

The example just given illustrates much of what we want to do. However
in practice we deal with more than a single dimension.

The simplest form of hypothesis used i1s the linear discriminant, also
known as the perceptron. Here

m

h(w;x) =0 (Wo + ZW1X1> = 0 (Wo +wix; +waxy + - -+ + wpxy)

i=1
So: we have a linear function modified by the activation function o.

The perceptron’s influence continues to be felt in the recent and ongoing
development of support vector machines.
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The perceptron activation function I

There are three standard forms for the activation function:

1. Linear: for regression problems we often use
o(z) =z

2. Step: for two-class classification problems we often use

O‘(Z) N C] if z >0
| C, otherwise.

3. Sigmoid/Logistic: for probabilistic classification we often use

]
1 4exp(—2z)

Pr(x is in Cq) = o(z2)

The step function i1s important but the algorithms involved are somewhat
different to those we’ll be seeing. We won't consider it further.

The sigmoid/logistic function plays a major role in what follows.
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The sigmoid /logistic function

ks 43 5\ — 1 . L. . . . .
The logistic function o(z) = Troxp(a) Logistic o(z) applied to the output of a linear function

O

<>
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<
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0
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Gradient descent

A method for training a basic perceptron works as follows. Assume we're
dealing with a regression problem and using o(z) = z.

We define a measure of error for a given collection of weights. For example

m
E(w) =) (yi—h(w;xi))
i=1
Modifying our notation slightly so that
T=(1x1 %2 -+ %n)
.

X
w (wo w1 wy -+ wy )

lets us write
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Gradient descent

We want to minimise E(w).

One way to approach this is to start with a random w, and update it as

follows:
OE(w)

ow

Wil = Wy — T

where

OE(W)  / 5E(w) oE(w) dE(w) \ !
oW ow ow; Own

and 1 1s some small positive number.

The vector
OE(w)

0w
tells us the direction of the steepest decrease in E(w).
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Gradient descent

With .
Ew) =) (yi—w'xy)?
i=1
we have
OE(w) 0 = T 9
6wj — aWj (;(Ul W Xl)
— Z (i(yl — WTX1)2>
- 6wj
=Y (25— W) (—w'x)
1 6wj
= —X?) Z 2 (yl — WTXI)
i=1
where XS) i1s the jth element of x;.
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Gradient descent

The method therefore gives the algorithm

m
Wi = Wi + 21 Z (Ui — WtTXi) Xj

i=1
Some things to note:
e In this case E(w) is parabolic and has a unique global minimum and
no local minima so this works well.

e Gradient descent in some form is a very common approach to this kind
of problem.

e We can perform a similar calculation for other activation functions
and for other definitions for E(w).

e Such calculations lead to different algorithms.
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Perceptrons aren’t very powerful: the parity problem

There are many problems a perceptron can’t solve.

-
=1
=
el

=
=
=
o
<
— .
2 04
= .
-
+
< 8

0.
0.
0.
0.

need a network that computes more interesting functions.
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The multilayer perceptron

Bach node in the network is itself a perceptron:

e eights w; connect nodes together.
e a; 1s the weighted sum or activation for node j.
e 0 1s the actiwvation function.

e The output is z; = o(q;).
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The multilayer perceptron

Remainder:

We’ll continue to use the notation

T'=(1z1 2 -+ z)

(Wwo w1 wy -+ wy

T

y/
W
So that
n n
Z WiZi = Wy + Z WiZi
i=0 i=1

= W Z

330



The multilayer perceptron

In the general case we have a completely unrestricted feedforward struc-
ture:

Feature vector x

Output y = h(w; x)

Each node 1s a perceptron. No specific layering is assumed.

w;i_,; connects node 1 to node j. wy for node j 1s denoted wy_;.
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Backpropagation

As usual we have;:

e Instances x' = (x1,...,%).

e A training sequence s = ((x1,Y1),..., (Xm, Ym)).

We also define a measure of training error
E(w) = measure of the error of the network on s
where w 1s the vector of all the weights in the network.

Our aim is to find a set of weights that minimises E(w) using gradient
descent.
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Backpropagation: the general case

The central task 1s therefore to calculate
OE(w)

0w
To do that we need to calculate the individual quantities
OE(w)

OW;i_;

for every weight wi_; wn the network.

Often E(w) is the sum of separate components, one for each example in s
m
E(w)=) Ep(w)
=1

in which case
OE(w) = ok, (w)

ow ow
=1

We can therefore consider examples individually.
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Backpropagation: the general case

Place example p at the input and calculate a; and z; for all nodes including
the output y. This is forward propagation.

We have
aEp(W) N 6Ep(w) 6a)-

E)WH]- 0 aj aij

where a; = Zk Wiy —iZk-

Here the sum is over all the nodes connected to node j. As

aa)- 0
Wi — AW <; Wk—>)Zk> = Zj

we can write

ok, (w)
— 5:2-
OW;_; =
where we’ve defined
5 ok, (w)
]- =

aa]-
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Backpropagation: the general case

So we now need to calculate the values for o;...

When j 1s the output node—that is, the one producing the output y =
h(w;x,) of the network—this is easy as z; =y and

5, — ok, (w)

a(lj
~ 0E,(w) oy
- dy Qg
~ Ok, (w)

oy

o'(a;)

using the fact that y = o(q;).
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Backpropagation: the general case

The first term 1s in general easy to calculate for a given E as the error
1s generally just a measure of the distance between y and the label in the
training sequence.

Ezxample: when

we have
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Backpropagation: the general case

When j 1s not an output node we need something different:

We're interested in

Ot (w)
O; =
a(lj
Altering a; can affect several other nodes ki, ka,...,ky each of which can

in turn affect E,(w).
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Backpropagation: the general case

We have
Ok, (w Ok, (w)0a oa
6)‘ p( ) z p( ) k Z ék k

6aj —

kelki ka,... Kq) ) kelky kg, kg)

where ki, ko, ..., k, are the nodes to which node j sends a connection.
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Backpropagation: the general case

Because we know how to compute &; for the output node we can work
backwards computing further & values.

We will always know all the values &, for nodes ahead of where we are.

Hence the term backpropagation.
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Backpropagation: the general case

6ak 0
a—(lj — 6—aj (Z Wi_>k0"((1i)> = wj_x0'(aj)

1

and
0; = Z dwi—ko'(a;) = o'(aj) Z OIWj sk

kelky ky,..kq) kelky ko,...,kq}
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Backpropagation: the general case

oF,

Summary: to calculate — W) for the pth pattern:

)%

1. Forward propagation: apply x, and calculate outputs etc for all the
nodes i1n the network.

2. Backpropagation 1: for the output node
oE, (w)
OW;_;

OE,(w)
oy

= 20 = z;0'( ;)

where y = h(w;x,).

3. Backpropagation 2: For other nodes

OE,(w)

where the &, were calculated at an earlier step.
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Backpropagation: a specific example

Hidden nodes receive
inputs from all features

Output node receives
inputs from all hidden

1

For the output: o(a) = a. For the hidden nodes o(a) = Trem—a)"

342



Backpropagation: a specific example

For the output: o(a) = a so o'(a) = 1.

For the hidden nodes: 1

14 exp(—a)

o(a)

SO
o'(a) = o(a) [1 —o(a)]

We'll continue using the same definition for the error
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Backpropagation: a specific example

For the output: the equation is
OE,(w)

awi—mutput

ok, (w)
oy

/
— Ziéoutput = Zi0 (aoutput)

where y = h(w;x,). So as

ok 0
2 2 (- )
=2(y — yp)

=/ [h(W, Xp) _ yp]

and o'(a) =1 so
6output =/ [h(wa Xp) _ Up]
and

OE,(w)

aV\)iﬂoutput

= 2zi(h(w; Xp) — Up)
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Backpropagation: a specific example

For the hidden nodes: the equation is

OE,(w
p( ) :ZiG/(aj)Zf)ij—m
k

aVVi—>j

However there 1s only one output so
ot (w)
aVVi—>j

— ZiG(aj) 11— G(aj)] 6ou‘cpu‘cVVj—mutpu‘c

and we know that
6output =/ [h(W, Xp) — yp]
SO

ok, (w)
aVVi—>j

— ZXiZj“ — Zj) [h(W, Xp) — Up] Wj_output

= ZZiG((lj) 1 — G((lj)] [h(W;Xp) — yp] Wj_output
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Putting it all together

We can then use the derivatives in one of two basic ways:

Batch: (as described previously)
OE(w) i OE,(w)

ow ow
e
then
OE(w)
Wil = Wy — T 3
W,

Sequential: using just one pattern at once

ok, (w)
ow

Wirl = Wy —T]

Wi

selecting patterns in sequence or at random.
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Example: the parity problem revisited

As an example we show the result of training a network with:

e T'wo inputs.

e One output.

e One hidden layer containing 5 units.
e =0.01.

e All other details as above.

The problem is the parity problem. There are 40 noisy examples.

The sequential approach is used, with 1000 repetitions through the entire
training sequence.
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Example: the parity problem revisited
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Example: the parity problem revisited

Error during training

0 100 200 300 400 500 600 700 800 90 1000
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