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Software Design 
Models, Tools & Processes  

Alan Blackwell 

Cambridge University 
Computer Science Tripos Part 1a 

How hard can it be? 
 State what the system should do 

  {D1, D2, D3 …} 
 State what it shouldn’t do 

  {U1, U2, U3 …} 

 Systematically add features 
  that can be proven to implement Dn 
 while not implementing Un 

How hard can it be … 
 The United Kingdom Passport Agency 

  http://www.parliament.the-stationery-office.co.uk/ 
pa/cm199900/cmselect/cmpubacc/65/6509.htm 

 1997 contract for new computer system 
  aimed to improve issuing efficiency, on tight project timetable 
  project delays meant throughput not thoroughly tested 
  first live office failed the throughput criterion to continue roll-out 
  second office went live, roll out halted, but no contingency plan 
  rising backlog in early 1999, alongside increasing demand 
  passport processing times reached 50 days in July 1999 
  widespread publicity, anxiety and panic for travelling public 
  telephone service overloaded, public had to queue at UKPA offices 
  only emergency measures eventually reduced backlog 

 So how hard can it be to issue a passport? 
 … let’s try some simple definition 

… to define this system? 

born in 
UK 

dies 

leave UK 
return to 

UK 

issue 
passport 

cancel 

record 
exit 

record 
entry 
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How hard can it be … 

… to define a simple 
bureaucracy? 

Why is the world complicated? 
 Bureaucratic systems are complex because 

managers (and people) always mess up 
 Passports 
 Ambulance systems (more in part 1B) 
 University financial systems (later in this course)  

 What about physical systems, which don’t 
rely on people to work? 
 Start with known characteristics of physical device. 
 Assemble behaviours to achieve function 
 This is how engineering products (bridges and 

aircraft) are designed. 

How hard can it be … … to define a physical system? 
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Design and uncertainty 
 A good programmer should be able to: 

 Create a system that behaves as expected. 
 Behaves that way reliably. 

 But a good designer must also: 
 Take account of the unexpected. 

 A well-designed software system is not the 
same as a well-designed algorithm. 
  If the requirements change or vary, 

you might replace the algorithm, 
 But it’s seldom possible to replace  

a whole system. 

What is the problem? 
 The problem is not that we don’t understand 

the computer. 
 The problem is that we don’t understand the 

problem! 
 Does computer science offer any answers? 
 The good news: 

 We’ve been working on it since 1968 
 The bad news: 

 There is still no “silver bullet”!  
(from great IBM pioneer Fred Brooks) 

Introduction 

A design process based on knowledge 

Pioneers – Bavarian Alps, 1968 
  1954: complexity of  

SAGE air-defence  
project was under- 
estimated by 6000  
person-years … 
  … at a time when  

there were only  
about 1000  
programmers  
in the whole world! 

  … “Software Crisis!” 

  1968: First meeting on “Software Engineering” 
convened in Garmisch-Partenkirchen. 



4 

Design and ignorance 
 Some say software engineering is the part 

that is too hard for computer scientists. 
 But the real change was understanding the 

importance of what you don’t know 
 dealing with uncertainty, lack of knowledge … 
 … but trying to be systematically ignorant! 

 Design is a process, not a set of known facts 
 process of learning about a problem 
 process of describing a solution 
 at first with many gaps … 
 eventually in sufficient detail to build the solution 

Learning by building models 
 The software design process involves gaining 

knowledge about a problem, and about its 
technical solution. 

 We describe both the problem and the 
solution in a series of design models. 

 Testing, manipulating and transforming those 
models helps us gather more knowledge. 

 One of the most detailed models is written in 
a programming language. 
 Getting a working program is almost a side-effect 

of describing it! 

Unified Modeling Language 
  Use Case diagrams - interactions with / interfaces 

to the system. 
  Class diagrams - type structure of the system. 
  Collaboration diagrams - interaction between 

instances 
  Sequence diagrams - temporal structure of 

interaction 
  Activity diagrams - ordering of operations 
  Statechart diagrams - behaviour of individual 

objects 
  Component and Deployment diagrams - system 

organisation 

Outline for the rest of the course 
 Roughly follows stages of the (UML-related) 

Rational Unified Process 
  Inception 

  structured description of what system must do 

 Elaboration 
  defining classes, data and system structure 

 Construction 
  object interaction, behaviour and state 

 Transition 
  testing and optimisation 

 Plus allowance for iteration 
 at every stage, and through all stages 
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Older terminology: the “waterfall” 

Implementation  
& unit testing 

Operations &  
maintenance 

Integration &  
system testing 

Requirements 

Specification 

Modern alternative: the “spiral” 

Initial plan 

Prototype 
1 

Development 
plan 

Prototype 
2 

Requirements 

Plan next phases 

Evaluate alternatives 
and resolve risks 

Develop and verify 
next level product 

Code 

Test 

Integrate 
Implement 

The Design Process vs. The Design 

Usage Model 

Structure Model 

Implementation 
Models 

Behaviour Models 

Class Diagrams 

Statechart Diagrams 

Activity Diagrams 

Sequence Diagrams 

Collaboration Diagrams 

Use Case Diagrams 

Component Diagrams 

Deployment Diagrams 

Interaction Models 

Inception 

Elaboration 

Construction 

Transition 

Books 
 Code Complete: A practical handbook of software construction  

  Steve McConnell, Microsoft Press 2004 (2nd edition) 
 UML Distilled: A brief guide to the standard object modeling language 

  Martin Fowler, Addison-Wesley 2003 (3rd edition) 
  Further: 

  Software Pioneers, Broy & Denert 
  Software Engineering, Roger Pressman 
  The Mythical Man-Month, Fred Brooks 
  The Design of Everyday Things, Donald Norman 
  Contextual Design, Hugh Beyer & Karen Holtzblatt 
  The Sciences of the Artificial, Herbert Simon 
  Educating the Reflective Practitioner, Donald Schon 
  Designing Engineers, Louis Bucciarelli 
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Exam questions 
 This syllabus appeared under this name for 

the first time in 2006 
 Software Design 2006, Paper 2, Q7 

 But syllabus was previously introduced as: 
 Software Engineering II 2005, Paper 2, Q8  

 Some components had previously been 
taught elsewhere in the Tripos: 
 Programming in Java 2004, Paper 1, Q10 
 Software Engineering and Design 2003 Paper 10, 

Q12 and 2004 Paper 11, Q11 
 Additional Topics 2000, Paper 7, Q13 

Inception phase 

structured description of system usage 
and function 

Pioneers – Tom DeMarco 
 Structured Analysis 

 1978, Yourdon Inc 
 Defined the critical technical role of the 

system analyst 
 Analyst acts as a middleman between users and 

(technical) developers 
 Analyst’s job is to construct a functional 

specification 
 data dictionary, data flow, system partitioning 

How can you capture requirements? 
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Analysing requirements 
 Analysis usually involves (re)negotiation of 

requirements between client and designer. 
 Once considered “requirements capture”. 
 Now more often “user-centred design”. 

 An “interaction designer” often replaces (or 
works alongside) traditional systems analysts. 
 Professional interaction design typically combines 

research methods from social sciences with visual 
or typographic design skills (and perhaps CS). 

Communicating requirements 
 The need for user documentation  

Documentation bugs Interaction design bugs 

From Interface Hall of Shame 
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The psychological approach 
 Anticipate what will happen when someone 

tries to use the system. 
 Design a “conceptual model” that will help them 

(and you) develop shared understanding. 
 The gulf of execution: 

 System users know what they want to achieve, 
but can’t work out how to do it. 

 The gulf of evaluation: 
 Systems fail to give suitable feedback on what just 

happened, so users never learn what to do. 
 See Norman: Design of Everyday Things. 

 Far more detail to come in Part II HCI course 

The anthropological approach 
 Carry out fieldwork: 

  Interview the users. 
 Understand the context they work in. 
 Observe the nature of their tasks. 
 Discover things by observation that they might not 

have told you in a design brief. 
 Collaborate with users to agree: 

 What problem ought to be solved. 
 How to solve it (perhaps by reviewing sketches of 

proposed screens etc.). 

Ethnographic field studies  
 Understand real detail of user activity, not just 

official story, theories or rationalisations. 
 Researchers work in the field: 

 Observing context of people’s lives 
  Ideally participating in their activities 

 Academic ethnography tends to: 
 Observe subjects in a range of contexts. 
 Observe over a substantial period of time. 
 Make full record of both activities and artefacts. 
 Use transcripts of video/audio recordings. 

Design ‘ethnography’ 
 Study division of labour and its coordination 
 Plans and procedures 

 When do they succeed and fail? 
 Where paperwork meets computer work 
 Local knowledge and everyday skills 
 Spatial and temporal organisation 
 Organisational memory 

 How do people learn to do their work? 
 Do formal/official methods match reality? 

 See Beyer & Holtzblatt, Contextual Design 
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Interviews  
 Field work usually includes interviews 

 Additional to requirements meetings with client 

 Often conducted in the place of work during 
‘contextual enquiry’ (as in Beyer & Holtzblatt) 
 emphasis on user tasks, not technical issues 

 Plan questions in advance 
 ensure all important aspects covered 

 May be based on theoretical framework, e.g. 
 activities, methods and connections 
 measures, exceptions and domain knowledge 

User Personas 
 This is a way to ‘distil’ information about users 

  from field work, interviews, user studies etc 
  into a form that is more useful to design teams. 

 Write fictional portraits of individuals 
representing various kinds of user 
 give them names, jobs, and personal history 
 often include photographs (from libraries ,actors) 

 Help software engineers to remember that 
customers are not like them … 
 … or their friends … 
 … or anyone they’ve ever met! 

Designing system-use scenarios 
 Aim is to describe the human activity that the 

system has to carry out or support. 
 Known as use cases in UML 

 Use cases help the designer to discover and 
record interactions between software objects. 

 Can be refined as a group activity, based on 
personas, or in discussion with clients. 

 May include mock-ups of screen designs, or 
physical prototypes. 

 Organised and grouped in use case diagrams 

UML Use Case diagram 
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UML Use Case diagram 
 Actors 

  play system role 
  may not be people 

 Use case 
  like a scenario 

 Relationships 
  include 
  extend 
  generalisation 

Objects in a scenario 
 The nouns in a description refer to ‘things’. 

 A source of classes and objects. 
 The verbs refer to actions. 

 A source of interactions between objects. 
 Actions describe object behavior, and hence 

required methods. 

Example of problem description 
The cinema booking system should store seat bookings for 
multiple theatres. 

Each theatre has seats arranged in rows. 

Customers can reserve seats and are given a row number 
and seat number. 

They may request bookings of several adjoining seats. 

Each booking is for a particular show (i.e., the screening of 
a given movie at a certain time). 

Shows are at an assigned date and time, and scheduled in a 
theatre where they are screened. 

The system stores the customers’ telephone number.  

Nouns 
The cinema booking system should store seat bookings for 
multiple theatres. 

Each theatre has seats arranged in rows. 

Customers can reserve seats and are given a row number 
and seat number. 

They may request bookings of several adjoining seats. 

Each booking is for a particular show (i.e., the screening of 
a given movie at a certain time). 

Shows are at an assigned date and time, and scheduled in a 
theatre where they are screened. 

The system stores the customers’ telephone number.  
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Verbs 
The cinema booking system should store seat bookings for 
multiple theatres. 

Each theatre has seats arranged in rows. 

Customers can reserve seats and are given a row number 
and seat number. 

They may request bookings of several adjoining seats. 

Each booking is for a particular show (i.e., the screening of 
a given movie at a certain time). 

Shows are at an assigned date and time, and scheduled in a 
theatre where they are screened. 

The system stores the customers’ telephone number.  

Extracted nouns & verbs 

Cinema booking system 
Stores (seat bookings) 
Stores (telephone number) 

Seat booking 

Theatre 
Has (seats) 

Seat 

Row 

Customer 
Reserves (seats) 
Is given (row number, seat number) 
Requests (seat booking) 

Row number 

Seat number Show 
Is scheduled (in theatre) 

Movie 

Date Time 

Telephone number 

Scenario structure: CRC cards 
 First described by Kent Beck and Ward 

Cunningham. 
 Later innovators of “agile” programming 

(more on this later in course) 
 Use simple index cards, with each cards 

recording: 
 A class name. 
 The class’s responsibilities. 
 The class’s collaborators. 

Typical CRC card 

Class name                              Collaborators 

Responsibilities 
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Partial example 

CinemaBookingSystem     Collaborators    
Can find movies by      Movie 
title and day. 
Stores collection of    Collection 
movies. 
Retrieves and displays 
movie details. 
... 

Refinement of usage model 
 Scenarios allow you to check that the 

problem description is clear and complete. 
 Analysis leads gradually into design. 

 Talking through scenarios & class responsibilities 
leads to elaborated models. 

 Spotting errors or omissions here will save 
considerable wasted effort later! 
 Sufficient time should be taken over the analysis. 
 CRC was designed to allow (in principle) review 

and discussion with analysts and/or clients. 

Elaboration 

defining classes, data and system 
structure 

Pioneers – Peter Chen 
 Entity-Relationship Modeling 

 1976, Massachusetts Institute of Technology 
 User-oriented response to Codd’s relational 

database model 
 Define attributes and values 
 Relations as associations between things  
 Things play a role in the relation. 

 E-R Diagrams showed entity (box), relation 
(diamond), role (links). 

 Object-oriented Class Diagrams show class 
(box) and association (links) 
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Review of objects and classes 
 objects 

  represent ‘things’ in some problem domain 
(example: “the red car down in the car park”) 

 classes 
  represent all objects of a kind (example: “car”) 

 operations 
 actions invoked on objects (Java “methods”) 

 instance 
 can create many instances from a single class 

 state 
 all the attributes (field values) of an instance 

Typical classes and associations 

Seat booking Theatre 

Seat Row 

Customer 

Number 

Movie 

Date Time 

Telephone number 

NB: one class, 
two uses 

UML Class  
diagram UML Class diagram 

 Attributes 
  type and visibility 

 Operations 
  signature and visibility 

 Relationships 
  association 

  with multiplicity 
  potentially aggregation 

  generalisation 
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Association and aggregation 
The cinema booking system should store seat bookings for 
multiple theatres. 

Each theatre has seats arranged in rows. 

Customers can reserve seats and are given a row number 
and seat number. 

They may request bookings of several adjoining seats. 

Each booking is for a particular show (i.e., the screening of 
a given movie at a certain time). 

Shows are at an assigned date and time, and scheduled in a 
theatre where they are screened. 

The system stores the customers’ telephone number.  

Implementing association in Java 
public class Car { 
  private String colour; 
  private Carpark park; 

... 

park_me (Carpark where) 
{ 
   park = where; 
} 

colour 

Car 

address 

Carpark 

* 

0..1 

Multiple association in Java 
public class Carpark { 
  private String address; 
  private ArrayList my_cars; 

... 

add_car (Car new_car) 
{ 
   my_cars.add(new_car); 
} 

colour 

Car 

address 

Carpark 

* 

0..1 

Implementing multiple associations 
Summary from 3 Java lectures: 
 Most applications involve collections of 

objects 
  java.util package contains classes for this 

 The number of items to be stored varies 
  Items can be added and deleted 
 Collection increases capacity as necessary 
 Count of items obtained with size() 
  Items kept in order, accessed with iterator 

 Details of how all this is done are hidden. 
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Class design from CRC cards 
 Scenario analysis helps to clarify application 

structure. 
 Each card maps to a class. 
 Collaborations reveal class cooperation/object 

interaction. 
 Responsibilities reveal public methods. 

 And sometimes fields; e.g. “Stores collection ...” 

Refining class interfaces 
 Replay the scenarios in terms of method 

calls, parameters and return values. 
 Note down the resulting method signatures. 
 Create outline classes with public-method 

stubs. 
 Careful design is a key to successful 

implementation. 

Dividing up a design model 
 Abstraction 

  Ignore details in order to focus on higher level 
problems (e.g. aggregation, inheritance).  

  If classes correspond well to types in domain they 
will be easy to understand, maintain and reuse.  

 Modularization 
 Divide model into parts that can be built and tested 

separately, interacting in well-defined ways. 
 Allows different teams to work on each part 
 Clearly defined interfaces mean teams can work 

independently & concurrently, with increased 
chance of successful integration. 

Pioneers – David Parnas 
 Information Hiding 

 1972, Carnegie Mellon University 
 How do you decide the points at which a 

program should be split into pieces? 
 Are small modules better? 
 Are big modules better? 
 What is the optimum boundary size? 

 Parnas proposed the best criterion for 
modularization: 
 Aim to hide design decisions within the module. 
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Information hiding in OO models 
 Data belonging to one object is hidden from 

other objects.  
 Know what an object can do, not how it does it. 
  Increases independence, essential for large 

systems and later maintenance 
 Use Java visibility to hide implementation 

 Only methods intended for interface to other 
classes should be public. 

 Fields should be private – accessible only within 
the same class. 

 Accessor methods provide information about 
object state, but don’t change it. 

 Mutator methods change an object’s state. 

Cohesion in OO models 
 Aim for high cohesion: 

 Each component achieves only “one thing” 
 Method (functional) cohesion 

 Method only performs out one operation 
 Groups things that must be done together 

 Class (type) cohesion 
 Easy to understand & reuse as a domain concept 

 Causes of low, poor, cohesion 
 Sequence of operations with no necessary relation 
 Unrelated operations selected by control flags 
 No relation at all – just a bag of code 

Construction 

object interaction, behaviour and state 

UML Collaboration diagram 
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UML Collaboration  
diagram 

 Objects 
  class instances 
  can be transient 

  Links  
  from associations 

 Messages 
  travel along links 
  numbered to show 

sequence 

UML Sequence diagram 

UML Sequence diagram 
  Interaction again 

  same content as 
collaboration 

  emphasises time 
dimension 

 Object lifeline 
  objects across page 
  time down page 

 Shows focus of control 

Loose coupling 
 Coupling: links between parts of a program. 
 If two classes depend closely on details of 

each other, they are tightly coupled. 
 We aim for loose coupling. 

 keep parts of design clear & independent 
 may take several design iterations 

 Loose coupling makes it possible to: 
 achieve reusability, modifiability 
 understand one class without reading others; 
 change one class without affecting  others. 

 Thus improves maintainability. 
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Responsibility-driven design 
 Which class should I add a new method to? 

 Each class should be responsible for manipulating 
its own data. 

 The class that owns the data should be 
responsible for processing it. 

 Leads to low coupling & “client-server 
contracts” 
 Consider every object as a server 
  Improves reliability, partitioning, graceful 

degradation 

Interfaces as specifications 
 Define method signatures for classes to 

interact 
  Include parameter and return types. 
 Strong separation of required functionality from the 

code that implements it (information hiding). 
 Clients interact independently of the 

implementation. 
 But clients can choose from alternative 

implementations. 

Interfaces in Java 
 Provide specification without implementation. 

 Fully abstract – define interface only 
  Implementing classes don’t inherit code 

 Support not only polymorphism, but 
 multiple inheritance 
  implementing classes are still subtypes of the 

interface type, but allowed more than one “parent”. 

public class ArrayList implements List 

public class LinkedList implements List


Note difference from ‘extends’ 
keyword used for sub-classing 

Alternative implementations 
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Causes of error situations 
 Incorrect implementation. 

 Does not meet the specification. 
 Inappropriate object request. 

 E.g., invalid index. 

 Inconsistent or inappropriate object state. 
 E.g. arising through class extension. 

 Not always programmer error 
 Errors often arise from the environment 

(incorrect URL entered, network interruption). 
 File processing often error-prone  

(missing files, lack of appropriate permissions). 

Defensive programming 
 Client-server interaction. 

 Should a server assume that clients are  
well-behaved? 

 Or should it assume that clients are  
potentially hostile? 

 Significant differences in implementation 
required. 

 Issues to be addressed 
 How much checking by a server on method calls? 
 How to report errors? 
 How can a client anticipate failure? 
 How should a client deal with failure? 

Argument values 
 Arguments represent a major ‘vulnerability’ for 

a server object. 
 Constructor arguments initialize state. 
 Method arguments often control behavior. 

 Argument checking is one defensive 
measure. 

 How to report illegal arguments? 
 To the user? Is there a human user?  

Can the user do anything to solve the problem?  
If not solvable, what should you suggest they do? 

 To the client object: 
return a diagnostic value, or throw an exception. 

Example of diagnostic return 

public boolean removeDetails(String key) 
{ 
    if(keyInUse(key)) { 
        ContactDetails details = 
                       (ContactDetails) book.get(key); 
        book.remove(details.getName()); 
        book.remove(details.getPhone()); 
        numberOfEntries--; 
        return true; 
    } 
    else { 
        return false; 
    } 
}  

Diagnostic OK 

Diagnostic not OK 
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Client response to diagnostic 
 Test the return value. 

 Attempt recovery on error. 
 Avoid program failure. 

 Ignore the return value. 
 Cannot be prevented. 
 Likely to lead to program failure. 

 Exceptions are preferable. 

Exception-throwing 
 Special feature of some languages 

 Java does provide exceptions 
 Advantages 

 No ‘special’ return value needed. 
 Errors cannot be ignored in the client. 

 Disadvantages (or are they?) 
 The normal flow-of-control is interrupted. 
 Specific recovery actions are encouraged. 

Example of argument exception 

public ContactDetails getDetails(String key) 
{ 
    if(key == null) { 
        throw new NullPointerException( 
                        "null key in getDetails"); 
    } 
    if(key.trim().length() == 0) { 
        throw new IllegalArgumentException( 
                "Empty key passed to getDetails"); 
    } 
    return (ContactDetails) book.get(key); 
}  

Error response and recovery 
 Clients should take note of error notifications. 

 Check return values. 
 Don’t ‘ignore’ exceptions. 

 Include code to attempt recovery. 
 Will often require a loop. 
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Example of recovery attempt 
// Try to save the address book. 
boolean successful = false; 
int attempts = 0; 
do { 
    try { 
        addressbook.saveToFile(filename); 
        successful = true; 
    } 
    catch(IOException e) { 
        System.out.println("Unable to save to " + filename); 
        attempts++; 
        if(attempts < MAX_ATTEMPTS) { 
            filename = an alternative file name; 
        } 
    } 
} while(!successful && attempts < MAX_ATTEMPTS); 
if(!successful) { 
    Report the problem and give up; 
}  

Error avoidance 
 Clients can often use server query methods 

to avoid errors. 
 More robust clients mean servers can be more 

trusting. 
 Unchecked exceptions can be used. 
 Simplifies client logic. 

 May increase client-server coupling. 

Construction inside objects 

object internals 

UML Activity 
diagram 
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UML Activity diagram 
  Like flow charts 

  Activity as action states 

  Flow of control 
  transitions 
  branch points 
  concurrency (fork & join) 

  Illustrate flow of control 
  high level - e.g. workflow 
  low level - e.g. lines of 

code 

Pioneers – Edsger Dijkstra 
 Structured Programming 

 1968, Eindhoven 
 Why are programmers so bad at 

understanding dynamic processes and 
concurrency? 
  (ALGOL then – but still hard in Java today!) 

 Observed that “go to” made things worse 
 Hard to describe what state a process has 

reached, when you don’t know which process is 
being executed. 

 Define process as nested set of execution 
blocks, with fixed entry and exit points 

Top-down design & stepwise refinement 

dispatch ambulance 

identify region take 999 call send ambulance 

allocate vehicle estimate arrival note patient 
condition 

radio crew 

record address 
find vehicle 

in region 

assign vehicle 
to call 

Bottom-up construction 
 Why? 

 Start with what you understand 
 Build complex structures from well-understood 

parts 
 Deal with concrete cases in order to understand 

abstractions 
 Study of expert programmers shows that real 

software design work combines top-down and 
bottom up. 
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Modularity at code level 
 Is this piece of code (class, method, function, 

procedure … “routine” in McConnell) needed? 
 Define what it will do 

 What information will it hide? 
  Inputs 
 Outputs (including side effects) 
 How will it handle errors? 

 Give it a good name 
 How will you test it? 
 Think about efficiency and algorithms 
 Write as comments, then fill in actual code 

Modularity in non-OO languages 
 Separate source files in C 

  Inputs, outputs, types and interface functions 
defined by declarations in “header files”. 

 Private variables and implementation details 
defined in the “source file” 

 Modules in ML, Perl, Fortran, … 
 Export publicly visible interface details. 
 Keep implementation local whenever possible, in 

interest of information hiding, encapsulation, low 
coupling. 

Source code as a design model 
 Objectives: 

 Accurately express logical structure of the code 
 Consistently express the logical structure 
  Improve readability 

 Good visual layout shows program structure 
 Mostly based on white space and alignment 
 The compiler ignores white space 
 Alignment is the single most obvious feature to 

human readers. 
 Like good typography in interaction design: 

but the “users” are other programmers! 

Code as a structured model 
public int Function_name (int parameter1, int parameter2) 

// Function which doesn’t do anything, beyond showing the fact 
// that different parts of the function can be distinguished. 

    int local_data_A; 
    int local_data_B; 

    // Initialisation section 
    local_data_A = parameter1 + parameter2; 
    local_data_B = parameter1 - parameter2; 
    local_data_B++; 

    // Processing 
    while (local_data_A < 40) { 
        if ( (local_data_B * 2) > local_data_A ) then { 
            local_data_B = local_data_B – 1; 
        } else { 
            local_data_B = local_data_B + 1; 
        } 
        local_data_C = local_data_C + 1; 
    } 
    return local_data_C; 
} 
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Expressing local control structure 
while (local_data_C < 40) { 
    form_initial_estimate(local_data_C); 
    record_marker(local_data_B – 1); 
    refine_estimate(local_data_A); 
    local_data_C = local_data_C + 1; 
} // end while 

if ( (local_data_B * 2) > local_data_A ) then { 
    // drop estimate 
    local_data_B = local_data_B – 1; 
} else { 
    // raise estimate 
    local_data_B = local_data_B + 1; 
} // end if 

Expressing structure within a line 
 Whitespacealwayshelpshumanreaders 

  newtotal=oldtotal+increment/missamount-1; 
  newtotal = oldtotal + increment / missamount - 1; 

 The compiler doesn’t care – take care! 
  x = 1  *  y+2  *  z; 

 Be conservative when nesting parentheses 
  while ( (! error) && readInput() )  

 Continuation lines – exploit alignment 
  if ( ( aLongVariableName && anotherLongOne ) | 

     ( someOtherCondition() ) ) 
   { 
    … 
   } 

Naming variables: Form 
 Priority: full and accurate (not just short) 

 Abbreviate for pronunciation (remove vowels) 
  e.g. CmptrScnce (leave first and last letters) 

 Parts of names reflect conventional functions 
 Role in program (e.g. “count”) 
 Type of operations (e.g. “window” or “pointer”) 
 Hungarian naming (not really recommended):  

  e.g. pscrMenu, ichMin 

 Even individual variable names can exploit 
typographic structure for clarity 
 xPageStartPosition 
 x_page_start_position 

Naming variables: Content 
 Data names describe domain, not computer 

 Describe what, not just how 
 CustomerName better than PrimaryIndex 

 Booleans should have obvious truth values 
 ErrorFound better than Status 

 Indicate which variables are related 
 CustName, CustAddress, CustPhone 

 Identify globals, types & constants 
 C conventions: g_wholeApplet, T_mousePos 

 Even temporary variables have meaning 
 Index, not Foo 
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Pioneers – Michael Jackson 
  Jackson Structured Programming 

  1975, independent consultant, London 

 Describe program structure according to the structure 
of input and output streams 
  Mostly used for COBOL file processing 
  Still relevant to stream processing in Perl 

 Data records (items in collection, elements in array) 
require a code loop 

 Variant cases (subtypes, categories, enumerations) 
require conditional execution 

 Switching between code and data perspectives helps 
to learn about design complexity and to check 
correctness. 

Structural roles of variables 
 Classification of what variables do in a routine 

  Don’t confuse with data types (e.g. int, char, float) 
 Almost all variables in simple programs do one of: 

  fixed value  
  stepper  
  most-recent holder  
  most-wanted holder  
  gatherer  
  transformation  
  one-way flag  
  follower  
  temporary  
  organizer  

 Most common (70 % of variables) are fixed value, 
stepper or most-recent holder. 

 Fixed value 
 Value is never changed after initialization 
 Example: input radius of a circle, then print area 

 variable r is a fixed value, gets its value once, 
never changes after that. 

 Useful to declare “final” in Java (see variable PI). 
public class AreaOfCircle {  

 public static void main(String[] args) {  

  final float PI = 3.14F;  

  float r;  

  System.out.print("Enter circle radius: ");  

  r = UserInputReader.readFloat();  

  System.out.println(“Circle area is " + PI * r * r);  

 }  

} 

Stepper 
 Goes through a succession of values in some 

systematic way 
  E.g. counting items, moving through array index 

 Example: loop where multiplier is used as a stepper. 
  outputs multiplication table, stepper goes through values 

from one to ten.  

public class MultiplicationTable { 

 public static void main(String[] args) { 

  int multiplier; 
  for (multiplier = 1; multiplier <= 10; multiplier++) 

   System.out.println(multiplier + " * 3 = "  
    + multiplier * 3); 

 } 
} 
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  Most-recent holder 
 Most recent member of a group, or simply latest input 

value 
 Example: ask the user for input until valid. 

  Variable s is a most-recent holder since it holds the latest 
input value.  

public class AreaOfSquare { 

 public static void main(String[] args) { 

  float s = 0f; 
  while (s <= 0) { 

   System.out.print("Enter side of square: "); 
   s = UserInputReader.readFloat(); 

  } 
  System.out.println(“Area of square is " + s * s); 

 } 
} 

  Most-wanted holder 
  The "best" (biggest, smallest, closest) of values seen. 
 Example: find smallest of ten integers. 

  Variable smallest is a most-wanted holder since it is given 
the most recent value if it is smaller than the smallest one so 
far.  

  (i is a stepper and number is a most-recent holder.)  

public class SearchSmallest { 
 public static void main(String[] args) { 
  int i, smallest, number; 
  System.out.print("Enter the 1. number: "); 
  smallest = UserInputReader.readInt(); 
  for (i = 2; i <= 10; i++) { 
   System.out.print("Enter the " + i + ". number: "); 
   number = UserInputReader.readInt(); 
   if (number < smallest) smallest = number; 
  } 
  System.out.println("The smallest was " + smallest); 
 } 
} 

  Gatherer 
 Accumulates values seen so far. 
 Example: accepts integers, then calculates mean. 

  Variable sum is a gatherer the total of the inputs is gathered 
in it.  

  (count is a stepper and number is a most-recent holder.)  

public class MeanValue { 

 public static void main(String[] argv) { 
  int count=0; 
  float sum=0, number=0; 
  while (number != -999) { 
   System.out.print("Enter a number, -999 to quit: "); 
   number = UserInputReader.readFloat(); 
   if (number != -999) { sum += number; count++; } 
  } 
  if (count>0) System.out.println("The mean is " + 
       sum / count); 
 } 
} 

Transformation 
  Gets every value by calculation from the value of other 

variable(s). 
  Example: ask the user for capital amount, calculate interest and 

total capital for ten years. 
  Variable interest is a transformation and is always calculated from 

the capital.  
  (capital is a gatherer and i is a counter.)  

public class Growth { 
 public static void main(String[] args) { 
  float capital, interest;   int i; 
  System.out.print("Enter capital (positive or negative): "); 
  capital = UserInputReader.readFloat(); 
  for (i = 1; i <=10; i++) { 
   interest = 0.05F * capital; 
   capital += interest; 
   System.out.println("After "+i+" years interest is "  
    + interest + " and capital is " + capital); 
  } 
 } 
} 
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One-way flag 
  Boolean variable which, once changed, never returns to its 

original value. 
  Example: sum input numbers and report if any negatives. 

  The one-way flag neg monitors whether there are negative 
numbers among the inputs. If a negative value is found, it will never 
return to false.  

  (number is a most-recent holder and sum is a gatherer.)  

public class SumTotal { 
 public static void main(String[] argv) { 
  int number=1, sum=0; 
  boolean neg = false; 
  while (number != 0) { 
   System.out.print("Enter a number, 0 to quit: "); 
   number = UserInputReader.readInt();  sum += number; 
   if (number < 0) neg = true; 
  } 
  System.out.println("The sum is " + sum); 
  if (neg) System.out.println(“There were negative numbers."); 
 } 
} 

Follower 
  Gets old value of another variable as its new value. 
  Example: input twelve integers and find biggest difference 

between successive inputs. 
  Variable previous is a follower, following current.  

public class BiggestDifference { 
 public static void main(String[] args) { 
    int month, current, previous, biggestDiff; 
    System.out.print("1st: "); previous = UserInputReader.readInt(); 
    System.out.print("2nd: "); current = UserInputReader.readInt(); 
    biggestDiff = current - previous; 
    for (month = 3; month <= 12; month++) { 
  previous = current; 
  System.out.print(month + “th: "); 
  current = UserInputReader.readInt(); 
  if (current - previous > biggestDiff) 
    biggestDiff = current - previous; 
    } 
    System.out.println(“Biggest difference was " + biggestDiff); 
 } 
} 

Temporary 
  Needed only for very short period (e.g. between two lines). 
  Example: output two numbers in size order, swapping if 

necessary. 
  Values are swapped using a temporary variable tmp whose value is 

later meaningless (no matter how long the program would run).  

public class Swap { 
 public static void main(String[] args) { 
  int number1, number2, tmp; 
  System.out.print("Enter num: "); 
  number1 = UserInputReader.readInt(); 
  System.out.print("Enter num: "); 
  number2 = UserInputReader.readInt(); 
  if (number1 > number2) { 
   tmp = number1; 
   number1 = number2; 
   number2 = tmp; 
  } 
  System.out.println(“Order is " + number1 + “," + number2 + "."); 
 } 
} 

Organizer 
  An array for rearranging elements 
  Example: input ten characters and output in reverse order. 

  The reversal is performed in organizer variable word.  
  tmp is a temporary and i is a stepper.)  

public class Reverse { 
 public static void main(String[] args) { 
  char[] word = new char[10]; 
  char tmp; int i; 
  System.out.print("Enter ten letters: "); 
  for (i = 0; i < 10; i++) word[i] = UserInputReader.readChar(); 
  for (i = 0; i < 5; i++) { 
   tmp = word[i]; 
   word[i] = word[9-i]; 
   word[9-i] = tmp; 
  } 
  for (i = 0; i < 10; i++) System.out.print(word[i]); 
  System.out.println(); 
 } 
} 
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Verifying variables by role 
 Many student program errors result from using 

the same variable in more than one role. 
  Identify role of each variable during design 

 There are opportunities to check correct 
operation according to constraints on role 
 Check stepper within range 
 Check most-wanted meets selection criterion 
 De-allocate temporary value 
 Confirm size of organizer array is invariant 
 Use compiler to guarantee final fixed value 

 Either do runtime safety checks (noting 
efficiency tradeoff), or use language features. 

Type-checking as modeling tool 
 Refine types to reflect meaning, not just to 

satisfy the compiler (C++ example below) 
 Valid (to compiler), but incorrect, code: 

  float totalHeight, myHeight, yourHeight; 
  float totalWeight, myWeight, yourWeight; 
  totalHeight = myHeight + yourHeight + myWeight; 

 Type-safe version: 
  type t_height, t_weight: float; 
  t_height totalHeight, myHeight, yourHeight; 
  t_weight totalWeight, myWeight, yourWeight; 
  totalHeight = myHeight + yourHeight + myWeight; 

Compile error! 

Language support for user types 
 Smalltalk 

 All types are classes – consistent, but inefficient 
 C++ 

 Class overhead very low 
 User-defined types have no runtime cost 

 Java 
 Unfortunately a little inefficient 
 But runtime inefficiency in infrequent calculations 

far better than lost development time. 

Construction of data lifecycles 

object state 
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UML Statechart diagram UML Statechart diagram 
 Object lifecycle 

  data as state machine 

 Harel statecharts 
  nested states 
  concurrent substates 

 Explicit initial/final 
  valuable in C++ 

 Note inversion of 
activity diagram 

Maintaining valid system state 
 Pioneers (e.g. Turing) talked of proving 

program correctness using mathematics 
 In practice, the best we can do is confirm that 

the state of the system is consistent 
 State of an object valid before and after operation 
 Parameters and local variables valid at start and 

end of routine 
 Guard values define state on entering & leaving 

control blocks (loops and conditionals) 
  Invariants define conditions to be maintained 

throughout operations, routines, loops.  

Pioneers – Tony Hoare 
 Assertions and proof 

 1969, Queen’s University Belfast 
 Program element behaviour can be defined 

 by a post-condition that will result … 
 … given a known pre-condition.  

 If prior and next states accurately defined: 
  Individual elements can be composed 
 Program correctness is potentially provable 
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Formal models: Z notation 

 Definitions of the BirthdayBook state space: 
  known is a set of NAMEs 
  birthday is a partial map from NAMEs to DATEs 

  Invariants: 
  known must be the domain of birthday 

Formal models: Z notation 

 An operation to change state 
  AddBirthday modifies the state of BirthdayBook 
  Inputs are a new name and date 
  Precondition is that name must not be previously known 
  Result of the operation, birthday’ is defined to be a new and 

enlarged domain of the birthday map function 

Formal models: Z notation 

 An operation to inspect state of BirthdayBook 
  This schema does not change the state of BirthdayBook 
  It has an output value (a set of people to send cards to) 
  The output set is defined to be those people whose birthday 

is equal to the input value today. 

Advantages of formal models 
 Requirements can be analysed at a fine level 

of detail. 
 They are declarative (specify what the code 

should do, not how), so can be used to check 
specifications from an alternative perspective. 

 As a mathematical notation, offer the promise 
of tools to do automated checking, or even 
proofs of correctness (“verification”). 

 They have been applied in some real 
development projects. 
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Disadvantages of formal models 
 Notations that have lots of Greek letters and other 

weird symbols look scary to non-specialists. 
  Not a good choice for communicating with clients, users, 

rank-and-file programmers and testers. 

  Level of detail (and thinking effort) is similar to that of 
code, so managers get impatient. 
  If we are working so hard, 

why aren’t we just writing the code? 

  Tools are available, but not hugely popular. 
  Applications so far in research / defence / safety critical 

 Pragmatic compromise from UML developers 
  “Object Constraint Language” (OCL). 
  Formal specification of some aspects of the design, so that 

preconditions, invariants etc. can be added to models. 

Language support for assertions 
 Eiffel (pioneering OO language)  

 supported pre- and post-conditions on every 
method. 

 C++ and Java support “assert” keyword 
 Programmer defines a statement that must 

evaluate to boolean true value at runtime. 
  If assertion evaluates false, exception is raised 

 Some languages have debug-only versions, 
turned off when system considered correct. 
 Dubious trade-off of efficiency for safety. 

 Variable roles could provide rigorous basis for 
fine-granularity assertions in future. 

Defensive programming 
 Assertions and correctness proofs are useful 

tools, but not always available. 
 Defensive programming includes additional 

code to help ensure local correctness 
 Treat function interfaces as a contract 

 Each function / routine 
 Checks that input parameters meet assumptions 
 Checks output values are valid 

 System-wide considerations 
 How to report / record detected bugs 
 Perhaps include off-switch for efficiency 

Construction using objects 

components 
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UML Component diagram Component documentation 
 Your own classes should be documented the 

same way library classes are. 
 Other people should be able to use your class 

without reading the implementation. 
 Make your class a 'library class'! 

Elements of documentation 
Documentation for a class should include: 
 the class name 
 a comment describing the overall purpose 

and characteristics of the class 
 a version number 
 the authors’ names 
 documentation for each constructor and each 

method 

Elements of documentation 
The documentation for each constructor and 

method should include: 
 the name of the method 
 the return type 
 the parameter names and types 
 a description of the purpose and function of 

the method 
 a description of each parameter 
 a description of the value returned 
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javadoc 
 Part of the Java standard 
 Each class and method can include special 

keywords in a comment explaining the 
interface to that class 

 During javadoc compilation, the keyword 
information gets converted to a consistent 
reference format using HTML 

 The documentation for standard Java libraries 
is all generated using javadoc  

javadoc example 
Class comment: 

/** 
 * The Responder class represents a response 
 * generator object. It is used to generate an  
 * automatic response. 
 *  
 * @author     Michael Kölling and David J. Barnes 
 * @version    1.0  (1.Feb.2002) 
 */ 

javadoc example 
Method comment: 

/** 
 * Read a line of text from standard input (the text 
 * terminal), and return it as a set of words. 
 * 
 * @param  prompt  A prompt to print to screen. 
 * @return  A set of Strings, where each String is 
 *          one of the words typed by the user 
 */ 
public HashSet getInput(String prompt)  
{ 
   ... 
} 

Transition 

testing and optimisation 
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What is the goal of testing? 
 A) To define the end point of the software 

development process as a managed 
objective? 

 B) To prove that the programmers have 
implemented the specification correctly? 

 C) To demonstrate that the resulting software 
product meets defined quality standards? 

 D) To ensure that the software product won’t 
fail, with results that might be damaging? 

 E) None of the above? 

Testing and quality 
 Wikipedia 

  “Software testing is the process used to assess 
the quality of computer software. It is an empirical 
technical investigation conducted to provide 
stakeholders with information about the quality of 
the product or service under test, with respect to 
the context in which it is intended to operate.” 

 Edsger Dijkstra  
  “Program testing can be used to show the 

presence of bugs, but never to show their 
absence”  

Remember design as learning? 
 Design is the process of learning about a 

problem and describing a solution 
 at first with many gaps … 
 eventually in sufficient detail to build it. 

 We describe both the problem and the 
solution in a series of design models. 

 Testing those models in various ways helps 
us gather more knowledge. 

 Source code is simply the most detailed 
model used in software development. 

Learning through testing 
A bug is a system’s way of telling you that you 

don’t know something (P. Armour) 

 Testing searches for the presence of bugs. 

 Later: ‘debugging’ searches for the cause of 
bugs, once testing has found that a bug 
exists. 
 The manifestation of an bug as observable 

behaviour of the system may well occur some 
‘distance’ from its cause. 
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Testing principles 
 Look for violations of the interface contract. 

 Aim is to find bugs, not to prove that unit works as 
expected from its interface contract  

 Use positive tests (expected to pass)  
in the hope that they won’t pass 

 Use negative tests (expected to fail)  
in the hope that they don’t fail 

 Try to test boundaries of the contract 
 e.g. zero, one, overflow, search empty collection, 

add to a full collection. 

Unit testing priorities 
 Concentrate on modules most likely to 

contain errors: 
 Particularly complex 
 Novel things you’ve not done before 
 Areas known to be error-prone 

 Some habits in unit test ordering 
 Start with small modules 
 Try to get input/output modules working early 

  Allows you to work with real test data 

 Add new ones gradually 
 You probably want to test critical modules early 

  For peace of mind, not because you expect errors 

How to do it: testing strategies 
 Manual techniques 

 Software inspections and code walkthrough 
 Black box testing 

 Based on specified unit interfaces, not internal 
structure, for test case design 

 White box testing 
 Based on knowing the internal structure 

 Stress testing 
 At what point will it fail? 

 ‘Random’ (unexpected) testing 
 Remember the goal: most errors in least time 

Pioneers – Michael Fagan 
 Software Inspections 

 1976, IBM  
 Approach to design checking, including 

planning, control and checkpoints. 
 Try to find errors in design and code by 

systematic walkthrough 
 Work in teams including designer, coder, 

tester and moderator. 
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Software inspections 
 A low-tech approach, relatively underused, 

but more powerful than appreciated. 
 Read the source code in execution order, 

acting out the role of the computer 
 High-level (step) or low-level (step-into) views. 

 An expert tries to find common errors 
 Array bound errors 
 Off-by-one errors 
 File I/O (and threaded network I/O) 
 Default values 
 Comparisons 
 Reference versus copy 

Inspection by yourself 
 Get away from the computer and ‘run’ a 

program by hand 
 Note the current object state on paper 
 Try to find opportunities for incorrect 

behaviour by creating incorrect state. 
 Tabulate values of fields, including invalid 

combinations. 
 Identify the state changes that result from 

each method call. 

Black box testing 
 Based on interface specifications for whole 

system or individual modules 
 Analyse input ranges to determine test cases   
 Boundary values 

 Upper and lower bounds for each value 
  Invalid inputs outside each bound 

 Equivalence classes 
  Identify data ranges and combinations that are 

‘known’ to be equivalent 
 Ensure each equivalence class is sampled, but not 

over-represented in test case data 

White box testing 
 Design test cases by looking at internal 

structure, including all possible bug sources 
  Test each independent path at least once 
  Prepare test case data to force paths 
  Focus on error-prone situations (e.g. empty list) 
  The goal is to find as many errors as you can 

 Control structure tests: 
  conditions – take each possible branch 
  data flow – confirm path through parameters 
  loops – executed zero, one, many times 
  exceptions – ensure that they occur 
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Stress testing 
 The aim of stress testing is to find out  

at what point the system will fail 
 You really do want to know what that point is. 
 You have to keep going until the system fails. 
  If it hasn’t failed, you haven’t done stress testing. 

 Consider both volume and speed 
 Note difference from performance testing, 

which aims to confirm that the system will 
perform as specified. 
 Used as a contractual demonstration 
  It’s not an efficient way of finding errors 

Random testing 
 There are far more combinations of state and 

data than can be tested exhaustively 
 Systematic test case design helps explore the 

range of possible system behaviour 
 But remember the goal is to make the system fail, 

not to identify the many ways it works correctly. 
 Experienced testers have an instinct for the 

kinds of things that make a system fail 
 Usually by thinking about the system in ways the 

programmer did not expect. 
 Sometimes, just doing things at random can be an 

effective strategy for this. 

Regression testing 
 ‘Regression’ is when you go backwards, or 

things get worse 
 Regression in software usually results from re-

introducing faults that were previously fixed. 
 Each bug fix has around 20% probability of 

reintroducing some other old problem. 
 Refactoring can reintroduce design faults 

 So regression testing is designed to ensure 
that a new version gives the same answers 
as the old version did 

Regression testing 
 Use a large database of test cases 
 Include all bugs reported by customers: 

 customers are much more upset by failure of an 
already familiar feature than of a new one 

  reliability of software is relative to a set of inputs, 
so better test inputs that users actually generate! 

 Regression testing is boring and unpopular 
  test automation tools reduce mundane repetition 
 perhaps biggest single advance in tools for 

software engineering of packaged software 
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Test automation 
 Thorough testing (especially regression 

testing) is time consuming and repetitive. 
 Write special classes to test interfaces of 

other classes automatically  
  “test rig” or “test harness” 
  “test stubs” substitute for unwritten code, or 

simulate real-time / complex data 
 Use standard tools to  exercise external API, 

commands, or UI (e.g. mouse replay) 
  In commercial contexts, often driven from build 

and configuration tools. 

Unit testing 
 Each unit of an application may be tested. 

 Method, class, interface, package 
 Can (should) be done during development. 

 Finding and fixing early lowers development costs 
(e.g. programmer time). 

 Build up a test suite of necessary harnesses, 
stubs and data files 

 JUnit is often used to manage and run tests 
 you will use this to check your practical exercises 
 www.junit.org 

Cost of testing 
 Testing can cost as much as coding 
 Cost of rectifying bugs rises dramatically in 

later phases of a project: 
 When validating the initial design – moments  
 When testing a module after coding – minutes 
 When testing system after integration – hours 
 When doing field trials – days 
  In subsequent litigation – years!  
  ... 

 Testing too late is a common failing 
 Save time and cost by design for early testing 

When to stop testing 
  Imagine you are working on a project in which the 

timetable has allocated three months to testing. 
 When testing, you successfully find: 

  400 bugs in the first month 
  200 bugs in the second month 
  100 bugs in the third month 

 What are the chances that you have found all the 
bugs? 
  Managing a large-scale testing process requires some kind 

of statistical model. 
 But not a good idea to use this as an incentive for 

release targets, productivity bonuses etc 
  Programmers are smart enough to figure out basic statistics 

if there is money involved.  
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When to stop testing 
 Reliability growth model helps assess 

  mean time to failure 
  number of bugs remaining 
  economics of further testing, ..... 

 Software failure rate 
  drops exponentially at first 
  then decreases as K/T 

 But changing testers brings new bugs to light 

 b
ug

s 

time spent testing 

 e-A/t 

 k/T 

 bugs 

 tester 
1 

 tester 
2  tester 

3  tester 
4 

Other system tests 
 Security testing 

 automated probes, or 
 a favour from your Russian friends 

 Efficiency testing 
  test expected increase with data size 
 use code profilers to find hot spots 

 Usability testing 
 essential to product success 
 will be covered in further detail in Part II 

Testing efficiency: optimisation 
 Worst error is using wrong algorithm 

 e.g. lab graduate reduced 48 hours to 2 minutes 
 Try different size data sets – does execution time 

vary as N, 2N, N2, N3, N4, kN ...? 

 If this is the best algorithm, and you know it 
scales in a way appropriate to your data, but 
still goes too slow for some reason, ask: 
 How often will this program / feature be run? 
 Hardware gets faster quickly 
 Optimisation may be a waste of your time 

Testing efficiency: optimisation 
 When optimisation is required 

 First: check out compiler optimisation flags 
 For some parts of extreme applications 

  Use code profiler to find hotspots/bottlenecks 
  Most likely cause: overuse of some library/OS function 

 When pushing hardware envelope 
  Cache or pre-calculate critical data 
  Recode a function in C or assembler 
  Use special fast math tricks & bit-twiddling 
  Unroll loops (but compilers should do this) 

 But if this is an interactive system …  
 … how fast will the user be? 
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User interface efficiency 
 Usability testing can measure speed of use 

 How long did Fred take to order a book from 
Amazon? 

 How many errors did he make? 

 But every observation is different. 
 Fred might be faster (or slower) next time 
 Jane might be consistently faster 

 So we compare averages: 
 over a number of trials 
 over a range of people (experimental subjects) 

 Results usually have a normal distribution 

Experimental usability testing 
 Experimental treatment is some change that 

we expect to have an effect on usability: 
 Hypothesis: we expect new interface to be faster 

(& produce less errors) than old one 

number of 
observation 

trials 

time taken to order CD 
(faster) 

new old 

 Expected answer: usually faster, but not always 

Usability testing in the field 
 Brings advantages of ethnography / 

contextual task analysis to testing phase of 
product development. 

 Case study: Intuit Inc.’s Quicken product 
 originally based on interviews and observation 
  follow-me-home programme after product release: 

  random selection of shrink-wrap buyers; 
  observation while reading manuals, installing, using. 

 Quicken success was attributed to the 
programme: 

  survived predatory competition, later valued at $15 
billion. 

Iterative Development 

within any design phase or any 
combination of phases 
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UML Deployment diagram The Waterfall Model  

Implementation  
& unit testing 

Operations &  
maintenance 

Integration &  
system testing 

Requirements 

Specification 

written in  
user's  

language 
written in  
system  

language 
checks units  

against 
 specification 

Checks 
requirements 

are met 

  (Royce, 1970; now US DoD standard) 

Spiral model (Boehm, 88) 

Requirements plan 
Life-cycle plan 

Risk analysis 

Prototype 1 

Development 
plan 

Risk analysis 

Prototype 
2 

Software 
requirements 

Requirements 
validation 

Operational 
prototype 

Plan next phases 

Determine objectives, 
alternatives, 
constraints 

Evaluate alternatives 
and resolve risks 

Develop and verify 
next level product 

Detailed 
design 

Code 

Test 

Integrate 
Implement 

Increasing cost 

Prototyping 
 Supports early investigation of a system. 

 Early problem identification. 
 Incomplete components can be simulated. 

 e.g. always returning a fixed result. 
 May want to avoid random or time-dependent 

behavior which is difficult to reproduce. 
 Allows early interaction with clients 

 Perhaps at inception phase of project 
 Especially (if feasible) with actual users! 

 In product design, creative solutions are 
discovered by building many prototypes 
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Prototyping product concepts 
 Emphasise appearance of the interface, 

create some behaviour with scripting 
functions: 
 Visio – diagrams plus behaviour 
 Animation tools – movie sequence 
 JavaScript – simulate application as web page 
 PowerPoint – ‘click-through’ prototype 

 Cheap prototypes are good prototypes 
 More creative solutions are often discovered by 

building more prototypes. 
 Glossy prototypes can be mistaken for the real 

thing – either criticised more, or deployed! 

Prototypes without programming 
 Low-fidelity prototypes (or mockups) 

 Paper-and-glue simulation of interface 
 User indicates action by pointing at buttons on the 

paper “screen” 
 Experimenter changes display accordingly 

 “Wizard of Oz” simulation method 
 Computer user interface is apparently operational 
 Actual system responses are produced by an 

experimenter in another room. 
 Can cheaply assess effects of “intelligent” 

interfaces 

Software continues changing 
 Even after project completion! 
 There are only two options for software: 

 Either it is continuously maintained … 
 … or it dies. 

 Software that cannot be maintained will be 
thrown away. 
 Not like a novel (written then finished). 
 Software is extended, corrected, maintained, 

ported, adapted… 
 The work will be done by different people over 

time (often decades). 

Configuration management 
 Version control 
 Change control 
 Variants 
 Releases 
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Version control 

 Record regular “snapshot” backups 
 often appropriate to do so daily 

 Provides ability to “roll back” from errors 
 Useful even for programmers working alone 

Monday 
Vers 0.1 

Tuesday 
Vers 0.2 

Wed’day 
Vers 0.3 

Thursday 
Vers 0.4 

Friday 
Cock-up! 

Week-End: 
Version 0.4 
Week-End: 
Version 0.2 

Change control 

 Essential in programming teams 
 Avoid the “clobbering” problem 

 Older tools (RCS, SCCS) rely on locking 
 More recent (CVS) automate merging 

Monday 
V0.1 

AFB fix: 
Tuesday 

V0.2a 

AFB fix: 
Wed’day 

V0.3 

RJA fix: 
Thursday 

V0.4?? 

RJA fix: 
Tuesday 

V0.2b 

Alan’s work 
is clobbered!! 

Variants from branch fixes 

 Branching (from local fixes) results in a tree of 
different versions or “variants” 

 Maintaining multiple branches is costly 
 Merge branches as often as possible 
 Minimise number of components that vary in each 

branch (ideally only one configuration file) 
  If necessary, conditional compile/link/execution 

can merge several variants into one  

1 2a 

2b 

2a1 

2b1 

2a2 

2b2 

3 4 

split merge 
two 

updates 
two 

updates 

single 
update 

Builds and Releases 
 Record actual configuration of components that were 

in a product release, or an overnight build integrating 
work of a large team. 
  Allows problems to be investigated with the same source 

code that was delivered or tested 
  Often includes regression testing as part of build process 

 Also allow start of development on next release while 
testing and supporting current release 
  Universal requirement of commercial software development 

(at least after release 1.0!) 
  Bug fixes made to 1.0.1 are also expected to be there in 2.0, 

which requires regular merging 

  Think about this: ‘About Internet Explorer’ reported: 
6.0.2900.2180.xpsp2.070227-2254 
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Localizing change 
 One aim of reducing coupling and 

responsibility-driven design is to localize 
change. 

 When a change is needed, as few classes as 
possible should be affected. 

 Thinking ahead 
 When designing a class, think what changes are 

likely to be made in the future. 
 Aim to make those changes easy. 

 When you fail (and you will), refactoring is 
needed. 

Refactoring 
 When classes are maintained, code is often  

added. 
 Classes and methods tend to become longer. 

 Every now and then, classes and methods 
should be refactored to maintain cohesion 
and low coupling. 
 e.g. move duplicated methods into a superclass 

 Often removes code duplication, which: 
  is an indicator of bad design, 
 makes maintenance harder, 
 can lead to introduction of errors during 

maintenance. 

Refactoring and testing 
 When refactoring code, it is very important to 

separate the refactoring from making other 
changes. 
 First do the refactoring only, without changing the 

functionality. 
 Then make functional changes after refactored 

version shown to work OK. 
 Essential to run regression tests before and 

after refactoring, to ensure that nothing has 
been broken. 

Beyond waterfalls and spirals 
 User-centred design 
 Participatory design 
 Agile development: ‘XP’ 
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User-centred Design 
 Focus on ‘end-users’, not just specifications 

from contract and/or client 
 Use ethnographic methods at inception stage 
 Design based on user conceptual models 
 Early prototyping to assess conceptual model  
 Contextual evaluation to assess task 

relevance 
 Frequent iteration 

Participatory Design 
 Users become partners in the design team 

 Originated in Scandinavian printing industry 
 Now used in developing world, with children, … 

 PICTIVE method 
 Users generate scenarios of use in advance 
 Low fidelity prototyping tools (simple office 

supplies) are provided for collaborative session 
 The session is videotaped for data analysis 

 CARD method 
 Cards with screen-dumps on them are arranged 

on a table to explore workflow options 

Xtreme Programming’ (XP) 
 Described in various books by Kent Beck 
 An example of an agile design methodology 

  Increasingly popular alternative to more 
“corporate” waterfall/spiral models.  

 Reduce uncertainty by getting user feedback 
as soon as possible, but using actual code 
 Typical team size = two (pair programming). 
 Constant series of updates, maybe even daily. 
 Respond to changing requirements and 

understanding of design by refactoring. 
 When used on large projects, some evidence 

of XD (Xtreme Danger)! 

Would XP have helped CAPSA? 
 Now Cambridge University Financial System 
 Previous systems: 

  In-house COBOL system 1966-1993 
  Didn’t support commitment accounting 

 Reimplemented using Oracle package 1993 
  No change to procedures, data, operations 

 First (XP-like?) attempt to change: 
 Client-server “local” MS Access system 
 To be “synchronised” with central accounts 
 Loss of confidence after critical review 

 May 1998: consultant recommends restart 
with “industry standard” accounting system 
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CAPSA project 
 Detailed requirements gathering exercise 

  Input to supplier choice between Oracle vs. SAP 
 Bids & decision both based on optimism 

  ‘vapourware’ features in future versions 
 unrecognised inadequacy of research module 
 no user trials conducted, despite promise 

 Danger signals 
 High ‘rate of burn’ of consultancy fees 
 Faulty accounting procedures discovered 
 New management, features & schedule slashed 
 Bugs ignored, testing deferred, system went live 

 “Big Bang” summer 2000: CU seizes up 

CAPSA mistakes 
 No phased or incremental delivery 
 No managed resource control 
 No analysis of risks 
 No library of documentation 
 No direct contact with end-users 
 No requirements traceability 
 No policing of supplier quality 
 No testing programme 
 No configuration control 

CAPSA lessons 
 Classical system failure (Finkelstein) 

 More costly than anticipated 
  £10M or more, with hidden costs 

 Substantial disruption to organisation 
 Placed staff under undue pressure 
 Placed organisation under risk of failing to meet 

financial and legal obligations 
 Danger signs in process profile 

 Long hours, high staff turnover etc 
 Systems fail systemically 

 not just software, but interaction with 
organisational processes 

UML review: Modelling for uncertainty 
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The ‘quick and dirty’ version 
 Plan using general UML phase principles 
 Make sure you visit / talk to end-users 

 show them pictures of proposed screens 
 Write use case “stories” 

 note the parts that seem to be common 
 Keep a piece of paper for each class 

 write down attributes, operations, relationships 
  lay them out on table, and “talk through” scenarios 

 Think about object multiplicity and lifecycle 
 collections, state change, persistence 

 Test as early as possible 

Software Design: beyond “correct” 

The requirements for design conflict and cannot be 
reconciled. All designs for devices are in some 
degree failures, either because they flout one or 
another of the requirements or because they are 
compromises, and compromise implies a degree of 
failure ... quite specific conflicts are inevitable once 
requirements for economy are admitted; and conflicts 
even among the requirements of use are not 
unknown. It follows that all designs for use are 
arbitrary. The designer or his client has to choose in 
what degree and where there shall be failure. … It is 
quite impossible for any design to be the “logical 
outcome of the requirements” simply because, the 
requirements being in conflict, their logical outcome is 
an impossibility. 

David Pye, The Nature and Aesthetics of Design (1978). 


