
1

Software Design
Models, Tools & Processes

Alan Blackwell

Cambridge University
Computer Science Tripos Part 1a

How hard can it be?
 State what the system should do

  {D1, D2, D3 …}
 State what it shouldn’t do

  {U1, U2, U3 …}

 Systematically add features
  that can be proven to implement Dn
 while not implementing Un

How hard can it be …
 The United Kingdom Passport Agency

  http://www.parliament.the-stationery-office.co.uk/
pa/cm199900/cmselect/cmpubacc/65/6509.htm

 1997 contract for new computer system
  aimed to improve issuing efficiency, on tight project timetable
  project delays meant throughput not thoroughly tested
  first live office failed the throughput criterion to continue roll-out
  second office went live, roll out halted, but no contingency plan
  rising backlog in early 1999, alongside increasing demand
  passport processing times reached 50 days in July 1999
  widespread publicity, anxiety and panic for travelling public
  telephone service overloaded, public had to queue at UKPA offices
  only emergency measures eventually reduced backlog

 So how hard can it be to issue a passport?
 … let’s try some simple definition

… to define this system?

born in
UK

dies

leave UK
return to

UK

issue
passport

cancel

record
exit

record
entry

2

How hard can it be …

… to define a simple
bureaucracy?

Why is the world complicated?
 Bureaucratic systems are complex because

managers (and people) always mess up
 Passports
 Ambulance systems (more in part 1B)
 University financial systems (later in this course)

 What about physical systems, which don’t
rely on people to work?
 Start with known characteristics of physical device.
 Assemble behaviours to achieve function
 This is how engineering products (bridges and

aircraft) are designed.

How hard can it be … … to define a physical system?

3

Design and uncertainty
 A good programmer should be able to:

 Create a system that behaves as expected.
 Behaves that way reliably.

 But a good designer must also:
 Take account of the unexpected.

 A well-designed software system is not the
same as a well-designed algorithm.
  If the requirements change or vary,

you might replace the algorithm,
 But it’s seldom possible to replace

a whole system.

What is the problem?
 The problem is not that we don’t understand

the computer.
 The problem is that we don’t understand the

problem!
 Does computer science offer any answers?
 The good news:

 We’ve been working on it since 1968
 The bad news:

 There is still no “silver bullet”!
(from great IBM pioneer Fred Brooks)

Introduction

A design process based on knowledge

Pioneers – Bavarian Alps, 1968
  1954: complexity of

SAGE air-defence
project was under-
estimated by 6000
person-years …
  … at a time when

there were only
about 1000
programmers
in the whole world!

  … “Software Crisis!”

  1968: First meeting on “Software Engineering”
convened in Garmisch-Partenkirchen.

4

Design and ignorance
 Some say software engineering is the part

that is too hard for computer scientists.
 But the real change was understanding the

importance of what you don’t know
 dealing with uncertainty, lack of knowledge …
 … but trying to be systematically ignorant!

 Design is a process, not a set of known facts
 process of learning about a problem
 process of describing a solution
 at first with many gaps …
 eventually in sufficient detail to build the solution

Learning by building models
 The software design process involves gaining

knowledge about a problem, and about its
technical solution.

 We describe both the problem and the
solution in a series of design models.

 Testing, manipulating and transforming those
models helps us gather more knowledge.

 One of the most detailed models is written in
a programming language.
 Getting a working program is almost a side-effect

of describing it!

Unified Modeling Language
  Use Case diagrams - interactions with / interfaces

to the system.
  Class diagrams - type structure of the system.
  Collaboration diagrams - interaction between

instances
  Sequence diagrams - temporal structure of

interaction
  Activity diagrams - ordering of operations
  Statechart diagrams - behaviour of individual

objects
  Component and Deployment diagrams - system

organisation

Outline for the rest of the course
 Roughly follows stages of the (UML-related)

Rational Unified Process
  Inception

  structured description of what system must do

 Elaboration
  defining classes, data and system structure

 Construction
  object interaction, behaviour and state

 Transition
  testing and optimisation

 Plus allowance for iteration
 at every stage, and through all stages

5

Older terminology: the “waterfall”

Implementation
& unit testing

Operations &
maintenance

Integration &
system testing

Requirements

Specification

Modern alternative: the “spiral”

Initial plan

Prototype
1

Development
plan

Prototype
2

Requirements

Plan next phases

Evaluate alternatives
and resolve risks

Develop and verify
next level product

Code

Test

Integrate
Implement

The Design Process vs. The Design

Usage Model

Structure Model

Implementation
Models

Behaviour Models

Class Diagrams

Statechart Diagrams

Activity Diagrams

Sequence Diagrams

Collaboration Diagrams

Use Case Diagrams

Component Diagrams

Deployment Diagrams

Interaction Models

Inception

Elaboration

Construction

Transition

Books
 Code Complete: A practical handbook of software construction

  Steve McConnell, Microsoft Press 2004 (2nd edition)
 UML Distilled: A brief guide to the standard object modeling language

  Martin Fowler, Addison-Wesley 2003 (3rd edition)
  Further:

  Software Pioneers, Broy & Denert
  Software Engineering, Roger Pressman
  The Mythical Man-Month, Fred Brooks
  The Design of Everyday Things, Donald Norman
  Contextual Design, Hugh Beyer & Karen Holtzblatt
  The Sciences of the Artificial, Herbert Simon
  Educating the Reflective Practitioner, Donald Schon
  Designing Engineers, Louis Bucciarelli

6

Exam questions
 This syllabus appeared under this name for

the first time in 2006
 Software Design 2006, Paper 2, Q7

 But syllabus was previously introduced as:
 Software Engineering II 2005, Paper 2, Q8

 Some components had previously been
taught elsewhere in the Tripos:
 Programming in Java 2004, Paper 1, Q10
 Software Engineering and Design 2003 Paper 10,

Q12 and 2004 Paper 11, Q11
 Additional Topics 2000, Paper 7, Q13

Inception phase

structured description of system usage
and function

Pioneers – Tom DeMarco
 Structured Analysis

 1978, Yourdon Inc
 Defined the critical technical role of the

system analyst
 Analyst acts as a middleman between users and

(technical) developers
 Analyst’s job is to construct a functional

specification
 data dictionary, data flow, system partitioning

How can you capture requirements?

7

Analysing requirements
 Analysis usually involves (re)negotiation of

requirements between client and designer.
 Once considered “requirements capture”.
 Now more often “user-centred design”.

 An “interaction designer” often replaces (or
works alongside) traditional systems analysts.
 Professional interaction design typically combines

research methods from social sciences with visual
or typographic design skills (and perhaps CS).

Communicating requirements
 The need for user documentation

Documentation bugs Interaction design bugs

From Interface Hall of Shame

8

The psychological approach
 Anticipate what will happen when someone

tries to use the system.
 Design a “conceptual model” that will help them

(and you) develop shared understanding.
 The gulf of execution:

 System users know what they want to achieve,
but can’t work out how to do it.

 The gulf of evaluation:
 Systems fail to give suitable feedback on what just

happened, so users never learn what to do.
 See Norman: Design of Everyday Things.

 Far more detail to come in Part II HCI course

The anthropological approach
 Carry out fieldwork:

  Interview the users.
 Understand the context they work in.
 Observe the nature of their tasks.
 Discover things by observation that they might not

have told you in a design brief.
 Collaborate with users to agree:

 What problem ought to be solved.
 How to solve it (perhaps by reviewing sketches of

proposed screens etc.).

Ethnographic field studies
 Understand real detail of user activity, not just

official story, theories or rationalisations.
 Researchers work in the field:

 Observing context of people’s lives
  Ideally participating in their activities

 Academic ethnography tends to:
 Observe subjects in a range of contexts.
 Observe over a substantial period of time.
 Make full record of both activities and artefacts.
 Use transcripts of video/audio recordings.

Design ‘ethnography’
 Study division of labour and its coordination
 Plans and procedures

 When do they succeed and fail?
 Where paperwork meets computer work
 Local knowledge and everyday skills
 Spatial and temporal organisation
 Organisational memory

 How do people learn to do their work?
 Do formal/official methods match reality?

 See Beyer & Holtzblatt, Contextual Design

9

Interviews
 Field work usually includes interviews

 Additional to requirements meetings with client

 Often conducted in the place of work during
‘contextual enquiry’ (as in Beyer & Holtzblatt)
 emphasis on user tasks, not technical issues

 Plan questions in advance
 ensure all important aspects covered

 May be based on theoretical framework, e.g.
 activities, methods and connections
 measures, exceptions and domain knowledge

User Personas
 This is a way to ‘distil’ information about users

  from field work, interviews, user studies etc
  into a form that is more useful to design teams.

 Write fictional portraits of individuals
representing various kinds of user
 give them names, jobs, and personal history
 often include photographs (from libraries ,actors)

 Help software engineers to remember that
customers are not like them …
 … or their friends …
 … or anyone they’ve ever met!

Designing system-use scenarios
 Aim is to describe the human activity that the

system has to carry out or support.
 Known as use cases in UML

 Use cases help the designer to discover and
record interactions between software objects.

 Can be refined as a group activity, based on
personas, or in discussion with clients.

 May include mock-ups of screen designs, or
physical prototypes.

 Organised and grouped in use case diagrams

UML Use Case diagram

10

UML Use Case diagram
 Actors

  play system role
  may not be people

 Use case
  like a scenario

 Relationships
  include
  extend
  generalisation

Objects in a scenario
 The nouns in a description refer to ‘things’.

 A source of classes and objects.
 The verbs refer to actions.

 A source of interactions between objects.
 Actions describe object behavior, and hence

required methods.

Example of problem description
The cinema booking system should store seat bookings for
multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number
and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of
a given movie at a certain time).

Shows are at an assigned date and time, and scheduled in a
theatre where they are screened.

The system stores the customers’ telephone number.

Nouns
The cinema booking system should store seat bookings for
multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number
and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of
a given movie at a certain time).

Shows are at an assigned date and time, and scheduled in a
theatre where they are screened.

The system stores the customers’ telephone number.

11

Verbs
The cinema booking system should store seat bookings for
multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number
and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of
a given movie at a certain time).

Shows are at an assigned date and time, and scheduled in a
theatre where they are screened.

The system stores the customers’ telephone number.

Extracted nouns & verbs

Cinema booking system
Stores (seat bookings)
Stores (telephone number)

Seat booking

Theatre
Has (seats)

Seat

Row

Customer
Reserves (seats)
Is given (row number, seat number)
Requests (seat booking)

Row number

Seat number Show
Is scheduled (in theatre)

Movie

Date Time

Telephone number

Scenario structure: CRC cards
 First described by Kent Beck and Ward

Cunningham.
 Later innovators of “agile” programming

(more on this later in course)
 Use simple index cards, with each cards

recording:
 A class name.
 The class’s responsibilities.
 The class’s collaborators.

Typical CRC card

Class name Collaborators

Responsibilities

12

Partial example

CinemaBookingSystem Collaborators
Can find movies by Movie
title and day.
Stores collection of Collection
movies.
Retrieves and displays
movie details.
...

Refinement of usage model
 Scenarios allow you to check that the

problem description is clear and complete.
 Analysis leads gradually into design.

 Talking through scenarios & class responsibilities
leads to elaborated models.

 Spotting errors or omissions here will save
considerable wasted effort later!
 Sufficient time should be taken over the analysis.
 CRC was designed to allow (in principle) review

and discussion with analysts and/or clients.

Elaboration

defining classes, data and system
structure

Pioneers – Peter Chen
 Entity-Relationship Modeling

 1976, Massachusetts Institute of Technology
 User-oriented response to Codd’s relational

database model
 Define attributes and values
 Relations as associations between things
 Things play a role in the relation.

 E-R Diagrams showed entity (box), relation
(diamond), role (links).

 Object-oriented Class Diagrams show class
(box) and association (links)

13

Review of objects and classes
 objects

  represent ‘things’ in some problem domain
(example: “the red car down in the car park”)

 classes
  represent all objects of a kind (example: “car”)

 operations
 actions invoked on objects (Java “methods”)

 instance
 can create many instances from a single class

 state
 all the attributes (field values) of an instance

Typical classes and associations

Seat booking Theatre

Seat Row

Customer

Number

Movie

Date Time

Telephone number

NB: one class,
two uses

UML Class
diagram UML Class diagram

 Attributes
  type and visibility

 Operations
  signature and visibility

 Relationships
  association

  with multiplicity
  potentially aggregation

  generalisation

14

Association and aggregation
The cinema booking system should store seat bookings for
multiple theatres.

Each theatre has seats arranged in rows.

Customers can reserve seats and are given a row number
and seat number.

They may request bookings of several adjoining seats.

Each booking is for a particular show (i.e., the screening of
a given movie at a certain time).

Shows are at an assigned date and time, and scheduled in a
theatre where they are screened.

The system stores the customers’ telephone number.

Implementing association in Java
public class Car {
 private String colour;
 private Carpark park;

...

park_me (Carpark where)
{
 park = where;
}

colour

Car

address

Carpark

*

0..1

Multiple association in Java
public class Carpark {
 private String address;
 private ArrayList my_cars;

...

add_car (Car new_car)
{
 my_cars.add(new_car);
}

colour

Car

address

Carpark

*

0..1

Implementing multiple associations
Summary from 3 Java lectures:
 Most applications involve collections of

objects
  java.util package contains classes for this

 The number of items to be stored varies
  Items can be added and deleted
 Collection increases capacity as necessary
 Count of items obtained with size()
  Items kept in order, accessed with iterator

 Details of how all this is done are hidden.

15

Class design from CRC cards
 Scenario analysis helps to clarify application

structure.
 Each card maps to a class.
 Collaborations reveal class cooperation/object

interaction.
 Responsibilities reveal public methods.

 And sometimes fields; e.g. “Stores collection ...”

Refining class interfaces
 Replay the scenarios in terms of method

calls, parameters and return values.
 Note down the resulting method signatures.
 Create outline classes with public-method

stubs.
 Careful design is a key to successful

implementation.

Dividing up a design model
 Abstraction

  Ignore details in order to focus on higher level
problems (e.g. aggregation, inheritance).

  If classes correspond well to types in domain they
will be easy to understand, maintain and reuse.

 Modularization
 Divide model into parts that can be built and tested

separately, interacting in well-defined ways.
 Allows different teams to work on each part
 Clearly defined interfaces mean teams can work

independently & concurrently, with increased
chance of successful integration.

Pioneers – David Parnas
 Information Hiding

 1972, Carnegie Mellon University
 How do you decide the points at which a

program should be split into pieces?
 Are small modules better?
 Are big modules better?
 What is the optimum boundary size?

 Parnas proposed the best criterion for
modularization:
 Aim to hide design decisions within the module.

16

Information hiding in OO models
 Data belonging to one object is hidden from

other objects.
 Know what an object can do, not how it does it.
  Increases independence, essential for large

systems and later maintenance
 Use Java visibility to hide implementation

 Only methods intended for interface to other
classes should be public.

 Fields should be private – accessible only within
the same class.

 Accessor methods provide information about
object state, but don’t change it.

 Mutator methods change an object’s state.

Cohesion in OO models
 Aim for high cohesion:

 Each component achieves only “one thing”
 Method (functional) cohesion

 Method only performs out one operation
 Groups things that must be done together

 Class (type) cohesion
 Easy to understand & reuse as a domain concept

 Causes of low, poor, cohesion
 Sequence of operations with no necessary relation
 Unrelated operations selected by control flags
 No relation at all – just a bag of code

Construction

object interaction, behaviour and state

UML Collaboration diagram

17

UML Collaboration
diagram

 Objects
  class instances
  can be transient

  Links
  from associations

 Messages
  travel along links
  numbered to show

sequence

UML Sequence diagram

UML Sequence diagram
  Interaction again

  same content as
collaboration

  emphasises time
dimension

 Object lifeline
  objects across page
  time down page

 Shows focus of control

Loose coupling
 Coupling: links between parts of a program.
 If two classes depend closely on details of

each other, they are tightly coupled.
 We aim for loose coupling.

 keep parts of design clear & independent
 may take several design iterations

 Loose coupling makes it possible to:
 achieve reusability, modifiability
 understand one class without reading others;
 change one class without affecting others.

 Thus improves maintainability.

18

Responsibility-driven design
 Which class should I add a new method to?

 Each class should be responsible for manipulating
its own data.

 The class that owns the data should be
responsible for processing it.

 Leads to low coupling & “client-server
contracts”
 Consider every object as a server
  Improves reliability, partitioning, graceful

degradation

Interfaces as specifications
 Define method signatures for classes to

interact
  Include parameter and return types.
 Strong separation of required functionality from the

code that implements it (information hiding).
 Clients interact independently of the

implementation.
 But clients can choose from alternative

implementations.

Interfaces in Java
 Provide specification without implementation.

 Fully abstract – define interface only
  Implementing classes don’t inherit code

 Support not only polymorphism, but
 multiple inheritance
  implementing classes are still subtypes of the

interface type, but allowed more than one “parent”.

public class ArrayList implements List

public class LinkedList implements List

Note difference from ‘extends’
keyword used for sub-classing

Alternative implementations

19

Causes of error situations
 Incorrect implementation.

 Does not meet the specification.
 Inappropriate object request.

 E.g., invalid index.

 Inconsistent or inappropriate object state.
 E.g. arising through class extension.

 Not always programmer error
 Errors often arise from the environment

(incorrect URL entered, network interruption).
 File processing often error-prone

(missing files, lack of appropriate permissions).

Defensive programming
 Client-server interaction.

 Should a server assume that clients are
well-behaved?

 Or should it assume that clients are
potentially hostile?

 Significant differences in implementation
required.

 Issues to be addressed
 How much checking by a server on method calls?
 How to report errors?
 How can a client anticipate failure?
 How should a client deal with failure?

Argument values
 Arguments represent a major ‘vulnerability’ for

a server object.
 Constructor arguments initialize state.
 Method arguments often control behavior.

 Argument checking is one defensive
measure.

 How to report illegal arguments?
 To the user? Is there a human user?

Can the user do anything to solve the problem?
If not solvable, what should you suggest they do?

 To the client object:
return a diagnostic value, or throw an exception.

Example of diagnostic return

public boolean removeDetails(String key)
{
 if(keyInUse(key)) {
 ContactDetails details =
 (ContactDetails) book.get(key);
 book.remove(details.getName());
 book.remove(details.getPhone());
 numberOfEntries--;
 return true;
 }
 else {
 return false;
 }
}

Diagnostic OK

Diagnostic not OK

20

Client response to diagnostic
 Test the return value.

 Attempt recovery on error.
 Avoid program failure.

 Ignore the return value.
 Cannot be prevented.
 Likely to lead to program failure.

 Exceptions are preferable.

Exception-throwing
 Special feature of some languages

 Java does provide exceptions
 Advantages

 No ‘special’ return value needed.
 Errors cannot be ignored in the client.

 Disadvantages (or are they?)
 The normal flow-of-control is interrupted.
 Specific recovery actions are encouraged.

Example of argument exception

public ContactDetails getDetails(String key)
{
 if(key == null) {
 throw new NullPointerException(
 "null key in getDetails");
 }
 if(key.trim().length() == 0) {
 throw new IllegalArgumentException(
 "Empty key passed to getDetails");
 }
 return (ContactDetails) book.get(key);
}

Error response and recovery
 Clients should take note of error notifications.

 Check return values.
 Don’t ‘ignore’ exceptions.

 Include code to attempt recovery.
 Will often require a loop.

21

Example of recovery attempt
// Try to save the address book.
boolean successful = false;
int attempts = 0;
do {
 try {
 addressbook.saveToFile(filename);
 successful = true;
 }
 catch(IOException e) {
 System.out.println("Unable to save to " + filename);
 attempts++;
 if(attempts < MAX_ATTEMPTS) {
 filename = an alternative file name;
 }
 }
} while(!successful && attempts < MAX_ATTEMPTS);
if(!successful) {
 Report the problem and give up;
}

Error avoidance
 Clients can often use server query methods

to avoid errors.
 More robust clients mean servers can be more

trusting.
 Unchecked exceptions can be used.
 Simplifies client logic.

 May increase client-server coupling.

Construction inside objects

object internals

UML Activity
diagram

22

UML Activity diagram
  Like flow charts

  Activity as action states

  Flow of control
  transitions
  branch points
  concurrency (fork & join)

  Illustrate flow of control
  high level - e.g. workflow
  low level - e.g. lines of

code

Pioneers – Edsger Dijkstra
 Structured Programming

 1968, Eindhoven
 Why are programmers so bad at

understanding dynamic processes and
concurrency?
  (ALGOL then – but still hard in Java today!)

 Observed that “go to” made things worse
 Hard to describe what state a process has

reached, when you don’t know which process is
being executed.

 Define process as nested set of execution
blocks, with fixed entry and exit points

Top-down design & stepwise refinement

dispatch ambulance

identify region take 999 call send ambulance

allocate vehicle estimate arrival note patient
condition

radio crew

record address
find vehicle

in region

assign vehicle
to call

Bottom-up construction
 Why?

 Start with what you understand
 Build complex structures from well-understood

parts
 Deal with concrete cases in order to understand

abstractions
 Study of expert programmers shows that real

software design work combines top-down and
bottom up.

23

Modularity at code level
 Is this piece of code (class, method, function,

procedure … “routine” in McConnell) needed?
 Define what it will do

 What information will it hide?
  Inputs
 Outputs (including side effects)
 How will it handle errors?

 Give it a good name
 How will you test it?
 Think about efficiency and algorithms
 Write as comments, then fill in actual code

Modularity in non-OO languages
 Separate source files in C

  Inputs, outputs, types and interface functions
defined by declarations in “header files”.

 Private variables and implementation details
defined in the “source file”

 Modules in ML, Perl, Fortran, …
 Export publicly visible interface details.
 Keep implementation local whenever possible, in

interest of information hiding, encapsulation, low
coupling.

Source code as a design model
 Objectives:

 Accurately express logical structure of the code
 Consistently express the logical structure
  Improve readability

 Good visual layout shows program structure
 Mostly based on white space and alignment
 The compiler ignores white space
 Alignment is the single most obvious feature to

human readers.
 Like good typography in interaction design:

but the “users” are other programmers!

Code as a structured model
public int Function_name (int parameter1, int parameter2)

// Function which doesn’t do anything, beyond showing the fact
// that different parts of the function can be distinguished.

 int local_data_A;
 int local_data_B;

 // Initialisation section
 local_data_A = parameter1 + parameter2;
 local_data_B = parameter1 - parameter2;
 local_data_B++;

 // Processing
 while (local_data_A < 40) {
 if ((local_data_B * 2) > local_data_A) then {
 local_data_B = local_data_B – 1;
 } else {
 local_data_B = local_data_B + 1;
 }
 local_data_C = local_data_C + 1;
 }
 return local_data_C;
}

24

Expressing local control structure
while (local_data_C < 40) {
 form_initial_estimate(local_data_C);
 record_marker(local_data_B – 1);
 refine_estimate(local_data_A);
 local_data_C = local_data_C + 1;
} // end while

if ((local_data_B * 2) > local_data_A) then {
 // drop estimate
 local_data_B = local_data_B – 1;
} else {
 // raise estimate
 local_data_B = local_data_B + 1;
} // end if

Expressing structure within a line
 Whitespacealwayshelpshumanreaders

  newtotal=oldtotal+increment/missamount-1;
  newtotal = oldtotal + increment / missamount - 1;

 The compiler doesn’t care – take care!
  x = 1 * y+2 * z;

 Be conservative when nesting parentheses
  while ((! error) && readInput())

 Continuation lines – exploit alignment
  if ((aLongVariableName && anotherLongOne) |

 (someOtherCondition()))
 {
 …
 }

Naming variables: Form
 Priority: full and accurate (not just short)

 Abbreviate for pronunciation (remove vowels)
  e.g. CmptrScnce (leave first and last letters)

 Parts of names reflect conventional functions
 Role in program (e.g. “count”)
 Type of operations (e.g. “window” or “pointer”)
 Hungarian naming (not really recommended):

  e.g. pscrMenu, ichMin

 Even individual variable names can exploit
typographic structure for clarity
 xPageStartPosition
 x_page_start_position

Naming variables: Content
 Data names describe domain, not computer

 Describe what, not just how
 CustomerName better than PrimaryIndex

 Booleans should have obvious truth values
 ErrorFound better than Status

 Indicate which variables are related
 CustName, CustAddress, CustPhone

 Identify globals, types & constants
 C conventions: g_wholeApplet, T_mousePos

 Even temporary variables have meaning
 Index, not Foo

25

Pioneers – Michael Jackson
  Jackson Structured Programming

  1975, independent consultant, London

 Describe program structure according to the structure
of input and output streams
  Mostly used for COBOL file processing
  Still relevant to stream processing in Perl

 Data records (items in collection, elements in array)
require a code loop

 Variant cases (subtypes, categories, enumerations)
require conditional execution

 Switching between code and data perspectives helps
to learn about design complexity and to check
correctness.

Structural roles of variables
 Classification of what variables do in a routine

  Don’t confuse with data types (e.g. int, char, float)
 Almost all variables in simple programs do one of:

  fixed value
  stepper
  most-recent holder
  most-wanted holder
  gatherer
  transformation
  one-way flag
  follower
  temporary
  organizer

 Most common (70 % of variables) are fixed value,
stepper or most-recent holder.

 Fixed value
 Value is never changed after initialization
 Example: input radius of a circle, then print area

 variable r is a fixed value, gets its value once,
never changes after that.

 Useful to declare “final” in Java (see variable PI).
public class AreaOfCircle {

 public static void main(String[] args) {

 final float PI = 3.14F;

 float r;

 System.out.print("Enter circle radius: ");

 r = UserInputReader.readFloat();

 System.out.println(“Circle area is " + PI * r * r);

 }

}

Stepper
 Goes through a succession of values in some

systematic way
  E.g. counting items, moving through array index

 Example: loop where multiplier is used as a stepper.
  outputs multiplication table, stepper goes through values

from one to ten.

public class MultiplicationTable {

 public static void main(String[] args) {

 int multiplier;
 for (multiplier = 1; multiplier <= 10; multiplier++)

 System.out.println(multiplier + " * 3 = "
 + multiplier * 3);

 }
}

26

 Most-recent holder
 Most recent member of a group, or simply latest input

value
 Example: ask the user for input until valid.

  Variable s is a most-recent holder since it holds the latest
input value.

public class AreaOfSquare {

 public static void main(String[] args) {

 float s = 0f;
 while (s <= 0) {

 System.out.print("Enter side of square: ");
 s = UserInputReader.readFloat();

 }
 System.out.println(“Area of square is " + s * s);

 }
}

 Most-wanted holder
  The "best" (biggest, smallest, closest) of values seen.
 Example: find smallest of ten integers.

  Variable smallest is a most-wanted holder since it is given
the most recent value if it is smaller than the smallest one so
far.

  (i is a stepper and number is a most-recent holder.)

public class SearchSmallest {
 public static void main(String[] args) {
 int i, smallest, number;
 System.out.print("Enter the 1. number: ");
 smallest = UserInputReader.readInt();
 for (i = 2; i <= 10; i++) {
 System.out.print("Enter the " + i + ". number: ");
 number = UserInputReader.readInt();
 if (number < smallest) smallest = number;
 }
 System.out.println("The smallest was " + smallest);
 }
}

 Gatherer
 Accumulates values seen so far.
 Example: accepts integers, then calculates mean.

  Variable sum is a gatherer the total of the inputs is gathered
in it.

  (count is a stepper and number is a most-recent holder.)

public class MeanValue {

 public static void main(String[] argv) {
 int count=0;
 float sum=0, number=0;
 while (number != -999) {
 System.out.print("Enter a number, -999 to quit: ");
 number = UserInputReader.readFloat();
 if (number != -999) { sum += number; count++; }
 }
 if (count>0) System.out.println("The mean is " +
 sum / count);
 }
}

Transformation
  Gets every value by calculation from the value of other

variable(s).
  Example: ask the user for capital amount, calculate interest and

total capital for ten years.
  Variable interest is a transformation and is always calculated from

the capital.
  (capital is a gatherer and i is a counter.)

public class Growth {
 public static void main(String[] args) {
 float capital, interest; int i;
 System.out.print("Enter capital (positive or negative): ");
 capital = UserInputReader.readFloat();
 for (i = 1; i <=10; i++) {
 interest = 0.05F * capital;
 capital += interest;
 System.out.println("After "+i+" years interest is "
 + interest + " and capital is " + capital);
 }
 }
}

27

One-way flag
  Boolean variable which, once changed, never returns to its

original value.
  Example: sum input numbers and report if any negatives.

  The one-way flag neg monitors whether there are negative
numbers among the inputs. If a negative value is found, it will never
return to false.

  (number is a most-recent holder and sum is a gatherer.)

public class SumTotal {
 public static void main(String[] argv) {
 int number=1, sum=0;
 boolean neg = false;
 while (number != 0) {
 System.out.print("Enter a number, 0 to quit: ");
 number = UserInputReader.readInt(); sum += number;
 if (number < 0) neg = true;
 }
 System.out.println("The sum is " + sum);
 if (neg) System.out.println(“There were negative numbers.");
 }
}

Follower
  Gets old value of another variable as its new value.
  Example: input twelve integers and find biggest difference

between successive inputs.
  Variable previous is a follower, following current.

public class BiggestDifference {
 public static void main(String[] args) {
 int month, current, previous, biggestDiff;
 System.out.print("1st: "); previous = UserInputReader.readInt();
 System.out.print("2nd: "); current = UserInputReader.readInt();
 biggestDiff = current - previous;
 for (month = 3; month <= 12; month++) {
 previous = current;
 System.out.print(month + “th: ");
 current = UserInputReader.readInt();
 if (current - previous > biggestDiff)
 biggestDiff = current - previous;
 }
 System.out.println(“Biggest difference was " + biggestDiff);
 }
}

Temporary
  Needed only for very short period (e.g. between two lines).
  Example: output two numbers in size order, swapping if

necessary.
  Values are swapped using a temporary variable tmp whose value is

later meaningless (no matter how long the program would run).

public class Swap {
 public static void main(String[] args) {
 int number1, number2, tmp;
 System.out.print("Enter num: ");
 number1 = UserInputReader.readInt();
 System.out.print("Enter num: ");
 number2 = UserInputReader.readInt();
 if (number1 > number2) {
 tmp = number1;
 number1 = number2;
 number2 = tmp;
 }
 System.out.println(“Order is " + number1 + “," + number2 + ".");
 }
}

Organizer
  An array for rearranging elements
  Example: input ten characters and output in reverse order.

  The reversal is performed in organizer variable word.
  tmp is a temporary and i is a stepper.)

public class Reverse {
 public static void main(String[] args) {
 char[] word = new char[10];
 char tmp; int i;
 System.out.print("Enter ten letters: ");
 for (i = 0; i < 10; i++) word[i] = UserInputReader.readChar();
 for (i = 0; i < 5; i++) {
 tmp = word[i];
 word[i] = word[9-i];
 word[9-i] = tmp;
 }
 for (i = 0; i < 10; i++) System.out.print(word[i]);
 System.out.println();
 }
}

28

Verifying variables by role
 Many student program errors result from using

the same variable in more than one role.
  Identify role of each variable during design

 There are opportunities to check correct
operation according to constraints on role
 Check stepper within range
 Check most-wanted meets selection criterion
 De-allocate temporary value
 Confirm size of organizer array is invariant
 Use compiler to guarantee final fixed value

 Either do runtime safety checks (noting
efficiency tradeoff), or use language features.

Type-checking as modeling tool
 Refine types to reflect meaning, not just to

satisfy the compiler (C++ example below)
 Valid (to compiler), but incorrect, code:

  float totalHeight, myHeight, yourHeight;
  float totalWeight, myWeight, yourWeight;
  totalHeight = myHeight + yourHeight + myWeight;

 Type-safe version:
  type t_height, t_weight: float;
  t_height totalHeight, myHeight, yourHeight;
  t_weight totalWeight, myWeight, yourWeight;
  totalHeight = myHeight + yourHeight + myWeight;

Compile error!

Language support for user types
 Smalltalk

 All types are classes – consistent, but inefficient
 C++

 Class overhead very low
 User-defined types have no runtime cost

 Java
 Unfortunately a little inefficient
 But runtime inefficiency in infrequent calculations

far better than lost development time.

Construction of data lifecycles

object state

29

UML Statechart diagram UML Statechart diagram
 Object lifecycle

  data as state machine

 Harel statecharts
  nested states
  concurrent substates

 Explicit initial/final
  valuable in C++

 Note inversion of
activity diagram

Maintaining valid system state
 Pioneers (e.g. Turing) talked of proving

program correctness using mathematics
 In practice, the best we can do is confirm that

the state of the system is consistent
 State of an object valid before and after operation
 Parameters and local variables valid at start and

end of routine
 Guard values define state on entering & leaving

control blocks (loops and conditionals)
  Invariants define conditions to be maintained

throughout operations, routines, loops.

Pioneers – Tony Hoare
 Assertions and proof

 1969, Queen’s University Belfast
 Program element behaviour can be defined

 by a post-condition that will result …
 … given a known pre-condition.

 If prior and next states accurately defined:
  Individual elements can be composed
 Program correctness is potentially provable

30

Formal models: Z notation

 Definitions of the BirthdayBook state space:
  known is a set of NAMEs
  birthday is a partial map from NAMEs to DATEs

  Invariants:
  known must be the domain of birthday

Formal models: Z notation

 An operation to change state
  AddBirthday modifies the state of BirthdayBook
  Inputs are a new name and date
  Precondition is that name must not be previously known
  Result of the operation, birthday’ is defined to be a new and

enlarged domain of the birthday map function

Formal models: Z notation

 An operation to inspect state of BirthdayBook
  This schema does not change the state of BirthdayBook
  It has an output value (a set of people to send cards to)
  The output set is defined to be those people whose birthday

is equal to the input value today.

Advantages of formal models
 Requirements can be analysed at a fine level

of detail.
 They are declarative (specify what the code

should do, not how), so can be used to check
specifications from an alternative perspective.

 As a mathematical notation, offer the promise
of tools to do automated checking, or even
proofs of correctness (“verification”).

 They have been applied in some real
development projects.

31

Disadvantages of formal models
 Notations that have lots of Greek letters and other

weird symbols look scary to non-specialists.
  Not a good choice for communicating with clients, users,

rank-and-file programmers and testers.

  Level of detail (and thinking effort) is similar to that of
code, so managers get impatient.
  If we are working so hard,

why aren’t we just writing the code?

  Tools are available, but not hugely popular.
  Applications so far in research / defence / safety critical

 Pragmatic compromise from UML developers
  “Object Constraint Language” (OCL).
  Formal specification of some aspects of the design, so that

preconditions, invariants etc. can be added to models.

Language support for assertions
 Eiffel (pioneering OO language)

 supported pre- and post-conditions on every
method.

 C++ and Java support “assert” keyword
 Programmer defines a statement that must

evaluate to boolean true value at runtime.
  If assertion evaluates false, exception is raised

 Some languages have debug-only versions,
turned off when system considered correct.
 Dubious trade-off of efficiency for safety.

 Variable roles could provide rigorous basis for
fine-granularity assertions in future.

Defensive programming
 Assertions and correctness proofs are useful

tools, but not always available.
 Defensive programming includes additional

code to help ensure local correctness
 Treat function interfaces as a contract

 Each function / routine
 Checks that input parameters meet assumptions
 Checks output values are valid

 System-wide considerations
 How to report / record detected bugs
 Perhaps include off-switch for efficiency

Construction using objects

components

32

UML Component diagram Component documentation
 Your own classes should be documented the

same way library classes are.
 Other people should be able to use your class

without reading the implementation.
 Make your class a 'library class'!

Elements of documentation
Documentation for a class should include:
 the class name
 a comment describing the overall purpose

and characteristics of the class
 a version number
 the authors’ names
 documentation for each constructor and each

method

Elements of documentation
The documentation for each constructor and

method should include:
 the name of the method
 the return type
 the parameter names and types
 a description of the purpose and function of

the method
 a description of each parameter
 a description of the value returned

33

javadoc
 Part of the Java standard
 Each class and method can include special

keywords in a comment explaining the
interface to that class

 During javadoc compilation, the keyword
information gets converted to a consistent
reference format using HTML

 The documentation for standard Java libraries
is all generated using javadoc

javadoc example
Class comment:

/**
 * The Responder class represents a response
 * generator object. It is used to generate an
 * automatic response.
 *
 * @author Michael Kölling and David J. Barnes
 * @version 1.0 (1.Feb.2002)
 */

javadoc example
Method comment:

/**
 * Read a line of text from standard input (the text
 * terminal), and return it as a set of words.
 *
 * @param prompt A prompt to print to screen.
 * @return A set of Strings, where each String is
 * one of the words typed by the user
 */
public HashSet getInput(String prompt)
{
 ...
}

Transition

testing and optimisation

34

What is the goal of testing?
 A) To define the end point of the software

development process as a managed
objective?

 B) To prove that the programmers have
implemented the specification correctly?

 C) To demonstrate that the resulting software
product meets defined quality standards?

 D) To ensure that the software product won’t
fail, with results that might be damaging?

 E) None of the above?

Testing and quality
 Wikipedia

  “Software testing is the process used to assess
the quality of computer software. It is an empirical
technical investigation conducted to provide
stakeholders with information about the quality of
the product or service under test, with respect to
the context in which it is intended to operate.”

 Edsger Dijkstra
  “Program testing can be used to show the

presence of bugs, but never to show their
absence”

Remember design as learning?
 Design is the process of learning about a

problem and describing a solution
 at first with many gaps …
 eventually in sufficient detail to build it.

 We describe both the problem and the
solution in a series of design models.

 Testing those models in various ways helps
us gather more knowledge.

 Source code is simply the most detailed
model used in software development.

Learning through testing
A bug is a system’s way of telling you that you

don’t know something (P. Armour)

 Testing searches for the presence of bugs.

 Later: ‘debugging’ searches for the cause of
bugs, once testing has found that a bug
exists.
 The manifestation of an bug as observable

behaviour of the system may well occur some
‘distance’ from its cause.

35

Testing principles
 Look for violations of the interface contract.

 Aim is to find bugs, not to prove that unit works as
expected from its interface contract

 Use positive tests (expected to pass)
in the hope that they won’t pass

 Use negative tests (expected to fail)
in the hope that they don’t fail

 Try to test boundaries of the contract
 e.g. zero, one, overflow, search empty collection,

add to a full collection.

Unit testing priorities
 Concentrate on modules most likely to

contain errors:
 Particularly complex
 Novel things you’ve not done before
 Areas known to be error-prone

 Some habits in unit test ordering
 Start with small modules
 Try to get input/output modules working early

  Allows you to work with real test data

 Add new ones gradually
 You probably want to test critical modules early

  For peace of mind, not because you expect errors

How to do it: testing strategies
 Manual techniques

 Software inspections and code walkthrough
 Black box testing

 Based on specified unit interfaces, not internal
structure, for test case design

 White box testing
 Based on knowing the internal structure

 Stress testing
 At what point will it fail?

 ‘Random’ (unexpected) testing
 Remember the goal: most errors in least time

Pioneers – Michael Fagan
 Software Inspections

 1976, IBM
 Approach to design checking, including

planning, control and checkpoints.
 Try to find errors in design and code by

systematic walkthrough
 Work in teams including designer, coder,

tester and moderator.

36

Software inspections
 A low-tech approach, relatively underused,

but more powerful than appreciated.
 Read the source code in execution order,

acting out the role of the computer
 High-level (step) or low-level (step-into) views.

 An expert tries to find common errors
 Array bound errors
 Off-by-one errors
 File I/O (and threaded network I/O)
 Default values
 Comparisons
 Reference versus copy

Inspection by yourself
 Get away from the computer and ‘run’ a

program by hand
 Note the current object state on paper
 Try to find opportunities for incorrect

behaviour by creating incorrect state.
 Tabulate values of fields, including invalid

combinations.
 Identify the state changes that result from

each method call.

Black box testing
 Based on interface specifications for whole

system or individual modules
 Analyse input ranges to determine test cases
 Boundary values

 Upper and lower bounds for each value
  Invalid inputs outside each bound

 Equivalence classes
  Identify data ranges and combinations that are

‘known’ to be equivalent
 Ensure each equivalence class is sampled, but not

over-represented in test case data

White box testing
 Design test cases by looking at internal

structure, including all possible bug sources
  Test each independent path at least once
  Prepare test case data to force paths
  Focus on error-prone situations (e.g. empty list)
  The goal is to find as many errors as you can

 Control structure tests:
  conditions – take each possible branch
  data flow – confirm path through parameters
  loops – executed zero, one, many times
  exceptions – ensure that they occur

37

Stress testing
 The aim of stress testing is to find out

at what point the system will fail
 You really do want to know what that point is.
 You have to keep going until the system fails.
  If it hasn’t failed, you haven’t done stress testing.

 Consider both volume and speed
 Note difference from performance testing,

which aims to confirm that the system will
perform as specified.
 Used as a contractual demonstration
  It’s not an efficient way of finding errors

Random testing
 There are far more combinations of state and

data than can be tested exhaustively
 Systematic test case design helps explore the

range of possible system behaviour
 But remember the goal is to make the system fail,

not to identify the many ways it works correctly.
 Experienced testers have an instinct for the

kinds of things that make a system fail
 Usually by thinking about the system in ways the

programmer did not expect.
 Sometimes, just doing things at random can be an

effective strategy for this.

Regression testing
 ‘Regression’ is when you go backwards, or

things get worse
 Regression in software usually results from re-

introducing faults that were previously fixed.
 Each bug fix has around 20% probability of

reintroducing some other old problem.
 Refactoring can reintroduce design faults

 So regression testing is designed to ensure
that a new version gives the same answers
as the old version did

Regression testing
 Use a large database of test cases
 Include all bugs reported by customers:

 customers are much more upset by failure of an
already familiar feature than of a new one

  reliability of software is relative to a set of inputs,
so better test inputs that users actually generate!

 Regression testing is boring and unpopular
  test automation tools reduce mundane repetition
 perhaps biggest single advance in tools for

software engineering of packaged software

38

Test automation
 Thorough testing (especially regression

testing) is time consuming and repetitive.
 Write special classes to test interfaces of

other classes automatically
  “test rig” or “test harness”
  “test stubs” substitute for unwritten code, or

simulate real-time / complex data
 Use standard tools to exercise external API,

commands, or UI (e.g. mouse replay)
  In commercial contexts, often driven from build

and configuration tools.

Unit testing
 Each unit of an application may be tested.

 Method, class, interface, package
 Can (should) be done during development.

 Finding and fixing early lowers development costs
(e.g. programmer time).

 Build up a test suite of necessary harnesses,
stubs and data files

 JUnit is often used to manage and run tests
 you will use this to check your practical exercises
 www.junit.org

Cost of testing
 Testing can cost as much as coding
 Cost of rectifying bugs rises dramatically in

later phases of a project:
 When validating the initial design – moments
 When testing a module after coding – minutes
 When testing system after integration – hours
 When doing field trials – days
  In subsequent litigation – years!
  ...

 Testing too late is a common failing
 Save time and cost by design for early testing

When to stop testing
  Imagine you are working on a project in which the

timetable has allocated three months to testing.
 When testing, you successfully find:

  400 bugs in the first month
  200 bugs in the second month
  100 bugs in the third month

 What are the chances that you have found all the
bugs?
  Managing a large-scale testing process requires some kind

of statistical model.
 But not a good idea to use this as an incentive for

release targets, productivity bonuses etc
  Programmers are smart enough to figure out basic statistics

if there is money involved.

39

When to stop testing
 Reliability growth model helps assess

  mean time to failure
  number of bugs remaining
  economics of further testing,

 Software failure rate
  drops exponentially at first
  then decreases as K/T

 But changing testers brings new bugs to light

 b
ug

s

time spent testing

 e-A/t

 k/T

 bugs

 tester
1

 tester
2 tester

3 tester
4

Other system tests
 Security testing

 automated probes, or
 a favour from your Russian friends

 Efficiency testing
  test expected increase with data size
 use code profilers to find hot spots

 Usability testing
 essential to product success
 will be covered in further detail in Part II

Testing efficiency: optimisation
 Worst error is using wrong algorithm

 e.g. lab graduate reduced 48 hours to 2 minutes
 Try different size data sets – does execution time

vary as N, 2N, N2, N3, N4, kN ...?

 If this is the best algorithm, and you know it
scales in a way appropriate to your data, but
still goes too slow for some reason, ask:
 How often will this program / feature be run?
 Hardware gets faster quickly
 Optimisation may be a waste of your time

Testing efficiency: optimisation
 When optimisation is required

 First: check out compiler optimisation flags
 For some parts of extreme applications

  Use code profiler to find hotspots/bottlenecks
  Most likely cause: overuse of some library/OS function

 When pushing hardware envelope
  Cache or pre-calculate critical data
  Recode a function in C or assembler
  Use special fast math tricks & bit-twiddling
  Unroll loops (but compilers should do this)

 But if this is an interactive system …
 … how fast will the user be?

40

User interface efficiency
 Usability testing can measure speed of use

 How long did Fred take to order a book from
Amazon?

 How many errors did he make?

 But every observation is different.
 Fred might be faster (or slower) next time
 Jane might be consistently faster

 So we compare averages:
 over a number of trials
 over a range of people (experimental subjects)

 Results usually have a normal distribution

Experimental usability testing
 Experimental treatment is some change that

we expect to have an effect on usability:
 Hypothesis: we expect new interface to be faster

(& produce less errors) than old one

number of
observation

trials

time taken to order CD
(faster)

new old

 Expected answer: usually faster, but not always

Usability testing in the field
 Brings advantages of ethnography /

contextual task analysis to testing phase of
product development.

 Case study: Intuit Inc.’s Quicken product
 originally based on interviews and observation
  follow-me-home programme after product release:

  random selection of shrink-wrap buyers;
  observation while reading manuals, installing, using.

 Quicken success was attributed to the
programme:

  survived predatory competition, later valued at $15
billion.

Iterative Development

within any design phase or any
combination of phases

41

UML Deployment diagram The Waterfall Model

Implementation
& unit testing

Operations &
maintenance

Integration &
system testing

Requirements

Specification

written in
user's

language
written in
system

language
checks units

against
 specification

Checks
requirements

are met

  (Royce, 1970; now US DoD standard)

Spiral model (Boehm, 88)

Requirements plan
Life-cycle plan

Risk analysis

Prototype 1

Development
plan

Risk analysis

Prototype
2

Software
requirements

Requirements
validation

Operational
prototype

Plan next phases

Determine objectives,
alternatives,
constraints

Evaluate alternatives
and resolve risks

Develop and verify
next level product

Detailed
design

Code

Test

Integrate
Implement

Increasing cost

Prototyping
 Supports early investigation of a system.

 Early problem identification.
 Incomplete components can be simulated.

 e.g. always returning a fixed result.
 May want to avoid random or time-dependent

behavior which is difficult to reproduce.
 Allows early interaction with clients

 Perhaps at inception phase of project
 Especially (if feasible) with actual users!

 In product design, creative solutions are
discovered by building many prototypes

42

Prototyping product concepts
 Emphasise appearance of the interface,

create some behaviour with scripting
functions:
 Visio – diagrams plus behaviour
 Animation tools – movie sequence
 JavaScript – simulate application as web page
 PowerPoint – ‘click-through’ prototype

 Cheap prototypes are good prototypes
 More creative solutions are often discovered by

building more prototypes.
 Glossy prototypes can be mistaken for the real

thing – either criticised more, or deployed!

Prototypes without programming
 Low-fidelity prototypes (or mockups)

 Paper-and-glue simulation of interface
 User indicates action by pointing at buttons on the

paper “screen”
 Experimenter changes display accordingly

 “Wizard of Oz” simulation method
 Computer user interface is apparently operational
 Actual system responses are produced by an

experimenter in another room.
 Can cheaply assess effects of “intelligent”

interfaces

Software continues changing
 Even after project completion!
 There are only two options for software:

 Either it is continuously maintained …
 … or it dies.

 Software that cannot be maintained will be
thrown away.
 Not like a novel (written then finished).
 Software is extended, corrected, maintained,

ported, adapted…
 The work will be done by different people over

time (often decades).

Configuration management
 Version control
 Change control
 Variants
 Releases

43

Version control

 Record regular “snapshot” backups
 often appropriate to do so daily

 Provides ability to “roll back” from errors
 Useful even for programmers working alone

Monday
Vers 0.1

Tuesday
Vers 0.2

Wed’day
Vers 0.3

Thursday
Vers 0.4

Friday
Cock-up!

Week-End:
Version 0.4
Week-End:
Version 0.2

Change control

 Essential in programming teams
 Avoid the “clobbering” problem

 Older tools (RCS, SCCS) rely on locking
 More recent (CVS) automate merging

Monday
V0.1

AFB fix:
Tuesday

V0.2a

AFB fix:
Wed’day

V0.3

RJA fix:
Thursday

V0.4??

RJA fix:
Tuesday

V0.2b

Alan’s work
is clobbered!!

Variants from branch fixes

 Branching (from local fixes) results in a tree of
different versions or “variants”

 Maintaining multiple branches is costly
 Merge branches as often as possible
 Minimise number of components that vary in each

branch (ideally only one configuration file)
  If necessary, conditional compile/link/execution

can merge several variants into one

1 2a

2b

2a1

2b1

2a2

2b2

3 4

split merge
two

updates
two

updates

single
update

Builds and Releases
 Record actual configuration of components that were

in a product release, or an overnight build integrating
work of a large team.
  Allows problems to be investigated with the same source

code that was delivered or tested
  Often includes regression testing as part of build process

 Also allow start of development on next release while
testing and supporting current release
  Universal requirement of commercial software development

(at least after release 1.0!)
  Bug fixes made to 1.0.1 are also expected to be there in 2.0,

which requires regular merging

  Think about this: ‘About Internet Explorer’ reported:
6.0.2900.2180.xpsp2.070227-2254

44

Localizing change
 One aim of reducing coupling and

responsibility-driven design is to localize
change.

 When a change is needed, as few classes as
possible should be affected.

 Thinking ahead
 When designing a class, think what changes are

likely to be made in the future.
 Aim to make those changes easy.

 When you fail (and you will), refactoring is
needed.

Refactoring
 When classes are maintained, code is often

added.
 Classes and methods tend to become longer.

 Every now and then, classes and methods
should be refactored to maintain cohesion
and low coupling.
 e.g. move duplicated methods into a superclass

 Often removes code duplication, which:
  is an indicator of bad design,
 makes maintenance harder,
 can lead to introduction of errors during

maintenance.

Refactoring and testing
 When refactoring code, it is very important to

separate the refactoring from making other
changes.
 First do the refactoring only, without changing the

functionality.
 Then make functional changes after refactored

version shown to work OK.
 Essential to run regression tests before and

after refactoring, to ensure that nothing has
been broken.

Beyond waterfalls and spirals
 User-centred design
 Participatory design
 Agile development: ‘XP’

45

User-centred Design
 Focus on ‘end-users’, not just specifications

from contract and/or client
 Use ethnographic methods at inception stage
 Design based on user conceptual models
 Early prototyping to assess conceptual model
 Contextual evaluation to assess task

relevance
 Frequent iteration

Participatory Design
 Users become partners in the design team

 Originated in Scandinavian printing industry
 Now used in developing world, with children, …

 PICTIVE method
 Users generate scenarios of use in advance
 Low fidelity prototyping tools (simple office

supplies) are provided for collaborative session
 The session is videotaped for data analysis

 CARD method
 Cards with screen-dumps on them are arranged

on a table to explore workflow options

Xtreme Programming’ (XP)
 Described in various books by Kent Beck
 An example of an agile design methodology

  Increasingly popular alternative to more
“corporate” waterfall/spiral models.

 Reduce uncertainty by getting user feedback
as soon as possible, but using actual code
 Typical team size = two (pair programming).
 Constant series of updates, maybe even daily.
 Respond to changing requirements and

understanding of design by refactoring.
 When used on large projects, some evidence

of XD (Xtreme Danger)!

Would XP have helped CAPSA?
 Now Cambridge University Financial System
 Previous systems:

  In-house COBOL system 1966-1993
  Didn’t support commitment accounting

 Reimplemented using Oracle package 1993
  No change to procedures, data, operations

 First (XP-like?) attempt to change:
 Client-server “local” MS Access system
 To be “synchronised” with central accounts
 Loss of confidence after critical review

 May 1998: consultant recommends restart
with “industry standard” accounting system

46

CAPSA project
 Detailed requirements gathering exercise

  Input to supplier choice between Oracle vs. SAP
 Bids & decision both based on optimism

  ‘vapourware’ features in future versions
 unrecognised inadequacy of research module
 no user trials conducted, despite promise

 Danger signals
 High ‘rate of burn’ of consultancy fees
 Faulty accounting procedures discovered
 New management, features & schedule slashed
 Bugs ignored, testing deferred, system went live

 “Big Bang” summer 2000: CU seizes up

CAPSA mistakes
 No phased or incremental delivery
 No managed resource control
 No analysis of risks
 No library of documentation
 No direct contact with end-users
 No requirements traceability
 No policing of supplier quality
 No testing programme
 No configuration control

CAPSA lessons
 Classical system failure (Finkelstein)

 More costly than anticipated
  £10M or more, with hidden costs

 Substantial disruption to organisation
 Placed staff under undue pressure
 Placed organisation under risk of failing to meet

financial and legal obligations
 Danger signs in process profile

 Long hours, high staff turnover etc
 Systems fail systemically

 not just software, but interaction with
organisational processes

UML review: Modelling for uncertainty

47

The ‘quick and dirty’ version
 Plan using general UML phase principles
 Make sure you visit / talk to end-users

 show them pictures of proposed screens
 Write use case “stories”

 note the parts that seem to be common
 Keep a piece of paper for each class

 write down attributes, operations, relationships
  lay them out on table, and “talk through” scenarios

 Think about object multiplicity and lifecycle
 collections, state change, persistence

 Test as early as possible

Software Design: beyond “correct”

The requirements for design conflict and cannot be
reconciled. All designs for devices are in some
degree failures, either because they flout one or
another of the requirements or because they are
compromises, and compromise implies a degree of
failure ... quite specific conflicts are inevitable once
requirements for economy are admitted; and conflicts
even among the requirements of use are not
unknown. It follows that all designs for use are
arbitrary. The designer or his client has to choose in
what degree and where there shall be failure. … It is
quite impossible for any design to be the “logical
outcome of the requirements” simply because, the
requirements being in conflict, their logical outcome is
an impossibility.

David Pye, The Nature and Aesthetics of Design (1978).

