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1. Introduction 
 
Digital watermarking is the act of hiding a message related to a digital signal (i.e. an 
image, song, video) within the signal itself. It is a concept closely related to 
steganography, in that they both hide a message inside a digital signal. However, what 
separates them is their goal. Watermarking tries to hide a message related to the actual 
content of the digital signal, while in steganography the digital signal has no relation 
to the message, and it is merely used as a cover to hide its existence.  
Watermarking has been around for several centuries, in the form of watermarks found 
initially in plain paper and subsequently in paper bills. However, the field of digital 
watermarking was only developed during the last 15 years and it is now being used 
for many different applications. 
In the following sections I will present some of the most important applications of 
digital watermarking, explain some key properties that are desirable in a 
watermarking system, and give an overview of the most common models of 
watermarking as presented in the book by Ingemar Cox, Matthew Miller, Jeffrey 
Bloom, Jessica Friedrich and Ton Kalker [1]. These basic models will be further 
illustrated by the use of example watermarking systems that were developed in 
Matlab. All images used in this essay, except those used to present the results of the 
example watermarking systems are taken from this book [1]. 
 
2. Watermarking applications 
 
The increasing amount of research on watermarking over the past decade has been 
largely driven by its important applications in digital copyrights management and 
protection.  
One of the first applications for watermarking was broadcast monitoring. It is often 
crucially important that we are able to track when a specific video is being broadcast 
by a TV station. This is important to advertising agencies that want to ensure that their 
commercials are getting the air time they paid for. Watermarking can be used for this 
purpose. Information used to identify individual videos could be embedded in the 
videos themselves using watermarking, making broadcast monitoring easier. 
Another very important application is owner identification. Being able to identify the 
owner of a specific digital work of art, such as a video or image can be quite difficult. 
Nevertheless, it is a very important task, especially in cases related to copyright 
infringement. So, instead of including copyright notices with every image or song, we 
could use watermarking to embed the copyright in the image or the song itself. 
Transaction tracking is another interesting application of watermarking. In this case 
the watermark embedded in a digital work can be used to record one or more 
transactions taking place in the history of a copy of this work. For example, 
watermarking could be used to record the recipient of every legal copy of a movie by 
embedding a different watermark in each copy. If the movie is then leaked to the 
Internet, the movie producers could identify which recipient of the movie was the 
source of the leak. 



Finally, copy control is a very promising application for watermarking. In this 
application, watermarking can be used to prevent the illegal copying of songs, images 
of movies, by embedding a watermark in them that would instruct a watermarking-
compatible DVD or CD writer to not write the song or movie because it is an illegal 
copy. 
 
3. Watermarking properties 
 
Every watermarking system has some very important desirable properties. Some of 
these properties are often conflicting and we are often forced to accept some trade-
offs between these properties depending on the application of the watermarking 
system.  
The first and perhaps most important property is effectiveness. This is the probability 
that the message in a watermarked image will be correctly detected. We ideally need 
this probability to be 1.  
Another important property is the image fidelity. Watermarking is a process that alters 
an original image to add a message to it, therefore it inevitably affects the image’s 
quality. We want to keep this degradation of the image’s quality to a minimum, so no 
obvious difference in the image’s fidelity can be noticed.  
The third property is the payload size. Every watermarked work is used to carry a 
message. The size of this message is often important as many systems require a 
relatively big payload to be embedded in a cover work. There are of course 
applications that only need a single bit to be embedded. 
 The false positive rate is also very important to watermarking systems. This is the 
number of digital works that are identified to have a watermark embedded when in 
fact they have no watermark embedded. This should be kept very low for 
watermarking systems.  
Lastly, robustness is crucial for most watermarking systems. There are many cases in 
which a watermarked work is altered during its lifetime, either by transmission over a 
lossy channel or several malicious attacks that try to remove the watermark or make it 
undetectable. A robust watermark should be able to withstand additive Gaussian 
noise, compression, printing and scanning, rotation, scaling, cropping and many other 
operations.  
 
4. Watermarking models 
 
There are several ways in which we can model a watermarking process. These can be 
broadly classified in one of two groups. The first group contains models which are 
based on a communication-based view of watermarking and the second group 
contains models based on a geometric view of watermarking. In the rest of this essay, 
I only refer to image watermarking because I only concentrated on images during the 
development of example watermarking systems. 
 
4.1 Communication-based models 
 
Communication-based models describe watermarking in a way very similar to the 
traditional models of communication systems. Watermarking is in fact a process of 
communicating a message from the watermarking embedder to the watermarking 
receiver. Therefore, it makes sense to use the models of secure communication to 
model this process.  



In a general secure communication model we would have the sender on one side, 
which would encode a message using some kind of encoding key to prevent 
eavesdroppers to decode the message if the message was intercepted during 
transmission. Then the message would be transmitted on a communications channel, 
which would add some noise to the noise to the encoded message. The resulting noisy 
message would be received at the other end of the transmission by the receiver, which 
would try to decode it using a decoding key, to get the original message back. This 
process can be seen in Figure 1. 
 

 
Figure 1 Standard model of a communications channel with key-based encoding 
 
In general, communication-based watermarking models can be further divided into 
two sub-categories. The first uses side-information to enhance the process of 
watermarking and the second does not use side-information at all. The term side-
information refers to any auxiliary information except the input message itself, that 
can be used to better encode or decode it. The best example of this is the image used 
to carry the message, which can be used to provide useful information to enhance the 
correct detection of the message at the receiver. 
 
4.2 Geometric models 
 
It is often useful to think of watermarking in geometric terms. In this type of model, 
images, watermarked and unwatermarked, can be viewed as high-dimensional 
vectors, in what is called the media space. This is also a high-dimensional space that 
contains all possible images of all dimensions. For example a 512 X 512 image would 
be described as a 262144 elements vector in a 262144-dimensional space.  
Geometric models can be very useful to better visualize the watermarking process 
using a number of regions based on the desirable properties of watermarking. One of 
these regions is the embedding region, which is the region that contains all the 
possible images resulting from the embedding of a message inside an unwatermarked 
image using some watermark embedding algorithm. Another very important region is 
the detection region, which is the region containing all the possible images from 
which a watermark can be successfully extracted using a watermark detection 
algorithm. Lastly, the region of acceptable fidelity contains all the possible images 
resulting from the embedding of a message into an unwatermarked image, which 
essentially look identical to the original image. The embedding region for a given 
watermarking system should ideally lie inside the intersection of the detection region 



and the region of acceptable fidelity, in order to produce successfully detected 
watermarks that do not alter the image quality very much.  
An example of a geometric model can be seen in Figure 2. Here we can see that if 
mean square error (MSE) is used as a measure of fidelity, the region of acceptable 
fidelity would be an n-dimensional sphere centred on the original unwatermarked 
image (co), with a radius defined by the largest MSE we are willing to accept for 
images with acceptable fidelity. The detection region for a detection algorithm based 
on linear correlation would be defined as a half space, based on the threshold used to 
decide whether an image has a watermark embedded or not. Note that the diagram is 
merely a projection of an n-dimensional space into a 2d space. 
 

 
Figure 2 The region of acceptable fidelity (defined by MSE) and the detection 

region (defined by linear correlation) 
 
When thinking about complex watermarking systems, it is sometimes more useful to 
consider a projection of the media space into a possibly lower-dimension marking 
space in which the watermarking then takes place as usual. This projection can be 
handled more easily by computers because of the smaller number of vector elements 
and can be possibly expressed by block-based watermarking algorithms which 
separate images into blocks instead of operating on a pixel basis. 
 
5. Watermarking without side-information 
 
As described earlier, some communication-based watermarking models do not take 
advantage of the channel side-information. In this kind of models, the image is simply 
considered as another form of channel noise that distorts the message during its 
transmission. This can be seen in Figure 3. The watermark embedder encodes a 
message using a watermark encoder and a key. This is then added to the original 
image and transmitted over the communication channel which adds some noise. The 
watermark detector at the other end receives the noisy watermarked image and tries to 
decode the original image using a key. 
 
 



 

 
Figure 3 Standard model for watermarking with no side-information  

 
An example watermarking system that illustrates watermarking without side-
information was implemented in Matlab. 
 
5.1 Blind embedding and linear correlation detection 
 
This system is an example of blind embedding, which does not exploit the original 
image statistics to embed a message in an image. The detection is done using linear 
correlation. This system is a 1-bit watermarking system, in other words it only 
embeds one bit (a 1 or 0) inside the cover image. The algorithm for the embedder and 
the detector is as follows: 
 
Embedder: 

1. Choose a random reference pattern. This is simply an array with the same 
dimensions as the original image, whose elements are drawn from a random 
Gaussian distribution in the interval [-1, 1]. The watermarking key is the seed 
that is used to initiate the pseudo-random number generator that creates the 
random reference pattern. 

2. Calculate a message pattern depending on whether we are embedding a 1 or a 
0. For a 1, leave the random reference pattern as it is. For a 0, take its negative 
to get the message pattern. 

3. Scale the message pattern by a constant α which is used to control the 
embedding strength. For higher values of α we have more robust embedding, 
at the expense of loosing image quality. The value used at the initial 
experiment was α = 1. 

4. Add the scaled message pattern to the original image to get the watermarked 
image. 

 
Detector: 

1. Calculate the linear correlation between the watermarked image that was 
received and the initial reference pattern that can be recreated using the initial 
seed which acted as the watermarking key. 

2. Decide what the watermark message was, according to the result of the 
correlation. If the linear correlation value was above a threshold, we say that 
the message was a 1. If the linear correlation was below the negative of the 



threshold we say that the message was a 0. If the linear correlation was 
between the negative and the positive threshold we say that no message was 
embedded. 

 
An example of the embedding process can be seen in Figure 4. The top left image is 
the original image, the bottom left image is the reference pattern and the watermarked 
image resulting from embedding a 1, with α=1, is seen on the right. As we can see, 
there is no perceptual difference between the original and the watermarked image. 
 

+

α = 1

 
Figure 4 An example of the blind embedding system results 

 
To test the effectiveness of this system, I used 400 small images (112 X 92 pixels). I 
ran the embedding algorithm with α = 1 and tried to embed a 1 and a 0 in each of 
these images, resulting in 800 watermarked images. I then calculated the linear 
correlation (as in the detector) for each one of those images, as well as for the 
original, unwatermarked images and plotted the result. This can be seen in Figure 5. 
The x-axis is the linear correlation value, while the y axis is the percentage of images 
that had a specific linear correlation value. As we can see, most of the images that had 
a 0 embedded had a value centred on -1. Those that had a 1 embedded had a value 
centred on 1, while unwatermarked images had a value centred on 0. The problem is 
that the three graphs overlap at points between -1 and 0, as well as between 0 and 1. 
This means that choosing a specific threshold can be difficult because no matter what 
threshold we chose, there will always be some unwatermarked images classified as 
having a watermark (false positives) while some others that had a watermark will be 
classified as unwatermarked (false negatives). Ideally we want these three graphs to 
be non-overlapping and far from each other so we can choose a threshold that gives 
no false positives or false negatives. 
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Figure 5 Detection values for watermarked images 

 
The reference pattern is very important for any watermarking system, but especially 
for this kind of system that does not use any side-information in the original image. In 
order to illustrate this, I ran the same test as above, only this time I applied a low-pass 
5 X 5 averaging filter on the reference pattern before adding it to each image. The 
results can be seen in Figure 6. The x-axis is the linear correlation value, while the y 
axis is the percentage of images that had a specific linear correlation value. As we can 
see, the overlapping of the three graphs representing the percentage of images as a 
function of the linear correlation value for the three groups of images (1 embedded, 0 
embedded, no watermark) is much more obvious that the original experiment, and it 
in practise impossible to choose an appropriate threshold that does not result in a very 
high false positive rate. 
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Figure 6 Detection values for watermarked images after applying a low-pass 

filter to the reference pattern 
 



The value of α is also crucial for this simple system, as it can increase the embedding 
strength by essentially moving the linear correlation values further apart so we have 
less overlap between linear correlation graphs for the three image groups. To test this 
fact, I ran the original 400 image test with a value of 2 for α. The results were more 
impressive this time, as we can see in Figure 7. 
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Figure 7 Detection values for watermarked images with α = 2 

 
The linear correlation graph for images with a 0 embedded moves towards -2, while 
the graph for images with a 1 embedded moves towards 2. The unwatermarked 
images graph is between 0 and 1. Here there is a clear separation between the three 
graphs and no overlapping sections exist. This means we can confidently choose a 
threshold for classifying watermarked and unwatermarked images.  
 
In order to test the robustness of the system, I also ran a modified version of the 
original 400 images test, in which I added random Gaussian noise in the interval [-
10,10] to each pixel of the watermarked image, to see how that would affect the 
watermark detection. The results can be seen in Figure 8. As it is expected, the three 
graphs move closer together than the original experiment. This makes their 
overlapping regions bigger and in turn that means threshold selection becomes more 
difficult. The overall conclusion is that this system is not resilient to additive noise. 
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Figure 8 Detection values for watermarked images after adding noise to them 

 
6. Watermarking with side-information 
 
Some of the weaknesses of systems that do not exploit side-information were 
identified by the blind embedding example system. The robustness and effectiveness 
of the watermarking process can be greatly increased by taking advantage of the 
original image information during the embedding stage. The general form of 
watermarking models that exploit side-information is shown in Figure 9.  
 

 
Figure 9 Standard model for watermarking with side-information  

 
The only difference between this model and the model of section 2 is the use of the 
original image. The watermark embedder still encodes a message using not only a key 
but also the information provided by the original image. The resulting encoded 
message is then added to the original image as in the case of the no-side-information 
model. The noisy transmission channel adds some more noise, and the watermarking 
detector tries to get the original message back using the original key and a detection 
algorithm. 
 



There were three examples implemented to illustrate the use of watermarking with the 
use of side-information. The first is a simple extension of the blind embedding 
example, while the other two are based on dirty-paper coding, a class of popular 
watermarking algorithms.  
 
6.1 Informed embedding and linear correlation detection 
 
This system is essentially an extension of the blind embedding system, which aims to 
provide 100% effectiveness in the watermarking detection, by controlling the value of 
the α parameter that has been proved to be extremely important in the experiments 
conducted. The system is also a 1-bit watermarking system. The algorithm for the 
embedder and the detector is the following: 
 
Embedder: 

1. Choose a random reference pattern. This is simply an array with the same 
dimensions as the original image, whose elements are drawn from a random 
Gaussian distribution in the interval [-1, 1]. The watermarking key is the seed 
that is used to initiate the pseudo-random number generator that creates the 
random reference pattern. 

2. Calculate a message pattern depending on whether we are embedding a 1 or a 
0. For a 1, leave the random reference pattern as it is. For a 0, take its negative 
to get the message pattern. 

3. Calculate the α constant using the linear correlation between the watermarked 
image and the message pattern. The goal is to ensure that the linear correlation 
value used for the watermark detection is always some constant, greater than 
the detection threshold. We substitute this value in the left hand side of the 
linear correlation equation and solve for α. In this way we get a different value 
for α for every image. 

4. Scale the message pattern by α which is used to control the embedding 
strength. 

5. Add the scaled message pattern to the original image to get the watermarked 
image. 

 
Detector: 

1. Calculate the linear correlation between the watermarked image that was 
received and the initial reference pattern that can be recreated using the initial 
seed which acted as the watermarking key. 

2. Decide what the watermark message was, according to the result of the 
correlation. If the linear correlation value was above a threshold, we say that 
the message was a 1. If the linear correlation was below the negative of the 
threshold we say that the message was a 0. If the linear correlation was 
between the negative and the positive threshold we say that no message was 
embedded. 

 
An example of the embedding process can be seen in Figure 10. The top left image is 
the original image, the bottom left image is the reference pattern and the watermarked 
image resulting from embedding a 1 is seen on the right. As we can see, there is no 
perceptual difference between the original and the watermarked image. 



+

 
Figure 10 An example of the informed embedding system results 

 
To test the effectiveness of this system, I used 400 small images (112 X 92 pixels). I 
ran the embedding algorithm with a threshold of 0.7 and β= 0.3 (β is added to be 
confidently above the threshold) to embed a 1 and a 0 in each of these images, 
resulting in 800 watermarked images. I then calculated the linear correlation (as in the 
detector) for each one of those images, as well as for the original, unwatermarked 
images and plotted the result. This can be seen in Figure 11. The x-axis is the linear 
correlation value, while the y axis is the percentage of images that had a specific 
linear correlation value.  
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Figure 11 Detection values for watermarked images 

 



It is obvious from the figure that the three graphs representing images that had either a 
1 or a 0 or no watermark embedded are well separated and there are no overlaps 
between them. This is due to the fact that the value of α is dynamically adjusted to 
create watermarked images with a detection value of 1.0 (0.7 for the threshold plus 
0.3 for β). Therefore, images that had a 1 embedded have a detection value of 1 and 
those that had a 0 embedded have a detection value of -1. The original images’ 
detection values are centred on 0 and this graph is essentially the same as the one 
created by the original experiment in the blind embedding system. The reason why the 
watermarked images do not all have detection values of -1 and 1, as would be 
expected by this fixed-detection value algorithm has to do with numerical errors 
introduced during round-off and truncation of values for converting them to integers. 
It is evident that this system has 100% effectiveness and a threshold can be chosen to 
provide watermarking detection with a zero false positive rate. 
Even in the presence of additive noise, the system is quite robust. I modified the 
above experiment to add Gaussian noise in the interval [-10,10] to every pixel of the 
watermarked images, in order to see the changes in the three graphs. The results are 
shown in Figure 12. 
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Figure 12 Detection values for watermarked images after adding noise to them 

 
There is essentially no difference between Figure 12 and Figure 11, which indicates 
that the presence of noise did not affect the detection values much. Therefore, we can 
conclude that the system is quite robust to additive noise, which was not the case for 
the blind embedding system. Overall, the informed embedding system performs 
better, both in terms of effectiveness and in terms of robustness, than the blind 
embedding system. 
 
7. Dirty-paper codes 
 
A dirty-paper code is a collection of codes. In contrast to classical message coding, 
where each message is represented by a single code word, in a dirty paper code each 
message is represented by a set of code words. In order to transmit a message, the 
encoder needs to find the code word that best fits the signal into which the message is 
to be embedded. Therefore, for every message we have a set of code words, which are 



called sub-code books. The union of these sub-code books is the dirty paper code. The 
decoder at the other end of the transmission needs to find the code word closest to the 
signal that is received. The sub-code which contains this code word is then used to 
classify the message that was originally embedded in the received signal. 
The term dirty paper was coined in Max Costa’s seminal paper “Writing on Dirty 
Paper” [2] in which he used the dirty paper analogy. The main idea is that when 
writing a symbol on a dirty sheet of paper, this is best done by adapting the symbol to 
the dirt spots which are already on the paper sheet. This is illustrated in Figure 13, for 
the example of writing the symbol A on a dirty paper with blind and informed writing. 
In watermarking, the dirty paper is the cover image which is known to the embedder 
but not to the detector. Using multiple codes for every message, we can select the best 
code for a specific image.  
 

 
Figure 13 Writing A on a dirty paper using blind and informed writing 

 
The quality of dirty paper codes is based on the trade-off between the density of the 
sub-code books and the density of the union of these sub-code books. If we have 
dense sub-code books, it is more likely that we will find a code word closer to the 
original image. However, this means that the union of the sub-code books will also be 
dense, which in turn implies that it will be easier to make decoding errors due to the 
different sub-code books being closer. Ideally we would like to have dense sub-code 
books to provide better image fidelity and sparse unions of sub-code books to provide 
better robustness. These are contradictory requirements and we need to find a balance 
between them. 
 
7.1 Block-based/fixed robustness embedding-correlation coefficient detection 
 
This system is a relatively simple application of dirty paper codes for embedding a 
single bit (either 1 or 0) into an image. It uses block-based embedding, which means 
that the watermarking process is done on smaller dimensionality vectors extracted by 
using blocks instead of pixels in the image. It also uses fixed robustness embedding, 
which means that the maximum amount of noise the watermark embedded into the 
cover image can withstand is kept constant rather than keeping the correlation value 
constant as in the informed embedding system. The detector uses the correlation 



coefficient instead of linear correlation to decide what message was embedded into an 
image. The algorithm for the embedder and detector of this system follows: 
Embedder: 

1. Create two sets of 8 x 8 reference patterns, one corresponding to a message of 
1 and one corresponding to a message of 0. The size of the two sets is the 
same and it is crucial to preserving the image quality. 

2. Extract a 64-element vector from the original image by summing 8 x 8 blocks 
of the image and then taking the average of the resulting 8 x 8 sum block. 

3. Find the correlation coefficient of the vector extracted from the original image 
and each of the reference patterns in the set corresponding to the message we 
want to embed. If we want to embed a 1, we only check the reference patterns 
created for 1, not those created for 0.  

4. Choose the reference pattern with the highest correlation coefficient (most 
similar to the image) and embed it into the image using a fixed robustness 
algorithm and reprojecting it into the same dimensions as the original image. 
The fixed robustness algorithm is not relevant in this discussion and is 
therefore not described. 

 
Detector: 

1. Extract a 64-element vector from the watermarked image by summing 8 x 8 
blocks of the image and then taking the average of the resulting 8 x 8 sum 
block. 

2. Find the correlation coefficient of the vector extracted from the watermarked 
image and each of the reference patterns in the two sets corresponding to 1 and 
0. 

3. The reference pattern with the highest correlation coefficient then classifies 
the watermark message. If the correlation coefficient of this reference pattern 
is below a give threshold, then the image has no watermark embedded. If this 
reference pattern belongs to the set of reference patterns corresponding to 1 
and its correlation coefficient is above the given threshold, then the original 
message was a 1. If this reference pattern belongs to the set of reference 
patterns corresponding to 0 and its correlation coefficient is above the given 
threshold, then the original message was a 0.  

 
An example of the result of the embedder can be seen in Figure 14.  

 
Figure 14 An example of the dirty-paper coding system results 



Unfortunately the image quality is degraded by the embedding process, and this is 
visually obvious if we compare the original and the watermarked image. In order to 
investigate the effect of the size of the reference pattern sets on the fidelity of the 
watermarked image I ran a test in which I gradually increased the number of reference 
patterns in each set. I then calculated the MSE between the original image and the 
resulting watermarked image for 400 small images (112 x 92 pixels). I embedded a 1 
as well as a 0 in each of these images, resulting in 800 watermarked images and 
consequently 800 MSE values for a given reference pattern set size. Then I plotted the 
average of this MSE value for reference pattern set sizes ranging from 1 to 40. The 
resulting graph can be seen in Figure 15. 
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Figure 15 Average MSE for watermarked images with respect to the reference 
pattern set size 

 
The x axis represents the number of reference patterns for each run of the experiment, 
ranging from 1 to 40. The y axis is the average MSE resulting from each run of the 
experiment. As we can see, although the MSE starts at a quite high value of 17.5 for 
only one reference pattern, it gradually falls to less than 15.5 for 40 reference patterns. 
This indicates the fact that using more reference patterns to encode a message results 
in increased fidelity because there is a higher chance to find a reference pattern closer 
to the original image. 
 
The effectiveness of this system was also investigated in the same way as in the 
previous two systems. I used 400 small images (112 x 92 pixels). I ran the embedding 
algorithm with a reference pattern set size of 40, to embed a 1 and a 0 in each of these 
images, resulting in 800 watermarked images. I then calculated the correlation 
coefficient (as in the detector) for each one of those images and plotted the result. 
This can be seen in Figure 16. The x-axis is the linear correlation value, while the y 
axis is the number of images that had a specific correlation coefficient value. The red 
graph represents the images that had a 0 embedded and the blue graph represents the 
images that had a 1 embedded. A we can see, the correlation coefficient is above 0.99 
in both graphs, which means that watermarks can be detected with a 100% 
effectiveness.  
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Figure 16 Detection values for watermarked images 

 
8. Conclusion 
 
Watermarking is a very active research field with a lot of applications. Although it is a 
relatively new field, it has produced important algorithms for hiding messages into 
digital signals. These can be described by many different models. Two broad 
categories for these models were described in this essay. These are communication-
based models and geometric models. Communication-based models can be further 
divided into those which use side-information and those that don’t. One example 
system was used to illustrate non-side-information models, and two example systems 
were used to illustrate side-information models. Each of these systems has its 
advantages and disadvantages, and each one trades some important watermarking 
property for another. The choice of which to use relies on the underlying application’s 
requirements.  
Of course the examples provided in this essay are only a small sample of the many 
different approaches to watermarking. Examples of other approaches that have not 
been mentioned include those which operate in the frequency domain and take 
advantage of DCT coefficient and wavelet coefficients. 
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APPENDIX A 
 
A.1 Matlab code for the blind embedding and linear correlation detection system 
 
%Blind embedding and linear correlation detection 
clear all; 
%Generate a reference pattern the same size as the images 
wr=randn(112,92); 
tm=mean2(wr); 
wr=wr-tm;%zero mean 
ts=std2(wr); 
wr=wr/ts;%unit variance 
  
%Show the reference pattern 
figure 
imshow(wr,[]); 
  
%400 face images, 112 x 92 pixels, in 40 folders of 10 images each 
numclass=40; 
numface=10; 
 
for s=1:numclass 
    for i=1:numface 

  %Read image 
        c0=double(imread(strcat('C:\facedb_bmp\s',num2str(s),'\', 
        num2str(i),'.bmp'))); 
        %Add reference pattern to the image to embed a 1 
        wa=double(c0+wr); 
        %Add negative reference pattern to the image to embed a 0 
        nwr=wr*-1; 
        nwa=double(c0+nwr); 
        %Calculate linear correlation for images carrying a 1, a 0, 
        %or no watermark and store it into a vector 
        corr1(10*(s-1)+i)=sum(sum(wa.*wr))/(112*92); 
        corr0(10*(s-1)+i)=sum(sum(nwa.*wr))/(112*92); 
        corrN(10*(s-1)+i)=sum(sum(c0.*wr))/(112*92); 
    end 
end 
%Calculate the histograms for the detection-value vectors 
[a1,b1]=hist(corr1,-3:0.1:3); 
[a2,b2]=hist(corr0,-3:0.1:3); 
[a3,b3]=hist(corrN,-3:0.1:3); 
%Plot the histograms 
figure 
plot(b2,a2/400*100,'red'); 
gtext('m=0'); 
hold; 
plot(b3,a3/400*100,'green'); 
gtext('No watermark'); 
plot(b1,a1/400*100,'blue'); 
gtext('m=1'); 
xlabel('Detection value'); 
ylabel('Percentage of images'); 
 
 
 
 
 



 
A.2 Matlab code for the informed embedding and linear correlation detection 
system 
 
%Informed embedding and linear correlation detection 
clear all 
%Generate a reference pattern the same size as the images 
wr=randn(112,92); 
tm=mean2(wr); 
wr=wr-tm;%zero mean 
ts=std2(wr); 
wr=wr/ts;%unit variance 
  
%Show the reference pattern 
figure 
imshow(wr,[]); 
 
%400 face images, 112 x 92 pixels, in 40 folders of 10 images each 
numclass=40; 
numface=10; 
 
for s=1:numclass 
    for i=1:numface 

  %Read image 
        c0=double(imread(strcat('C:\facedb_bmp\s',num2str(s),'\', 
        num2str(i),'.bmp'))); 
        %Find the image size 
        [x,y]=size(c0); 
        %Find alpha 
        beta=1; 
        alpha1=(x*y*beta-sum(sum(c0.*wr)))/(sum(sum(wr.*wr))); 
        wrn=wr*(-1); 
        alpha2=(x*y*beta-sum(sum(c0.*wrn)))/(sum(sum(wrn.*wrn))); 
        wa1=(alpha1.*wr); 
        wa2=(alpha2.*wr); 
        %Embed a 1 and store the linear correlation 
        cw1=double(c0+wa1); 
        corr1(10*(s-1)+i)=sum(sum(cw1.*wr))/(x*y); 
        %Embed a 0 and store the linear correlation 
        cw2=double(c0-wa2); 
        corr0(10*(s-1)+i)=sum(sum(cw2.*wr))/(x*y); 
        %Also store the linear correlation for non-watermarked images 
        corrN(10*(s-1)+i)= sum(sum(cw3.*wr))/(x*y); 
     end 
end 
%Calculate the histograms for the detection-value vectors 
[m1,n1]=hist(corr1,-3:0.1:3); 
[m2,n2]=hist(corr0,-3:0.1:3); 
[m3,n3]=hist(corrN,-3:0.1:3); 
%Plot the histograms 
plot(n2,m2/400*100,'red'); 
gtext('m=0'); 
hold; 
plot(n3,m3/400*100,'k'); 
gtext('No watermark'); 
plot(n1,m1/400*100,'blue'); 
gtext('m=1'); 
xlabel('Detection value'); 
ylabel('Percentage of images'); 
 


