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ABSTRACT
Rack-scale computers, comprising a large number of micro-
servers connected by a direct-connect topology, are expected
to replace servers as the building block in data centers.
We focus on the problem of routing and congestion control
across the rack’s network, and find that high path diversity
in rack topologies, in combination with workload diversity
across it, means that traditional solutions are inadequate.

We introduce R2C2, a network stack for rack-scale com-
puters that provides flexible and efficient routing and con-
gestion control. R2C2 leverages the fact that the scale of
rack topologies allows for low-overhead broadcasting to en-
sure that all nodes in the rack are aware of all network flows.
We thus achieve rate-based congestion control without any
probing; each node independently determines the sending
rate for its flows while respecting the provider’s allocation
policies. For routing, nodes dynamically choose the rout-
ing protocol for each flow in order to maximize overall util-
ity. Through a prototype deployed across a rack emulation
platform and a packet-level simulator, we show that R2C2
achieves very low queuing and high throughput for diverse
and bursty workloads, and that routing flexibility can pro-
vide significant throughput gains.
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1. INTRODUCTION
While today’s large-scale data centers such as those run by

Amazon, Google, and Microsoft are built using commodity
off-the-shelf servers, recently there has been an increasing
trend towards server customization to reduce costs and im-
prove performance [50, 54, 55, 58]. One such trend is the
advent of “rack-scale computing”. We use this term to re-
fer to emerging architectures that propose servers or rack-
scale computers comprising a large number of tightly inte-
grated systems-on-chip, interconnected by a network fabric.
This design enables thousands of cores per rack and pro-
vides high bandwidth for rack-scale applications. The con-
sequent power, density and performance benefits means that
racks are expected to replace individual servers as the basic
building block of datacenters. Early examples of rack-scale
computers include commercial (HP Moonshot [56], AMD
SeaMicro [62], Boston Viridis [51], and Intel RSA [26, 59])
as well as research platforms [7, 9, 19, 34, 38].

A design choice that allows rack-scale computers to
achieve high internal bandwidth and high density is to
move away from a switched network fabric to a “distributed
switch” architecture where each node functions as a small
switch and forwards traffic from other nodes. This underlies
many existing designs [19, 34, 38, 47, 51, 56, 59, 62], and re-
sults in a multi-hop direct-connect topology, with very high
path diversity. This is a departure from today’s data centers,
which mostly use tree-like topologies. While direct-connect
topologies have been used in high performance computing
(HPC), the use of racks in multi-tenant datacenters means
that network traffic is expected to be more diverse and un-
predictable than in HPC clusters.

In this paper, we study two fundamental questions for the
rack’s network fabric: how should traffic be routed and how
should the network be shared? The aforementioned peculiar-
ities of rack environments pose challenges on both fronts.
For routing, a one-size-fits-all approach is undesirable [1].
While there are many existing routing algorithms for direct-
connect topologies, no single algorithm can achieve optimal
throughput across all workloads (§2.2.1). For network shar-
ing, existing congestion control approaches either do not
cope with the high path diversity in racks (TCP family),
or they are customized to specific workloads (HPC solu-
tions [17, 18, 20]).
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We present R2C2,1 a network stack for rack-scale com-
puters that provides flexible routing and congestion control.
R2C2 achieves global visibility—each rack node knows all
active flows—by broadcasting flow start and finish events
across the rack. The scale of rack-scale computers (up to a
few thousand nodes) allows for low overhead broadcasting.
Given global visibility, each node independently computes
the fair sending rates for its flows (§3.3). To account for tem-
porary discrepancies in flow visibility, the rate computation
leaves aside a small amount of bandwidth headroom. Such
congestion control obviates any network probing or special-
ized queuing at rack nodes, yet it can accommodate high
multi-pathing, and achieves both low network queuing and
high utilization. Furthermore, it allows the provider to spec-
ify rich rate allocation policies, beyond flow-level policies.
For routing, nodes locally determine how flows should be
routed to optimize a provider-specified metric like aggregate
or even tail rack throughput. Leveraging the global visibility
and ensuring that nodes optimize for a global metric instead
of selfish optimizations avoids any price of anarchy ineffi-
ciency [42] (§3.4).

At the data plane, both the rate allocation and route for
a flow are enforced at the sender by rate limiting the flow’s
traffic (one rate limiter per flow) and encoding its network
path into packet headers respectively. Intermediate rack
nodes can thus simply forward packets along the path spec-
ified in their header, without requiring extra rate limiters or
complex queuing mechanisms on path. By placing more
functionality at the sender, this design enables a simple for-
warding layer that is amenable to on-chip implementation.

Overall, this paper makes the following contributions:
• We describe a novel approach for rate-based congestion

control that transforms the distributed network sharing
problem into one of local rate computation.

• We describe a routing mechanism that allows for rout-
ing protocols to be chosen on a per-flow basis. We also
present a greedy heuristic that rack nodes can use to lo-
cally determine the routing protocol for each flow in order
to maximize a global utility metric.

• We develop a flexible emulation platform that enables ac-
curate emulation of the network fabric in rack-scale com-
puters. We use it to validate R2C2’s design.
We implemented R2C2 as a user-space network stack

atop our emulation platform. We use platform experiments
to benchmark our implementation and cross-validate our
packet-level simulator. Our simulation results show that
R2C2 can achieve efficient network sharing for diverse net-
work workloads: it achieves high throughput, fairness and
low latency, and it imposes low broadcasting overhead. Fi-
nally, we show that routing flexibility and the dynamic se-
lection process enables achieving higher performance that
what would be possible using a single routing protocol for
all flows.

1R2C2- Rack Routing and Congestion Control.

Figure 1: A 27-server (3x3x3) 3D torus. Each server has six
neighbors.

2. BACKGROUND AND MOTIVATION
We begin by describing the factors underlying the emer-

gence of rack-scale computers. We then delve into two very
basic aspects of the network fabric inside a rack, routing and
congestion control. By highlighting salient features of the
network fabric, we argue why traditional solutions are insuf-
ficient in the rack environment.

2.1 Rack-scale computing
Rack-scale computers comprise 100s or even 1,000s of

micro-servers that are connected by a network fabric. Their
emergence is due to two hardware innovations. First,
System-on-chip (SoC) integration combines cores, caches,
and network interfaces in a single die. SoCs enable ven-
dors to build micro-servers: extremely small server boards
containing computation, memory, network interfaces, and
sometimes flash storage. For instance, the Calxeda ECX-
1000 SoC [52] hosts four ARM cores, a memory controller,
a SATA interface, and a low-radix switch onto a single die.

Second, fabric integration means that these micro-servers
(or nodes) can be connected through a high-bandwidth low-
latency network. This is typically done through a “dis-
tributed switch” architecture; rather than connecting all
nodes to a single ToR switch like in today’s racks, each node
is connected to a small subset of other nodes via point-to-
point links. These links offer high bandwidth (10–100 Gbps)
and low per-hop latency (100-500 ns). Any topology that has
a small number of links per node can be used; 2D and 3D
torus like the one in Figure 1 are popular choices adapted
from super-computing architectures. These topologies are
often referred to as multi-hop direct-connect topologies be-
cause packets typically have to travel multiple hops before
reaching the destination and nodes are responsible for for-
warding packets at intermediate hops (typically using an in-
tegrated switching element on the SoC).

Early examples of rack-scale computers have appeared on
the market. For example, HP’s Moonshot [56] is a 4.3 rack-
units chassis with 45 8-core Intel Atom SoCs and 1.4 TB of
RAM in a 3D torus topology. The AMD SeaMicro 15000-
OP [62] stacks 512 cores and 4 TB of RAM within 10 rack-
units using a 3D torus network fabric with a bisection band-
width of 1.28 Tbps. Intel’s proposed Rack-scale Architec-
ture [53, 59] combines SoC and fabric integration with sili-
con photonics, which support link bandwidths of 100 Gbps
and higher. Rack-scale computer designs have also been pro-
posed by the research community such as the Catapult [38],
Firebox [7], Pelican [9], and soNUMA [19, 34] platforms.
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Random Packet Destination VLB WLB
Workload Spraying Tag routing

Nearest neighbor 4 4 0.5 2.33
Uniform 1 1 0.5 0.76
Bit complement 0.4 0.5 0.5 0.42
Transpose 0.54 0.25 0.5 0.57
Tornado 0.33 0.33 0.5 0.53
Worst-case 0.21 0.25 0.5 0.31

Figure 2: Throughput, as fraction of network bisection ca-
pacity, of four routing algorithms on an 8-ary 2-cube on size
traffic patterns (table from [20]). No single routing algo-
rithm can achieve optimal throughput across all workloads.

2.2 Rack-scale networking
Rack-scale networking combines the topology of HPC

systems with the workloads of traditional datacenters. Like
HPC clusters, racks have a multi-hop direct-connect topol-
ogy with very high path diversity. This is in contrast to tree-
like topologies common in datacenters. As for the workload,
we expect racks to be used in multi-tenant environments with
different applications generating diverse network workloads,
unlike the homogeneous and relatively stable workloads typ-
ically observed in HPC.

In the following sections, we focus on two fundamen-
tal questions for rack-scale networking: how should traffic
be routed and how should the network be shared? We de-
scribe the shortcomings of existing solutions, and distill de-
sign goals for a rack-scale’s network stack.

2.2.1 Rack routing
Routing across direct-connect topologies has been exten-

sively studied in the scientific computing and HPC litera-
ture [20]. Existing routing algorithms can be broadly clas-
sified into two categories. Minimal routing algorithms like
randomized packet spraying [22] and destination tag rout-
ing [20] route packets only along shortest paths. Non-
minimal algorithms like Valiant Load Balancing (VLB) [45]
and Weighted Load Balancing (WLB) [44] do not restrict
themselves to shortest paths.

High path diversity in direct-connect topologies means
that no single routing algorithm can achieve optimal
throughput across all workloads. Minimal routing ensures
low propagation delay but at the expense of load imbalance
across network links which, in turn, results in poor worst-
case performance. On the other hand, VLB transforms any
input traffic matrix into a uniform random metric by rout-
ing packets through randomly chosen waypoints. This en-
sures guaranteed worst-case throughput across all workloads
but hurts average-case throughput, especially for workloads
with locality. WLB lies between these extremes; it consid-
ers non-minimal paths for load-balancing but biases the path
selection in proportion to the path length.

The table in Figure 2 summarizes these arguments by
showing the throughput of these routing algorithms for five
traffic patterns and their worst-case throughput (the worst-
case traffic patterns for each algorithm are different). While
VLB has the same performance across all traffic patterns,
other algorithms perform better for specific workloads. By

contrast, tree-like topologies in today’s datacenters have a
few orders of magnitude less multi-pathing, so minimal rout-
ing algorithms like packet spraying are sufficient [22].

Overall, for multi-tenant datacenters where the network
traffic pattern is not known a priori and expected to change
over time, a one size fits all approach is undesirable [1].
Thus, our first design goal is:

G1 Routing flexibility. The network stack should allow for
different routing protocols to be used simultaneously,
chosen on a per-application or even on a per-flow ba-
sis. Datacenter operators can leverage this knob to op-
timize metrics like the rack’s aggregate throughput.

2.2.2 Rack network sharing
High path diversity, combined with the resource limited

nature of micro-servers, also means that congestion control
protocols used in today’s datacenters are not suited for rack-
scale computers. For example, a flow using minimal routing
is routed along all shortest paths between its source and des-
tination. This means that even in a small 216-node rack with
3D torus topology, an average flow has a 1,680 paths. Fur-
thermore, the number of paths increases exponentially with
the topology size. And with non-minimal routing, the path
diversity can be nearly unbounded [20].

The TCP family of protocols, including recent proposals
targeted towards datacenters [2–4], only uses a single path
and imposes high processing overhead [34]. Even multi-path
extensions like MPTCP [41] only consider few tens of paths.
This is roughly two-three orders of magnitude smaller than
the number of paths available here. Furthermore, per-flow
fairness, as provided by TCP and its variants, is inadequate
for datacenter settings. Instead, operators need to enforce
richer policies like deadline-based fairness for user-facing
applications [28, 48] and per-tenant guarantees [10, 11, 30].

In recent work, Fastpass [36] shows the feasibility of cen-
tralized congestion control in traditional datacenters. While
the scale of rack-scale computers is amenable to a central-
ized design, this would introduce significant communication
overhead, as we show in Section 5.2. Further, high path di-
versity in racks makes computing max-min fair rate alloca-
tions much harder than in traditional topologies (§3.3). In
RascNet [16], we sketched a preliminary congestion control
design for racks that works atop VLB routing. However,
this contravenes the routing flexibility requirement. In Sec-
tion 5.2, we show that taking advantage of routing flexibility
provides significant performance gains.

At the other end of the spectrum, HPC platforms and on-
chip networks (NoC) systems often use congestion control
mechanisms customized to the underlying topology and the
expected workload [17, 18, 35]. Such mechanisms do not
work for general workloads. We also note that ideal network
sharing can be achieved through per-flow queues at each
rack node coupled with back-pressure notifications when a
node’s queues start filling up. Apart from increased for-
warding complexity, this massively increases the buffering
requirements at rack nodes.

Thus, the design goals for rack network sharing are:
G2 Accommodate high multi-pathing. Congestion control
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has to cope with high multi-pathing in rack topologies.
G3 Low network queuing. While a standard goal for net-

work design, this is particularly important here be-
cause micro-servers have limited buffers and the net-
work carries traffic that is very latency sensitive.

G4 Allocation flexibility. Datacenter operators should be
able to specify different rate allocation policies that en-
capsulate varying notions of fairness.

3. DESIGN
We present R2C2, a network stack for rack-scale com-

puters. The key insight behind R2C2’s design is that while
rack topologies pose many challenges, they also present an
opportunity—it is possible to efficiently broadcast informa-
tion across the rack. We use 16-byte broadcast packets
(§4.2); with a 512-node rack, each broadcast results in 8 KB
of total traffic, aggregated across all rack links. By broad-
casting flow start and termination events, we ensure every
node knows the rack’s global traffic matrix. R2C2’s lever-
ages such global visibility to implement flexible congestion
control and routing.

Determining the rates and routes for flows across a multi-
path topology can be mapped to the multi-commodity flow
(MCF) problem with splittable flows. Several papers pro-
pose polynomial time algorithms for this problem with dif-
ferent optimization objectives such as max-min fairness [33]
and maximizing total throughput [8]. Many of these algo-
rithms are designed for offline operation; thus they are com-
putationally intensive and have a high running time. Rack
nodes, however, have limited compute and buffering, so at
least the congestion needs to be controlled at a fine-grained
timescale. On the other hand, online MCF algorithms are
tightly tied to a specific optimization metric.

R2C2’s control plane decouples congestion control and
routing, and tackles them at different timescales. For con-
gestion control, each node uses global visibility and knowl-
edge of the underlying topology to locally compute the fair
sending rate for its traffic (§3.3). This design avoids any net-
work probing and does not require any specialized queuing
support at the rack nodes. The rate computation algorithm
is fast, ensures low network queuing, and allows for differ-
ent rate allocation policies. For routing, nodes locally deter-
mine the routing protocol for each flow that will maximize a
provider-chosen global utility metric (§3.4).

At the data-plane, R2C2 uses source routing to enable per-
flow routing protocols. This involves three mechanisms: (i).
the node sending a flow determines the path for each packet
based on the flow’s routing protocol and encodes this path
in the packet header, (ii). the sender also enforces a flow’s
rate allocation, (iii). intermediate rack nodes simply forward
packets along the path specified in their header.

Overall, our design choices are guided by the expected
size of rack-scale computers. Their scale ensures both the
network overhead of broadcast traffic and the processing
overhead of rate computation is acceptable, even for very
bursty workloads. The scale also means that a packet’s path
can be encoded compactly, allowing for source routing. The

data-plane design intentionally places more functionality at
the sender that only needs to rate limit its own flows. This
can be implemented in software or hardware [39]. Inter-
mediate rack nodes have a simple forwarding layer that is
amenable to on-chip implementation; it does not require any
additional rate limiting or complex queuing mechanisms.

To give an overview of R2C2’s operation, we begin by fo-
cusing on the life of a single flow. We then describe R2C2’s
data- and control-plane mechanisms in detail.

3.1 The life of a flow
When a flow starts, its sender broadcasts information

about the new flow, including the routing algorithm the flow
is using and its rate allocation parameters (e.g., the flow’s
weight). Each rack node stores this information to create a
local view of the global traffic matrix. Given this traffic ma-
trix and the rack’s topology, the sender computes the flow’s
fair allocation and rate limits it accordingly. To account for
temporary discrepancies between the perceived and actual
traffic matrix, R2C2 relies on bandwidth headroom; dur-
ing rate computation, we simply subtract the headroom from
each link’s capacity.

For every new packet, the source encodes the packet path
in its header, and the packets are source routed to their desti-
nation. When a broadcast packet (e.g., due to a flow starting
or finishing) is received, the sender recomputes the rate for
all its own flows. When the flow finishes, other rack nodes
are informed by broadcasting this event. Nodes also peri-
odically check whether the overall utility would improve if
some of the flows were routed using a different protocol. If a
significant improvement is possible, their routing protocols
are changed and this information is broadcasted.

3.2 Broadcast
R2C2’s design builds upon a low overhead broadcast

primitive. For broadcasting packets, we create a per-source
broadcast tree atop the rack’s network topology. This can be
done while optimizing various goals; we optimize the broad-
cast time, i.e., we minimize the maximum number of net-
work hops within which all rack nodes receive a copy of the
broadcast packet.

To achieve this goal, we determine the shortest-path tree
for each rack node. Given a graph representing the rack’s
topology, a shortest-path tree rooted at source node s is a
spanning tree T of the graph such that the length of the path
from s to any node in T is the shortest distance from s to the
node in the graph.2 Since all network links inside the rack
have the same capacity, finding shortest-path trees for the
rack is akin to finding shortest-path trees for an unweighted
graph, and can be done through a breadth-first traversal of
the graph [14].

For a rack, we enumerate multiple broadcast trees for each
source by traversing the rack’s topology in a breadth-first
fashion. Given this, we construct a broadcast forwarding
information base (FIB) for each rack node. A look-up in
this FIB is indexed by a two-tuple, <src-address, tree-

2There can be multiple shortest-path trees for a given source.
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id>, comprising the address of the source node and an iden-
tifier for the broadcast tree, and yields the set of next-hop
nodes the broadcast packet should be forwarded to.

When a node has to send a broadcast packet, it chooses
one of its broadcast trees for the packet to be routed along.
This selection is done to load balance the broadcasting over-
head, and allows the sender to account for link and node
failures. The sender inserts its address and the identifier for
the chosen broadcast tree into the header of the broadcast
packet. The packet is then routed by other nodes by consult-
ing their broadcast FIB.

Broadcast overhead. In Section 4.2, we describe how
flow information is encoded into a 16-byte broadcast packet.
Each broadcast tree for a rack with n nodes comprises n−1
edges. Thus, for a typical rack with 512 nodes, a single
broadcast results in a total of 511*16≈ 8 KB on the wire. In
the worst-case scenario of flows between all pairs of nodes
(≈262K flows), the resulting broadcast traffic per link would
be 681 KB.

An obvious concern is that in many datacenter workloads,
most flows are only a few packets long. For example, in
a typical data-mining workload [25], 80% of flows are less
then 10KB. The average path length for a flow in a 512-node
3D torus is 6 hops, so a 10 KB flow will, on average, result
in 60 KB being transmitted on the wire. Thus, the relative
overhead of broadcasting the start and finish events for such
small flows is 26.66% (13.33% for each event). Fortunately,
small flows only carry a small fraction of the bytes in today’s
datacenters. For example, traces from a data analytics cluster
show that the 95% of all bytes originate from less than 4%
of flows [25]. In Section 5.2, we analyze the fraction of
network bandwidth used for broadcast traffic as a function of
the bytes carried by small flows. When 5% of the bytes are
carried by small flows, the fraction of the network capacity
used for broadcasting flow information is only 1.3%.

Failures. Broadcast packets can be corrupted across the net-
work, or lost due to drops and failures. To detect corruption,
we rely on a packet checksum. To detect drops due to queue
overflows at intermediate nodes, the node dropping a broad-
cast packet informs the sender who can then re-transmit. To
detect link and node failures, we rely on a topology discov-
ery mechanism that is required by the routing protocols any-
way. Upon detecting a failure, nodes broadcast information
about all their ongoing flows. This is reasonable because,
given the scale of rack-scale computers, we expect node and
link failures to be infrequent. For example, measurements
across HPC systems have shown a failure rate of around 0.3
faults per year per CPU [43]. For a 512-node rack with four
CPUs per node, this means less than two failures a day.

3.3 Rack congestion control
To ensure the network is not congested and flows achieve

rates in accordance to the operator’s allocation policy, we re-
quire senders to compute the rate allocations for their traffic
and enforce them. The basic idea behind our approach is
that given knowledge of the allocation policy, the network
topology, all active flows, and their current routing protocol,

0 1

2 3

Flow from node 0 to 3
Two paths: [0,1,3], [0,2,3]

Weight on each link:
[0,1] = [1,3] = [0,2] = [2,3] = w/2
[1,0] = [3,1] = [2,0] = [3,2] = 0

w/2

w/2

w
/2 w

/2

Figure 3: A flow from node 0 to 3, with weight w, being
routed using randomized packet spraying.

each node can independently determine the load on each net-
work link and hence, the fair sending rate for its flows. Thus,
we transform the distributed congestion control problem into
one of local rate calculation. While the rack’s topology is
relatively static, the set of active flows can change rapidly.
We begin with a strawman design which assumes that nodes
are aware of the rack’s current traffic matrix.

The key challenge in computing rate allocations is ac-
commodating high multi-pathing. Flows are routed across a
very high number of paths, thousands or more, which poses
a computational burden. For example, consider a provider
who wants to allocate the network fairly. Max-min fairness
is well studied in the context of single-path routing but is
harder to reason about in multi-path settings. Max-min Pro-
gramming (MP) [40] is a centralized algorithm that uses a
linear program to compute max-min fair allocations across
general networks. However, using the MP algorithm in our
setting would result in a linear program with an exponential
complexity solution—each flow takes many paths, each path
would be represented by a separate variable.

To make rate computation tractable, we leverage the sim-
ple insight that a flow’s routing protocol dictates its rela-
tive rate across its paths. This holds for the routing proto-
cols we studied. For instance, consider the example in Fig-
ure 3, in which a flow from 0 to 3 is routed using random
packet spraying [22] across a 2x2 mesh topology. There are
two shortest paths between the source and the destination,
0→ 1→ 3 and 0→ 2→ 3, which are chosen randomly on
a per-packet basis and hence, are used equally. Therefore,
the total rate allocated to the flow should be evenly divided
across these two paths.

Overall, the key observation that a flow’s routing protocol
dictates its relative rate across multiple paths allows us to
compute rate allocations at the flow-level, irrespective of the
number of paths each flow is routed along.

3.3.1 Congestion control: a strawman design
R2C2’s congestion control involves each node indepen-

dently computing the max-min fair rate for each of its own
flows. This comprises two steps. First, we use information
about a flow’s routing protocol to determine the relative rate
of the flow across the paths it is using and, hence, along each
network link it is using. We explain this with an example.
To achieve per-flow fairness, each flow is assigned the same
allocation weight. Given the flow’s source, destination and
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f12
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1

(a) (b) (c)

2

[1,1]

*
*
[2/3,2/3]

Figure 4: Flow f 1 from node 1 to 4, and f 2 from node 2 to 4.
Respecting the relative rates dictated by the routing protocol
changes the feasible set of rates from (b) to (c). The asterix
denotes the max-min fair allocation.

routing protocol, we can determine its weight along any net-
work link. For instance, the flow in Figure 3 is using both
minimal paths equally, so its weight on each link that it is
using is w

2 . The flow’s weight on each link it is not using
(e.g., the link 1→ 0 in the figure) is zero. As another ex-
ample, assume the flow was using WLB routing and using
the two paths, 0→ 1→ 3 and 0→ 2→ 3, in the ratio 1:2.
Then the flow’s weight at links 0→ 1 and 1→ 3 is w

3 , and
its weight at links 0→ 2 and 2→ 3 is 2w

3 . We can repeat the
above process for all flows to determine per-flow weights at
all network links.

Second, given this setup, we compute max-min fair allo-
cations through a weighted version of the water-filling algo-
rithm [12] that we summarize here: the rates for all flows
are increased at the same pace, until one or more links be-
come saturated. Note that a flow’s rate across a given link
is a product of the flow’s total rate and its weight across the
link. This saturated link(s) is the bottleneck, and its capac-
ity dictates the rates for all flows through it. The rates for
these flows are frozen and they marked as allocated. The
algorithm continues till all flows have been allocated. The
complexity of this algorithm is O(NL+N2), where N is the
number of flows and L is the number of links.

Benefits. This strawman design has a few advantages. First,
it avoids the need to probe the network and induce conges-
tion signals like packets drops and queuing to infer a flow’s
sending rate. High path diversity in rack-scale computers
makes the design of an efficient congestion probing mecha-
nism particularly challenging. Second, it obviates the need
for any specialized queuing at the intermediate rack nodes.

Drawbacks. The computational tractability of the algorithm
comes at the expense of possible network under-utilization.
Consider the example scenario in Figure 4(a) (from [40])
with links of capacity one and two flows: flow f 1 from node
1 to 4, and f 2 from node 2 to 4. We assume the routes for
these flows are given; f 1 uses two paths (1→ 4 and 1→
3→ 4) with equal probability while f 2 uses one path (2→
3→ 4). The set of feasible rates for these flows are shown
in Figure 4(b), and the ideal max-min fair allocation is {1,
1}, i.e., each flow sends at a unit rate. This means flow f 1
only uses the path 1→ 4. In contrast, R2C2’s congestion
control ensures that flow f 1’s rate across its two paths is
equal (as dictated by its routing protocol). The restricted
set of feasible rates is shown in Figure 4(c). Our algorithm
converges to the max-min fair rate in this set, { 2

3 ,
2
3}.

In summary, respecting the relative rates dictated by the
routing protocol can result in network under-utilization.
However, as described in Section 3.4, R2C2 also adapts the
routing of all long running flows to alleviate this. For our
example, flow f 1’s routing would be changed so it only uses
the path 1→ 4.

3.3.2 Congestion control extensions
The simple design described above makes several simpli-

fying assumptions. Below we relax these assumptions.

New flows. The strawman design assumes that nodes are
aware of the rack’s current traffic matrix. While a flow
startup event is broadcasted to all other nodes, the sender
starts transmitting packets immediately. Thus, there is a
small time period when not all nodes are aware of a new
flow that has already started. To account for such tempo-
rary discrepancy between the actual traffic matrix and what
is perceived by rack nodes, we rely on bandwidth headroom.
During rate computation, we subtract this headroom from
the capacity of network links. Typical datacenter traffic pat-
terns involve many short flows that only contribute a small
fraction of the bytes across the network. This indicates that
a small spare capacity should absorb such short-lived flows
while our congestion control protocol ensures that medium-
to-long flows do not congest the network. In our experiments
detailed in Section 5, a 5% headroom is sufficient even with
bursty traffic patterns.

We note that R2C2 does not need a new data-plane mech-
anism (like phantom queues at switches [3]) to achieve the
bandwidth headroom. Instead, the headroom is incorporated
into the rate computation done at the control plane.

Host-limited flows. The strawman design assumes all flows
are network limited. In practice, however, flows can be bot-
tlenecked at their end points, e.g., at the application itself or
inside the OS. To ensure high network utilization, any band-
width unused by such host-limited flows should be allocated
to flows that can use it. To account for host-limited flows, we
estimate flow demand—the maximum rate at which it can
actually send traffic—at the sender. Given a flow’s demand
estimate, the rate assigned to it is the minimum between its
fair share and its demand. Whenever a flow’s demand drops
below it current rate allocation, the sender broadcasts this in-
formation. This allows all rack nodes to compute allocations
in a demand-aware fashion.

Demand estimation is based on the observation that a flow
sending at a rate higher than what it is currently allocated
will suffer queuing at the sender. The sending node uses this
queuing information to estimate the flow’s demand. Specifi-
cally, flow demand is estimated periodically, and is the sum
of the rate it is currently allocated and the amount of queuing
it observes. Thus,

d[i+1] = r[i]+q[i]/T (1)
where d[i+1] is the estimated demand for the next period,

T is the estimation period while r[i] and q[i], respectively, are
the rate allocation and queuing observed by the flow in the
current period. To smooth out any noisy observations, we
use an exponentially weighted moving average of the esti-
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mated demand. This estimation applies to open-loop work-
loads. For closed-loop workloads, demand can similarly be
estimated using queuing information [6].

Beyond per-flow fairness. The strawman design provides
per-flow fairness. However, R2C2 can accommodate richer
allocation policies by allowing the operator to specify a
flow’s weight and priority. Many recently proposed high-
level fairness policies such as deadline-based [46] or tenant-
based [37], can be mapped onto these two primitives, similar
to pFabric [4]. A flow’s weight and priority are included in
the broadcast packet announcing the flow start, so all nodes
can use them during the rate computation.

The rate allocation algorithm accounts for flow priorities
and weights as follows. Nodes invoke the allocation algo-
rithm over multiple rounds, one for each priority level. At
each round, flows belonging to the corresponding priority
level are allocated any remaining capacity in a weighted
fashion, i.e., instead of using uniform weights (as in Sec-
tion 3.3.1), each flow is associated with its own weight.

Periodic rate computation. The strawman design recom-
putes flow rates at every flow event. Even at rack-scale, this
will impose too much computation overhead. To amortize
the recomputation cost, we opted for a batch-based design
in which rates are recomputed periodically. In Section 5, we
show that for realistic workloads a recomputation interval in
the range of 500 µs-1 ms is sufficient to ensure high utiliza-
tion and low queuing while introducing a CPU overhead of
less than 8% at the 99th percentile (median value is 1.7%).

While this design was motivated by the need to reduce the
computation cost, it also naturally filters out very short-lived
flows, which would be pointless to rate-limit.

3.4 Selecting routing protocols
For short flows, a minimal routing protocol can improve

the flow completion time. Thus, new flows start with min-
imal routing. As flows age, their routing can be adapted
based on the rack’s traffic matrix. R2C2 periodically selects
the routing protocol for each long flow to maximize a global
utility metric specified by the datacenter operator. The adap-
tion is done every few seconds or minutes. Example utility
metrics include the rack’s aggregate throughput or the tail
throughput, as measured across tenants or even across jobs
and application tasks [15, 23]. For ease of exposition, here
we focus on maximizing the aggregate throughput.

Dynamic selection of routing protocols is challenging be-
cause we want to leverage the flexibility of choosing a dif-
ferent routing protocol for each flow. This results in a com-
binatorial number of flow and routing protocol combinations
to be evaluated, which makes exhaustive search intractable.
Further, the search landscape originating from the utility
functions that we considered typically exhibits several lo-
cal maxima. Therefore, simple greedy heuristics (e.g., hill-
climbing) are not effective and more complex global search
heuristics must be adopted.

Initially, we considered techniques such as log linear
learning [5] and simulated annealing [13]. However, we
found them very sensitive to parameter tuning and workload

characteristics. Thus, we opted for genetic algorithms [27],
a search heuristic that emulates the natural selection and evo-
lution. We found it a good fit for our scenario because it has
relatively few tuning parameters and our problem can be nat-
urally encoded as bit strings, where one or more bits are used
to identify the routing protocol assigned to a given flow.

The heuristic works as follows. Initially, we generate a
population of flow and routing protocol combinations (geno-
types) that contains the current routing allocation and other
randomly-generated ones. For each genotype, we compute
the rack’s aggregate throughput (fitness) using the rate com-
putation mechanism described in Section 3.3 and rank them
accordingly. We then generate a new generation that con-
tains the top genotypes of the current population and other
genotypes obtained by recombining (crossover) and mutat-
ing existing genotypes. The process is repeated until the time
expires or until there has been no improvement over a num-
ber of generations. Once the search is over, the server gen-
erates broadcast packets containing the new assignment for
each flow. Our current implementation uses four bytes for
the flow identifier and one byte for the routing protocol per
each flow (§4.2). This means that up to 300 {flow, routing
protocol} pairs can be advertised using a single 1,500-byte
packet. Since this process only applies to long flows, we
consider the overhead negligible.

For simplicity, in our prototype, a single node is respon-
sible for periodically performing the routing selection pro-
cess. In practice, we expect this operation be decentralized
with each node in turn executing it. Since nodes optimize a
global utility metric, instead of selfishly optimizing for local
performance, this design does not suffer from any price of
anarchy inefficiency [42]. The next node to run the routing
selection heuristic can be chosen randomly using a probabil-
ity distribution centered around the average adaptation pe-
riod or using a deterministic token-based scheme whereby
nodes are selected serially in a round robin fashion.

3.5 Rack data-plane
R2C2 places most data-plane functionality at the source,

resulting in simplified forwarding at intermediate rack
nodes. This design is particularly suited to direct-connect
topologies as each packet is forwarded through many nodes.

For each packet, its sender uses the corresponding flow’s
routing protocol to determine the packet’s path. The path is
then encoded into the packet’s header. Further, each flow is
associated with a token bucket that rate-limits the flow to its
current rate allocation. Intermediate nodes forward packets
using source routing. The packet header contains a route
index field indicating the index of the next-hop in the packet
path. Thus, every intermediate node simply forwards the
packet to the indicated next-hop after incrementing the route
index in the packet header.

4. IMPLEMENTATION
We have developed a flexible and efficient emulation plat-

form for rack-scale computers, and implemented R2C2 as a
user-space network stack atop this platform.
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Figure 5: An example of a Maze server emulating a rack
node with two incoming and two outgoing links. The emu-
lated node has two applications.

4.1 Rack emulation platform
Rack-scale computers are currently difficult to acquire.

Further, they come pre-configured with static network
topologies and routing protocols, making it difficult to en-
sure that a proposed idea that works on one rack-scale com-
puter will work on another. To address these issues, we
implemented Maze [60], a cluster-based network emulation
platform focusing on rack-scale fabrics. Maze runs on a
cluster of servers connected by a high-bandwidth RDMA-
based switched network. It emulates a rack’s network fabric
as a virtual network atop the switched network. Below we
describe Maze’s key properties and summarize its operation.

Maze provides three key properties: (i) It is configurable.
It can map any virtual network topology (e.g., tree, mesh,
torus, etc.) onto the underlying cluster. It can also support
multiple routing strategies and transport protocols. (ii) It of-
fers high-performance emulation, with the ability to emulate
high capacity network links. Through micro-benchmarks,
we find that it can provide up to 38 Gbps on a 40 Gbps link
using 8 KB packets, and a latency of 3 µs per hop using
small packets. (iii) It achieves high-fidelity. Our micro-
benchmarks show that Maze can faithfully emulate many
virtual links on the same physical network link.

Figure 5 depicts the operation of a Maze server emulating
two incoming and two outgoing links. To achieve the prop-
erties mentioned above, Maze uses three main techniques:
1) It uses RDMA to transfers packets, 2) uses zero-copy for-
warding, and 3) implements flow rate control.

Packet transfer. To provide high-performance yet con-
figurability and ease of experimentation, Maze allows new
routing and transport protocols to be implemented in user-
space. It uses RDMA writes from the senders to data ring
buffers (DR) on receivers’ memory (e.g., DR R1 in Fig-
ure 5), similar to recent RDMA-based key-value stores [24,
31]. In Maze, incoming links, as well as applications (run-
ning emulated nodes), register memory to the RDMA NIC,
which is accessed during RDMA writes. Pointer rings (PR)
reference the registered memory and they are used in the
outgoing links (e.g., PR R1) during RDMA writes.

Forwarding. An outgoing link on a Maze server constitutes
a connection to another Maze server (i.e., RDMA queue

Figure 6: The format of data and broadcast packets.

pair [61]) and a number of pointer rings. To achieve zero-
copy forwarding, for each packet, depending on its routing
information, we pass the packet pointer that references the
incoming ring buffer to the associated pointer ring on the se-
lected outgoing link (e.g., PR R2 on outgoing link 1 sends
packets of DR R2 on incoming link 2). Once the packet is
sent, we zero the memory of the forwarded packet to make
space for new packets in the respective receive ring buffer.
We send application packets in the same fashion (e.g., using
DR A1 and its respective pointer rings).

Rate control. Maze provides different pointer rings for
different flows. This allows for implementation of both
back-pressure based and rate-based congestion control ap-
proaches. Transport protocols can use Maze’s rate limiters
to adjust the rate at which data pointers from a flow pointer
are inserted on an application’s pointer rings belonging to
outgoing links.

4.2 R2C2 implementation
We implemented R2C2 as a user-mode network stack in

Maze. For routing, we have implemented random packet
spraying [22], destination-tag routing [20] and VLB rout-
ing [45]. For congestion control, we have implemented
our rate-based congestion control protocol. This leverages
Maze’s rate control functionality. Overall, our complete pro-
totype (including Maze) consists of 9,836 lines of C++ and
967 lines of control scripts.

Rate computation. We implemented an efficient variant of
the water-filling algorithm described in Section 3.3.1. A key
challenge was how to efficiently compute the link weights
for each flow. We solved this by pre-computing on each
node the list of link weights for each {routing protocol, des-
tination} pair. Assuming a 512-node rack, the memory foot-
print per routing protocol is less than 6 MB, i.e., 511 desti-
nations times the number of links (6·512) times 4 bytes for
the weight.

Rate limiters. As explained in Section 3.3.1, the R2C2
congestion control respects the relative rates dictated by the
routing protocol. Beside reducing the computation over-
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head, this also implies that only one rate limiter per flow
is needed as opposed to one rate limiter per each of the paths
traversed by the flow. Further, flows are only rate-limited
at the source and not at the intermediate nodes. Therefore,
the number of rate limiters needed by each node is equal
to the number of flows that it generates. In our prototype,
we rely on software rate limiters, which can achieve very
fine-grained rate limiting [29]. Furthermore, we believe that
these requirements are well within the reach of today’s NICs,
which typically support 8-128 hardware rate limiters [39].

Packet formats. Figure 6 shows the format used for data
and broadcast packets. Data packets are variable sized, while
broadcast packets have a fixed size (16 bytes). The packet
type is defined in the type field.

The header of a data packet contains length of the route
that the packet travels (rlen), an index into the packet’s
route (ridx), the flow identifier (flow), source (src), destina-
tion (dst), the sequence number (seq), the packet checksum
(checksum), length of the payload (plen), the packet’s route
(route), and finally the payload.

The size of endpoints allows for up to 65,536 nodes. Fur-
ther, the route field could be up to 128 bits. We use 3 bits
for each hop to select the forwarding link (i.e., we assume at
most eight links per node) and increase ridx every time we
forward a packet. This allows us to store routes with up to
42 hops, which is sufficient for current rack-scale computers
and even non-minimal routing strategies.

Apart from source, destination and the packet checksum,
broadcast packets include the weight of the flow (weight),
flow’s priority (priority), the demand (demand) in Kbps be-
tween the nodes (up to 4 Tbps), the broadcast spanning tree
id (tree), and the currently used routing strategy between the
two nodes (rp).

5. EVALUATION
In our evaluation, we answer the following questions:

(i). how effective is R2C2’s congestion control mechanism
in achieving high throughput and low queuing?, (ii). what is
the traffic overhead introduced by broadcast?, (iii). what is
the cost of rate computation?, and finally (iv). what are the
benefits of supporting per-flow routing selection?

We adopted the following methodology. First, we use
R2C2’s implementation atop Maze to empirically verify the
feasibility and performance of our design, to quantify the
computation overhead, and to cross-validate our packet-level
simulator. Then, we use the simulator to investigate the per-
formance of R2C2 at scale and under different workloads.

Our results indicate that R2C2 achieves high throughput
and fairness while only requiring small queues and the over-
head imposed by broadcast is negligible. The computation
cost depends on the frequency at which rates are recom-
puted. However, for realistic workloads, this cost is reason-
able. Finally, by enabling individual flows to use different
routing protocols and by dynamically selecting among them
based on the observed workload, R2C2 achieves higher per-
formance than what would be possible using only a single
routing protocol for all flows.

(a) Flow throughput. (b) Queue occupancy.

Figure 7: Cross-validation of the flow throughput and maxi-
mum queue occupancy between Maze and the simulator us-
ing a 4x4 2D torus topology.

5.1 Emulation results
We deploy our Maze platform on a 16-server RDMA clus-

ter. Each server is equipped with two 2.4 GHz Intel Xeon
E5-2665 CPUs and 24 GB of memory. The servers are con-
nected using Quad Data Rate (QDR) InfiniBand. We emu-
lated a 4x4 2D torus virtual topology with a bandwidth of
5 Gbps per virtual link.

We generate a synthetic workload, comprising 1,000
flows of 10 MB each. We assume Poisson flow arrivals
with a mean inter-arrival time of 1 ms. We use the random
packet spraying routing protocol. We measure the through-
put and the maximum occupancy experienced by each queue
throughout the entire experiment. We then repeated the
same experiment in the simulator, using the same topology
and workload. Results in Figure 7 show that our packet-
level simulator exhibits high accuracy, both in terms of flow
throughput and queuing occupancy. These cross-validation
results improve our confidence in the large-scale simulation
experiments presented in Section 5.2.

Computation overhead. Next, we evaluate the computa-
tion overhead introduced by R2C2 when recomputing flow
rates. To show the behavior at scale, we ran the same work-
load in the simulator using a 512-node 3D Torus and we
recorded the flow arrival and departure events at each node.
To account for the increase in scale, we reduce the flow
inter-arrival time to 1 us. We then replayed these traces in
Maze and measured the execution time of the rate recompu-
tation. We ran this benchmark on two different CPU cores:
a 2.4GHz Intel Xeon E5-2665 and a 1.66 GHz Intel Atom
D510 [57]. The first one is representative of today’s data
center servers. The latter, instead, is a first-generation (2009)
low-power CPU architecture. This could be used, for in-
stance, as a cheap, dedicated core on each SoC to handle the
execution of R2C2.

Figure 8 plots the 99th percentile of the CPU overhead for
different values of the recomputation interval ρ . We com-
pute the overhead by dividing the time taken to recompute
the rates by the value of ρ . This means that if the overhead
is higher than 100% (the horizontal line in the chart), the re-
computation would not finish in time and, hence, the interval
is not feasible. As discussed in Section 3.3.2, we use a batch-
based design in which we only consider the flows that last
more than one interval. Therefore, the longer the interval,
the lower the number of flows considered, and this explains
why high values of ρ exhibit lower overhead. For exam-
ple, for ρ=500 us, the median overhead on the Intel Xeon is
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Figure 8: The 99th percentile of the CPU overhead on one
2.4 GHz Intel Xeon E5-2665 core and on a 1.66 GHz Intel
Atom D510 core when simulating a 512-node workload with
1 us flow inter-arrival time.

Figure 9: Network capacity used for broadcasting grows lin-
early with the fraction of bytes carried by small flows. The
experiment involves uniform traffic with shortest path rout-
ing using 10KB small flows and 35MB long flows.

1.7% (99th percentile is 7.9%) and 33.5% on the Intel Atom
(99th percentile 71.4%). For low values of ρ , the overhead
becomes much higher, e.g., for ρ=100 us the 99th percentile
is 73.9% on the Intel Xeon (median is 17.6%) while it is
infeasible for the Intel Atom (the normalized CPU usage is
higher than 100%). However, as we show in Section 5.2, for
the workloads we consider, a value of ρ=500 us is sufficient
to achieve good performance.

Broadcast overhead. Finally, we analyzed the overhead of
packet broadcasts on flow arrivals and departures. We con-
sider the size of the broadcast and data packets in Maze to
analytically project the results for a 512-node 3D torus. As-
suming 10 KB flows (§3.2), the average bandwidth overhead
is 26.66%. For 10 MB flows, instead, the overhead would
just be 0.026%.3 Thus, the overall broadcasting overhead
depends on the fraction of bytes carried by small flows.

Figure 9 shows that the fraction of network capacity used
for broadcast traffic grows linearly with the fraction of bytes
carried by small flows. In typical datacenter workloads,
small flows carry a small fraction of bytes; 95% of all bytes
are in the 3.6% flows larger than 35 MB [25]. For such a
workload, only 1.3% of the network capacity is used for
broadcasting. The figure also shows that for topologies with
a greater diameter like a 3D Mesh and a 2D Torus, the broad-
cast overhead is lower. This is because the average flow tra-
verses more hops, so the relative overhead of broadcasting
its arrival and departure is lower.

5.2 Simulation results
In our simulation experiments, we consider a 512-node

3This assumes uniform traffic and minimal routing. With
non-minimal routing, the broadcast overhead is lower.

Figure 10: The CDF of FCT for short flows (size < 100 KB)
for flow inter-arrival time τ=1us (log scale).

Figure 11: The CDF of average throughput for long flows
(size > 1 MB) for flow inter-arrival time τ=1us.

3D torus. This is the same size and topology as the
AMD SeaMicro 15000-OP. We assume a link bandwidth
of 10 Gbps and a per-link latency of 100 ns. We leave 5%
headroom and, except where otherwise noted, we use a re-
computation interval of 500 us. In our experiments, we use
a synthetic workload modeled after traffic patterns observed
in production data centers [2, 4, 25]. Flow’s source and des-
tination are randomly chosen following a uniform distribu-
tion. The flow sizes are generated from a Pareto distribution
with shape parameter 1.05 and mean 100 KB [3]. This gen-
erates a heavy-tailed workload where 95% of the flows are
less than 100 KB, as is commonly observed in data centers.
We assume Poisson flow arrivals and we consider flow inter-
arrival times varying from 1 us to 100 us. To stress our sys-
tem, we also consider an extreme flow inter-arrival time of
100 ns, which corresponds to a workload with 1010 flows/s
with a peak of 2,241 simultaneous flows. This is up to two
orders of magnitude lower than the arrival times observed in
a recent study on a production cluster [32], which reports a
median arrival time of 10 us for a 1,500-server network (i.e.,
three times bigger than our simulated network).

Flow completion time and queuing. We start our analysis
by measuring the flow completion time achieved by R2C2.
We compare our approach against TCP and against an ide-
alized baseline, per-flow queues (PFQ), that uses back-
pressure and per-flow queues at each node. This baseline
is impractical because, apart from forwarding complexity at
rack nodes, it results in very high buffering requirements.
However, it is useful in our study because it provides the up-
per bound of the performance achievable by any rate control
protocol for minimal and non-minimal routing. For TCP, we
use an ECMP-like routing protocol, which selects a single
path between source and destination, based on the hash of
the flow ID. This ensures that packets belonging to the same
flow are routed onto the same path as required by TCP. How-
ever, we assign different shortest paths to different flows be-
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Figure 12: The 99th-percentile of FCT for short flows (size
< 100 KB) normalized against TCP for different flow inter-
arrival times.

Figure 13: The average throughput for long flows (size
> 1 MB) normalized against TCP for different flow inter-
arrival times.

tween the same endpoints. For the idealized baseline and
R2C2, we use random packet spraying.

Figure 10 and 11 show the CDF of the flow completion
time (FCT) for short flows (size < 100 KB) and average
throughput for long flows (size > 1 MB) respectively. We do
not show the results for intermediate sizes as they are quali-
tatively similar to the ones for the short flows. As expected,
TCP achieves the worst performance both for short and long
flows. At the 99th percentile, TCP yields a 3.21x higher
FCT for short flows and a 2.55x lower average throughput
for long flows compared to R2C2. The reason is due to its
high queuing occupancy (for short flows) and its dependency
on a single-path routing (for long flows). The latter aspect
underlines the importance of exploiting path diversity.

The results also show that for short flows R2C2 closely
matches the FCT of the PFQ configuration and it does so by
only using a single queue per port. This confirms that our
protocol is able to achieve fairness among flows without re-
quiring per-flow state at the intermediate nodes. This is par-
ticularly important for many data center applications, which
are sensitive to load imbalance and long tail latency [21].
For long flows, the gap between R2C2 and PFQ increases.
The is due to the fact that a) R2C2 uses a different fairness
model that trades off utilization for computation tractability
(§3.3.1) and b) it uses headroom to absorb bursts (§3.3.2).

To investigate the performance of R2C2 at different loads,
in Figure 12 and 13 we show the 99th percentile of the FCT
(short flows) and the average throughput (long flows) nor-
malized against TCP for different inter-arrival times τ . As
expected, at very high load (τ=100 ns), the performance of
R2C2 deviates from the PFQ’s ideal one as the queues start
building up due to the inaccuracy introduced by our periodic
recomputation. However, as noted, this scenario represents
an extreme case; we believe that flow inter-arrival times of

Figure 14: 99th percentile and median of the maximum
queue occupancy (log scale).

the order of (tens of) micro-seconds are more realistic. As
the load decreases, R2C2’s performance converges to PFQ’s.

Figure 14 shows the median and the 99th percentile of
the maximum queue occupancy observed throughout these
experiments across all node queues. For inter-arrival times
of 1 us and above, the 99th percentile is lower than 27 KB
(median is less than one packet). However, for τ=100 ns, the
99th percentile goes to 330.6 KB (median is 3.8 KB). More
frequent recomputation would mitigate this, albeit at the cost
of higher recomputation overhead.

Low queue occupancy also reduces the amount of packet
reordering caused by multi-path routing. In this experiment,
for τ=1us, the 95th percentile of the re-order buffer size was
30 packets with a maximum value of 51 packets.

Impact of the recomputation interval. To understand the
impact of the recomputation interval ρ , we measure the ab-
solute difference between the average rate assigned to each
flow when using different values of ρ and the ideal case of
ρ=0. We plot the median and 95th-percentile across all flows
in Figure 15 using a flow inter-arrival time of τ=1 us (val-
ues are normalized against the ideal rates for ρ=0). As ex-
pected, lower values of ρ reduce the difference with the ideal
rates. Unfortunately, such low values are hard to achieve us-
ing a software-only implementation (§5.1). The results in
Figure 15 indicate that a value of ρ in the range 500 us-
1 ms might be a good compromise between performance
and computation overhead. Such a value incurs a modest
processing overhead (see Figure 8) and contains the differ-
ence w.r.t. ideal rates within 8.2% in the median case (resp.
37.9% at the 95th-percentile). This, however, depends on the
workload considered, as shown in Figure 16. At lower load
(e.g., τ=100 us), the difference is almost negligible, while
at higher load (τ=100 ns) the difference becomes significant
and lower recomputation intervals are needed. Hardware of-
fload of the rate computation might be a viable option to
enable smaller recomputation intervals but we leave the ex-
ploration of this opportunity to future work.

Impact of the headroom. To compensate for the burstiness
of the workload and the inaccuracies due to the periodic rate
computation, we reserve some headroom when computing
the flow rates. The optimal value of headroom depends on
the workload. High headroom provides more resilience to
bursts but penalizes utilization. While we have not yet de-
signed a mechanism to automatically tune it, in Figure 17
we conduct a sensitivity analysis varying the headroom from
zero (i.e., no headroom) up to 20%. The figure shows that
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Figure 15: The median and 95th-percentile of the normalized
difference between the ideal and computed rates against the
recomputation interval (flow inter-arrival time τ=1 us).

Figure 16: The median and 95th-percentile of the difference
between the ideal and computed rates against the flow inter-
arrival time (recomputation interval ρ=500 us).

(a) Short flows. (b) Long flows.

Figure 17: The 99th-percentile of FCT (short flows) and av-
erage throughput (long flows) against the headroom.

the performance of R2C2 is not particularly sensitive to the
choice of the headroom parameter. Overall, we found that,
for our target workloads, a 5% headroom represents a good
trade-off. For example, for an inter-arrival time of 1 us, com-
pared to the case in which no headroom is used, a 5% head-
room yields a 21.9% reduction in FCT for short flows at the
99th percentile while the reduction in the average throughput
for long flows is less than 3%.

Custom routing protocols. Next, we explore the behavior
of R2C2’s flexible routing stack. In particular, we aim to:
i) demonstrate the benefits of having multiple routing proto-
cols running concurrently (as opposed to a single, network-
wide, routing) and ii) to evaluate the performance of our
adaptive selection of routing protocols. We consider a work-
load in which a fraction L of nodes generates a long-running
flow each to another randomly chosen node such that every
node is the source and the destination of at most one flow.
We chose this workload for its relative simplicity, which
allows for an intuitive analysis. At high load (L ≥0.5), a
minimal routing protocol such as RPS achieves the best per-
formance as the hop count is minimized and the utilization
is maximized. At low load, instead, a non-minimal routing
protocol such as VLB exhibits superior performance as it can

Figure 18: Aggregate throughput achieved by our routing
selection heuristic (Adaptive) normalized against the three
baselines for different load values.

Figure 19: Control traffic with varying number of concurrent
long flows per server (flow inter-arrival time τ=1 us).

exploit the spare network capacity to increase the through-
put. We also experimented with other workloads and ob-
served qualitatively similar results.

We use the genetic algorithm-based heuristic described in
Section 3.4. For each flow, we consider only two routing
protocols, random packet spraying (RPS) and VLB. Each
genotype is encoded as a bit string with each bit correspond-
ing to one flow, thus leading to a global search space of up
to 2512 solutions when L = 1. We use a population size
of 100 and a mutation probability of 0.01. In Figure 18
we plot the relative performance of our selection heuristic
named Adaptive against three baselines: one using RPS for
all flows (RPS), one using VLB for all flows (VLB), and one
in which each flow randomly chooses either protocol (Ran-
dom). The results show that our selection process is able to
always achieve the best performance across all load values
(the relative performance is always above one). This shows
the importance of supporting per-flow routing protocols and
the benefits of our dynamic selection.

Comparison against a centralized design. With R2C2,
nodes can locally compute a flow’s rate and routing protocol.
We also considered an alternate design where the computa-
tion is done centrally (similar to Fastpass [36]), simply by
choosing one of the rack nodes as a centralized controller.
Such a design reduces computation overhead at the expense
of greater control traffic. We study this trade-off below.

Figure 19 shows the amount of control traffic with a de-
centralized design and a centralized one when varying the
number of concurrent long flows per server. In the decen-
tralized design, a flow arrival (or departure) event is broad-
casted to all rack nodes. Instead, with a centralized design,
the source sends a unicast message to the controller, which
computes the rates and sends to each rack node sourcing a
flow a different rate message with all the new rates for its
own flows. This is the reason why the control traffic for the
centralized design increases with the number of concurrent
flows while it remains constant for the decentralized design.
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When there are only a few long flows, the centralized de-
sign is more efficient because only a few control messages
are generated. However, when the number of flows grows,
the decentralized becomes more attractive because only the
flow events are broadcasted while the rate updates are com-
puted locally. For example, when there is one concurrent
flow per server, the centralized design generates 6.2x more
traffic than the decentralized one (resp. 19.9x more when the
number of concurrent flows per server is equal to 10).

The price paid by the decentralized design is increased
computation. Instead of computing rates once at the con-
troller and communicating them to all nodes, the computa-
tion is done by each node. However, as shown in Section 5.1,
the rate computation overhead is acceptable.

6. DISCUSSION AND FUTURE WORK
R2C2 targets intra-rack communication, and determines

how such traffic is routed and how the network fabric is
shared. Here we discuss some directions for future work.

Inter-rack networking. A key open question we have not
addressed is interconnection of multiple rack-scale comput-
ers to form a large cluster. This includes both the physical
wiring layout and the network protocols used to bridge be-
tween two rack-scale computers.

One simple option for inter-rack networking is to just use
traditional switches and tunnel R2C2 packets by encapsu-
lating them inside Ethernet frames. While this would al-
low for a smooth transition from today’s deployments, it
has some limitations. First, given the high bandwidth avail-
able within a rack, the only way to avoid creating high over-
subscription would be to use high-radix switches with large
back-plane capacity, in the order of (tens of) Terabits. This,
however, would dramatically increase costs and it may even
be infeasible if 100+ Gbps links are to be deployed within a
rack. Further, the need to bridge between R2C2 and Ethernet
would increase the overhead and the end-to-end latency. A
more promising (albeit challenging) solution instead is to di-
rectly connect multiple rack-scale computers without using
any switch, similar to [49]. Theia [47] also proposes such de-
sign with multiple parallel connections between racks. Be-
side saving the cost of the switches, this would also enable a
finer-grain control over the inter-rack routing.

Reliability. Even within the context of intra-rack communi-
cation, more work is needed. R2C2 does not provide a com-
plete network transport protocol — it does not provide end-
to-end reliability and flow control. While traditional mech-
anisms like end-to-end acknowledgements and checksums
can be used to achieve these, we believe R2C2’s design im-
proves the efficacy of such mechanisms. For example, by de-
coupling congestion control from reliability, we ensure that
acknowledgements are used solely for reliability. This is in
contrast with TCP-like protocols that rely on ACK-clocking
to determine the fair sending rates of flows. We are currently
investigating such extensions.

R2C2 atop switched networks. R2C2’s design is moti-
vated by the challenges and opportunities posed by rack-

scale computers with direct-connect topologies. However,
traditional switched topologies (with silicon photonics or
other physical technologies) are also being considered for
the intra-rack network [7, 53]. We note that it is the scale
of rack-scale computers, not the topology, that makes broad-
casting efficient. For example, consider a 512 node rack con-
nected using 32-port switches arranged in a two-level folded
Clos topology. A broadcast on this topology results in only
8.7 KB of total traffic. Such a topology does not have multi-
ple paths between nodes, so there is no room for route selec-
tion. However, R2C2’s congestion control still offers more
flexibility over traditional distributed congestion control.

At data center scale, the broadcast overhead is high and
distributed control is more appealing. However, even at such
a scale, R2C2’s design and algorithms could be appropri-
ate if next-generation networks have more efficient means
of achieving (approximate) global visibility while providing
significant multi-pathing.

7. CONCLUSION
We presented R2C2, a network stack for rack-scale com-

puters comprising a rate-based congestion control protocol
and a flexible routing mechanism. By broadcasting flow
events, we ensure that rack nodes can locally compute rate
allocations and routing decisions. These decisions are en-
forced at the sources, resulting in simplified packet forward-
ing. By deploying R2C2 on an emulated rack and a (cross-
validated) simulator, we show that R2C2 can achieve good
performance across diverse network workloads, and routing
flexibility can provide even more gains.
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