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The purpose of this exercise is to implement Prolog predicates that explore the implications of the Four
Colour Theorem1. Informally described, the Four Colour Theorem states that no more than four colours are
required to colour each region in a planar map, so that no regions with sections of shared border (excepting
single points of contact) are filled with the same colour. Familiar planar maps include geographical maps
showing countries, states or counties (not counting where such land areas are disjoint). You should work
through and complete all steps of this document. Ensure that each implemented predicate behaves correctly
under backtracking. You may make reasoned use of the cut operator where appropriate. Details about
submission and marking are at the end of this document. This document consists of eight pages.

[Aside: Note that the code below can often be shortened through the use of higher-order functions common
within functional programming, such as “fold left” and “map”, but that they are not covered in this course.]

1 Background

Figure 1 indicates the dual between regions on a map, and a graph showing nodes whose interconnections
indicate map regions that have a shared boundary. The colouring algorithms explored in this assessed
exercise operate on the graph representation.

During their operation, our colouring algorithms will need to maintain a number of items of state. There
will be a representation of the graph being examined (described below). We are aiming to build a set of
assignments of colours to nodes: this will be the output of any valid predicate implementation that colours
a map. For this exercise, each item of the colouring result set will be a term of the form N=C where N is a
node from the graph being examined, and C is a colour. Since each N should only occur once, the resulting
set can be considered to be a form of a key-value dictionary. We will use the four colour atoms: red,
green, blue and yellow. Note that we use Prolog lists to represent sets.

The initial colouring algorithm uses an inefficient search mechanism. We refine a subsequent predicate that
uses constraints more intelligently: that is, if you have assigned red to a node, then red can be removed
from the possible assignments of all of its neighbouring nodes. This will require maintaining the set of
nodes, and coupled with each of those nodes, the remaining set of colours from which that node can take
on a value without violating local colour constraints.

2 Supporting Predicates

2.1 Set comparison

While running the colouring algorithms on a graph, we will not assume that the elements in any of the
internal lists are in any particular order. For ease of visual examination and comparison or results, however,

1Wikipedia has some starting points: http://en.wikipedia.org/wiki/Four_color_theorem
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Figure 1: Representing a map in part (a) as regions on a plane and equivalently in part (b) using nodes to
represent regions, and edges to indicate the regions that have common borders.

we will define a standard ordering for the data: we will order the colouring elements by their node name,
i.e. the first argument of an N=C expression. Note that a node colouring list is invalid if it contains two
elements of the form N=C with the same N. You do not need to check for this case.

Write a predicate lessthan(+A,+B) that is true iff2 the colour assignment A is “smaller than” the
colour assignment B for the notion of colour assignment introduced above. Your predicate should fail if
either or both of its arguments are not colour assignments. Note that in Prolog, operators such as < (less
than) are intended for arithmetic use, and will not order atoms such as the node names. Instead the operator
@< and the like, apply the “standard order of terms”, which includes ordering atoms alphabetically. Make
sure your comments explain which operators you use and why.

You must include some test cases in your source file. Your tests should be executed when your file is
loaded. Recall that not/1 evaluates negation by failure (as does the \+ operator). You can use not/1
(or equivalent) to implement negative tests: cases in which your predicate is expected to fail. You must
include at least one negative test.

2.2 Merge sort

We will use the merge sort algorithm to effect the standardised ordering of colours discussed above. Include
the two predicates msort_colours/2 and divide/3 that are reproduced below in your source file.
Add a brief explanatory comment to each. Note that you will implement the merge_lists/3 predicate
in the next step of the assessed exercise.

msort_colours([],[]).
msort_colours([A],[A]).
msort_colours([A,B|Rest],S) :-

divide([A,B|Rest],L1,L2),
msort_colours(L1,S1),
msort_colours(L2,S2),
merge_lists(S1,S2,S).

divide([],[],[]).
divide([A],[A],[]).
divide([A,B|R], [A|Ra], [B|Rb]) :-

divide(R,Ra,Rb).

2“if and only if”
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2.3 Merge sort’s list merging predicate

Write a predicate merge_lists(+X,+Y,-Z) that takes two lists of colours that have already been
sorted, X and Y, and unifies Z with a list that selects all of the elements from X and Y such that Z is also
sorted.

Include some test cases for the merge_lists/3 predicate. Show that your predicate can generate values
of Z as well as check that provided values are correct. Now that you have defined merge_lists/3, you
should include some test cases for the msort_colours/2 predicates in your source file also.

2.4 List search and modification

We will develop a predicate that aims to colour a graph in which some nodes have already had colour sets
assigned to them. Write a predicate get_with_default(+Key,+ListIn,+Default,-Value)
that expects to be presented with an ListIn list that contains elements of the form K=V (e.g. the colour
sets described above). Your predicate should try to unify Key with each K. If it succeeds, unify the cor-
responding V with Value. Otherwise, unify Default with Value. Include some test predicates, and
at least one negative test. This predicate will be used to set up initial colour sets for one of the colouring
algorithms below.

Write a predicate remove(+Item,+ListIn,-ListOut) that unifies ListOut with the contents of
ListIn except for the first element from ListIn that unifies with Item. Your predicate should not fail
if no such Item can be found. If Item can be unified with multiple elements of ListIn, only the first
removal should be performed, and no further answers be offered on backtracking.

3 Representing Graphs

We shall encode the graph that we wish to analyse as a list of (undirected) edges. Each edge consists of
a compound term N1-N2 where N1 and N2 are node identifiers within a given graph. Write a predicate
graph(example1,-List) that unifies List with the list that represents the graph shown in part (b)
of figure 1. Note that if you include an edge x-y, then you need not, and should not, include an edge y-x.
We use the additional argument example1 to allow us to run our program with different graphs later.

3.1 Graph Nodes

Write a rule nodes(+Graph,-Nodes) that unifies Nodes with a list that contains the name of each
node in the graph once. Remember that a node can be at the start or the end of an edge in your graph
representation. One approach to do this is to construct the nodes/2 predicate from these auxiliary rules:

• unroll, which builds a list (containing duplicates) of all the nodes in the graph;

• unique, which removes duplicates from a list. Hint: use negation, and the built-in member(E,L)
function which is true if E is an element of L.

Now write a rule node(+Graph,-Node) that unifies Node with a node in the graph. This rule should
iterate through all nodes in the graph when backtracking but should only return each node once.
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4 Graph Colouring

We first develop an inefficient, but nonetheless brief and correct, implementation of a colouring algorithm.

% colour_graph_simple(+Graph,-Colours).
colour_graph_simple(Graph,Colours) :-

nodes(Graph,Nodes),
colour_nodes(Nodes,Colours),
check_colours(Graph,Colours).

% colour_nodes(+Nodes,-Colours)
% to be completed...

% check_colours(+Graph,-Colours).
check_colours([],_).
check_colours([N1-N2|Es],Colours) :-

member(N1=C1,Colours),
member(N2=C2,Colours),
C1 \= C2, % equivalent to not(C1=C2)
check_colours(Es,Colours).

Copy and paste the above Prolog code into your source file, and write the colour_nodes/2 predicate.
This predicate is given, in Nodes, a list containing all of the graph nodes. The colour_nodes/2
predicate should bind Colours to a list containing an element of the form Node=Colour for each node
of the graph. Backtracking should provide every possible assignment of colours to nodes—including colour
assignments that violate the requirement that adjacent nodes have different colours. You are writing the
generator in this generate-and-test implementation—in this case check_colours/2 is the test predicate.

Include a few simple tests for the check_colours and colour_nodes predicates, with at least one
negative test for check_colours.

4.1 Initial colour sets, and constraint annotation

The above approach to graph colouring does a poor job of tracking constraints. Whenever a colour is
applied to a node, a constraint can easily be recorded to avoid that colour being used in neighbouring
nodes. We will implement a predicate that tracks the set of colours that a node can potentially take on, and
updates this set when this node’s neighbours have colours assigned to them.

[Aside: as discussed in lectures, SWI-Prolog provides support for Constraint Logic Programming—indeed
most large-scale Prolog distributions do. In this assessed exercise, you should maintain the constraints
directly. An efficient and complete solution to the colouring problem can be achieved in about the same
amount of code as the colour_graph_simple/2 predicate above. Feel free to verify this...]

Encode the Australian states into a colouring graph. The map is shown in figure 2, and should be encoded
into the predicate graph(example2,-List). Note that you will need to surround node names with
single quotes in order to form atoms that begin with a capital letter. The node names should be precisely
as labelled on the figure. Note that the Australian Capital Territory (ACT) is contained within New South
Wales (NSW). You do not need to consider any off-shore region smaller than Tasmania (TAS), but you
should encode the surrounding water as a node.

Copy and paste the code below into your source file. Note that elements of ColourAssignments are
of the form 'NSW'=red, while elements of GivenColourSets are of the form 'NSW'=[red]. The
predicate flatten_colour_lists below can do bi-directional conversion of these forms (if possible).
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Figure 2: A map of the states of Australia

%% colour_graph(+Graph,+GivenColourSets,-ColourAssignments)
colour_graph(Graph,GivenColourSets,ColourAssignments) :-

% determine the graph nodes
nodes(Graph,Nodes),
% initialise the nodes' initial colour sets
initial_colour_sets(Nodes,GivenColourSets,ColourSets),
% label each of the graph nodes with a colour
colour_nodes(Graph,Nodes,ColourSets,ColoursFinished),
% reorganise the terms in the colour assignments slightly
flatten_colour_lists(ColoursFinished,ColourAssignments).

flatten_colour_lists([],[]).
flatten_colour_lists([N=[C]|RestIn],[N=C|RestOut]) :-

flatten_colour_lists(RestIn,RestOut).

initial_colour_sets([],_,[]).
initial_colour_sets([N|Ns],GivenColourSets,[N=Value|ColourSets]) :-

get_with_default(N,GivenColourSets,[red,green,blue,yellow],Value),
initial_colour_sets(Ns,GivenColourSets,ColourSets).

colour_nodes(_,[],ColourSets,ColourSets).
colour_nodes(Graph,[Node|Ns],ColourSetsIn,ColourSetsOut) :-

choose_a_node_colour(Node,Colour,ColourSetsIn,ColourSets2),
remove_colour_from_connected_sets(Graph,Node,Colour,

ColourSets2,ColourSets3),
colour_nodes(Graph,Ns,ColourSets3,ColourSetsOut).

You need to write the predicate choose_a_node_colour(+Node, -Colour, +ColourSetsIn,
-ColourSetsOut). Unlike the colour_nodes predicate that you implemented earlier, this new
predicate is instructed which Node to look up in the provided colour sets (ColourSetsIn). Colour
will be unified only with elements in the given node’s colour set. On backtracking, each available colour
in the node’s colour set should be selected. By selecting a colour for Node, you are effectively changing
its colour set to a singleton element. This change must be reflected in ColourSetsOut.

Having selected a colour for a node Node, the colour is removed from all of the colour sets of the nodes
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directly connected to that Node by remove_colour_from_connected_sets/5. Copy and paste
the following code into your source file, with a comment as to where cuts can be employed, and why.

remove_colour_from_connected_sets([],_,_,ColourSets,ColourSets).
remove_colour_from_connected_sets([N-ON|Es],N,Colour,CSs,NewCSs) :-

remove_colour_from_specific_set(Colour,ON,CSs,CSs2),
remove_colour_from_connected_sets(Es,N,Colour,CSs2,NewCSs).

remove_colour_from_connected_sets([ON-N|Es],N,Colour,CSs,NewCSs) :-
remove_colour_from_specific_set(Colour,ON,CSs,CSs2),
remove_colour_from_connected_sets(Es,N,Colour,CSs2,NewCSs).

remove_colour_from_connected_sets([ON1-ON2|Es],N,Colour,CSs,NewCSs) :-
N \= ON1, N \= ON2,
remove_colour_from_connected_sets(Es,N,Colour,CSs,NewCSs).

The remove_colour_from_specific_set(+Colour,+Node,+CS1,-CS2)3 predicate finds
the colour set corresponding to node Node within CS1, removes Colour from it, and binds the result
with CS2. One of the clauses of this predicate is reproduced below, for you to copy and paste into your
source file. Complete the implementation of this predicate.

remove_colour_from_specific_set(Colour,TargetNode,
[OtherNode=CS|ColourSets],
[OtherNode=CS|NewColourSets]) :-

TargetNode \= OtherNode,
remove_colour_from_specific_set(Colour,TargetNode,

ColourSets,NewColourSets).

Finally, create a graph with at least five nodes, encoded into graph(example3,-List) in the usual
way. Demonstrate the colour_graph predicate successfully colouring it. Also demonstrate a situation
in which the initial colour sets preclude a four colour solution being found. It may be more efficient to
defer this step until after you achieve your code passing the tests provided in the next section.

5 Test Cases

Append the following test clauses to your file.

% test that an arbitary valid (and invalid) colouring is (and is not) proved.
test(t1):-t_exists(example1,t_s1,[a=red,b=green,c=blue,d=green,e=red]).
test(t2):-not(t_exists(example1,t_s1,[a=red,b=green,c=blue,d=green,e=blue])).
test(t3):-t_exists(example1,t_c1,[a=red,b=green,c=blue,d=green,e=red]).
test(t4):-not(t_exists(example1,t_c1,[a=red,b=green,c=blue,d=green,e=blue])).

% test that right numbers of solutions are discovered
test(s1n):-graph(example1,G),numsol( colour_graph_simple(G,_), 96).
test(c1n):-graph(example1,G),numsol( colour_graph(G,[],_), 96).
test(c2n):-graph(example2,G),numsol( colour_graph(G,[],_), 216).

% test one complete solution for each given example
test(c2s):-graph(example2,G),findall(CSorted,(colour_graph(G,

[water=[blue],'NSW'=[green],'VIC'=[red],'TAS'=[green]],C),
msort_colours(C,CSorted)),L),perm(L,

[['ACT'=red,'NSW'=green,'NT'=green,'QLD'=red,'SA'=yellow,'TAS'=green,

3I note that in my own code, I would not tend to usually employ predicate names that are this long!
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'VIC'=red,'WA'=red,water=blue],['ACT'=blue,'NSW'=green,'NT'=green,
'QLD'=red,'SA'=yellow,'TAS'=green,'VIC'=red,'WA'=red,water=blue],
['ACT'=yellow,'NSW'=green,'NT'=green,'QLD'=red,'SA'=yellow,
'TAS'=green,'VIC'=red,'WA'=red,water=blue]]).

test(c1s):-graph(example1,G),findall(CSorted,(colour_graph(G,
[a=[red],b=[blue]],C),msort_colours(C,CSorted)),L), perm(L,

[[a=red,b=blue,c=green,d=blue,e=red],[a=red,b=blue,c=green,d=blue,
e=yellow],[a=red,b=blue,c=green,d=yellow,e=red],[a=red,b=blue,
c=green,d=yellow,e=blue],[a=red,b=blue,c=yellow,d=green,e=red],
[a=red,b=blue,c=yellow,d=green,e=blue],[a=red,b=blue,c=yellow,
d=blue,e=red],[a=red,b=blue,c=yellow,d=blue,e=green]]).

t_exists(GraphName,Predicate,ValidColouring):-
graph(GraphName,Graph),
call(Predicate,Graph,ColouringOut),
msort_colours(ColouringOut,ValidColouring).

t_s1(Graph,ColouringOut):-colour_graph_simple(Graph,ColouringOut).
t_c1(Graph,ColouringOut):-colour_graph(Graph,[],ColouringOut).
t_c2(Graph,ColouringOut):-colour_graph(Graph,[water=[blue]],ColouringOut).

% Helper predicates from lectures
numsol(Predicate,NumberOfSolutions) :-

findall(dummy,Predicate,AnsList),
length(AnsList,NumberOfSolutions).

perm([],[]).
perm(List,[H|T]) :- take(List,H,R), perm(R,T).
take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).

run_tests_quiet :- foreach( clause(test(TestID),_), test(TestID) ),!.
run_tests_quiet :- run_tests,fail.

run_tests :- foreach( clause(test(TestID),_), run_test(TestID) ).
run_test(TestID) :-

( test(TestID) -> Result = succeeded; Result = failed ),
format("Test ~w: ~w.~n",[TestID,Result]).

:-run_tests_quiet.

Prolog will run the above tests whenever the file is reloaded, and if any tests fail, will re-run the tests as
well as outputting which pass and which fail on the terminal. Note that you can query specific test/1
predicates in the Prolog interpreter.

5.1 Colouring an SVG file (entirely optional!)

This subsection is for your interest only, and can be skipped with no impact on your assessment whatsoever.
The assessed exercise instructions continue at section 6.

From http://www.cl.cam.ac.uk/~dme26/pl/svg-server.pl you can download the source
file svg-server.pl. This file provides predicates that apply your graph colouring routines to a Scalable
Vector Graphics (SVG)4 file and serve it up to your web browser of choice (not including Microsoft Internet
Explorer, unless you install SVG plug-ins) care of a multi-threaded, Prolog-driven HTTP server (!).

Since svg-server.pl is not part of the tick exercise, it will be re-released whenever things need fixing
(i.e. mostly when you tell me things are broken), and should provide sufficient information when you load

4See http://www.w3.org/Graphics/SVG/ and http://en.wikipedia.org/wiki/SVG
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the module as to its intended use. It employs Prolog language features not discussed in the course, or
covered only briefly, but if they interest you, please do feel free to ask for more details.

6 Deliverables and Deadlines

You should submit a single Prolog source file named CRSID-prolog09.pl (replace CRSID with your
CRSID). This file should contain all of the clauses discussed above, along with appropriate tests. The
file should compile and load in SWI-Prolog without errors, warnings about singleton variables, or failed
clauses. Your code is expected to work correctly on the SWI-Prolog version running on PWF Linux.

Email your submission to prolog-tick@cl.cam.ac.uk .

Examination will take the form of a visual inspection of your source code, a test using different graphs to
those in the examples above, and an oral examination. Your oral viva examination will last for seven and a
half minutes and you will be expected to explain the functioning of your code and resolve any issues that
are raised by your examiner. Ensure that you have re-familiarised yourself with your submission prior to
attending your exam. You will be told at the end of your viva whether you have passed your tick.

6.1 Important Dates

Viva sign-up sheets placed outside Student Administration in the
William Gates Building. Write your CRSID in an empty slot.

Fri 15-Jan-2010 12:00 noon

Submission deadline for your tick (by email) Fri 22-Jan-2010 12:00 noon
Viva sign-up sheets taken down Fri 22-Jan-2010 12:00 noon
Viva Examinations Thu 4-Feb-2010 13:00 to 16:00
Viva Examinations Fri 5-Feb-2010 13:00 to 16:00

6.2 Tick Checklist

In order to achieve your tick you must have achieved the following:

1. Implement and test the clauses described above, providing comments where requested;

2. Your submitted code must pass visual inspection and a further test on a different example graph;

3. Sign up for a Viva examination before Friday 22-Jan-2010 12:00 noon;

4. Submit your tick by email before Friday 22-Jan-2010 12:00 noon;

5. Attend your examination and answer questions about your submission to the examiner’s satisfaction:
be prepared and punctual.

6.3 Alternative: C & C++ Assessed Exercise

You need only complete either the Prolog tick or the C & C++ tick but you may complete both if you wish.
No further examination credit is available for completing both ticks. The examination procedure for the C
& C++ tick is of the same form as the above and will run concurrently with the Prolog tick examinations.

END OF TICK
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