
Prolog lecture 4

● Playing Countdown
● Iterative deepening
● Search

L4-2

Countdown Numbers

Select 6 of 24 numbers tiles
– large numbers: 25,50,75,100
– small numbers: 1,2,3...10 (two of each)

Contestant chooses how many large and small

Randomly chosen 3-digit target number

Get as close as possible using each of the 6 numbers at most
once and the operations of addition, subtraction,
multiplication and division
– No floats or fractions allowed

L4-3

Countdown Numbers

Strategy – generate and test

Maintain a list of symbolic arithmetic terms
– initially this list consists of ground terms e.g.:
[gnd(25),gnd(6),gnd(3),gnd(3),gnd(7),gnd(50)]

– if the head of the list evaluates to the total then
succeed

– otherwise pick two of the elements, combine them
using one of the available arithmetic operations, put
the result on the head of the list, and repeat

L4-4

Countdown Numbers
Prerequisite predicates:

eval(A,B)
– true if the symbolic expression A evaluates to B

choose(N,L,R,S)
– true if R is the result of choosing N items from L and

S is the remaining items left in L

arithop(A,B,C)
– true if C is a valid combination of A and B in the

context of the game
● e.g. arithop(A,B,plus(A,B)).

L4-5

Countdown Numbers
%%% arith_op(+A, +B, -C)
%%% unify C with a valid binary operation
%%% of expressions A and B
arithop(A,B,plus(A,B)).
% minus is not commutative
arithop(A,B,minus(A,B)) :- eval(A,D), eval(B,E), D>E.
arithop(B,A,minus(A,B)) :- eval(A,D), eval(B,E), D>E.
% don't allow mult by 1
arithop(A,B,mult(A,B)) :- eval(A,D), D \== 1,
 eval(B,E), E \== 1.
% div is not commutative and don't allow div by 0 or 1
arithop(A,B,div(A,B)) :- eval(B,E), E \== 1, E \== 0,
 eval(A,D), 0 is D rem E.
arithop(B,A,div(A,B)) :- eval(B,E), E \== 1, E \== 0,
 eval(A,D), 0 is D rem E.

L4-6

Countdown Numbers

% Soln evaluates to the target number
countdown([Soln|_],Target,Soln) :-

eval(Soln,Target).

% Combine from L to form new experiment
countdown(L,Target,Soln) :-

choose(2,L,[A,B],R),
arithop(A,B,C),
countdown([C|R],Target,Soln).

The code almost explains itself!

L4-7

Closest Solution

No exact solutions? Find the closest solution instead.
– This is iterative deepening and will be covered in your

Artificial Intelligence course (p248)

% our result value R is D different from the Target
solve([Soln|_],Target,Soln,D) :- eval(Soln,R),
 diff(Target,R,D).
% recursive case is akin to the equivalent countdown/3
solve(L,Target,Soln,D) :- choose(2,L,[A,B],R),
 arithop(A,B,C),
 solve([C|R],Target,Soln,D).
% search for a solution decreasingly close to the target
solve(L,Target,Soln) :- range(0,100,D),
 solve(L,Target,Soln,D).

L4-8

Searching

L4-9

Searching: maze solution

L4-10

Searching: solution and failed paths

L4-11

Searching: represent the problem

L4-12

Searching: possible paths

L4-13

Game search space as a tree

L4-14

Finding a route through the maze

start(a).
finish(u).

route(a,g).
route(g,l).
route(l,s).
% ...
travel(A,A).
travel(A,C) :- route(A,B),travel(B,C).

solve :- start(A),finish(B), travel(A,B).

L4-15

We need to remember the route

travellog(A,A,[]).
travellog(A,C,[A-B|Steps]) :-
 route(A,B), travellog(B,C,Steps).

solve(L) :- start(A), finish(B),
 travellog(A,B,L).

From “is there a route?” to “show us a route.”

L4-16

What if we have a cyclic graph?

L4-17

Cyclic Graphs

route(q,v).
route(v,d).

L4-18

Searching

travelsafe(A,A,_).
travelsafe(A,C,Closed) :-

route(A,B), \+ member(B,Closed),
travelsafe(B,C,[B|Closed]).

Solution: maintain a set of places we've already
been – the closed set
– In SWI Prolog you can write \+ to mean not()

Accumulate the list of
nodes that we've visited

L4-19

Missionaries and Cannibals

3 Missionaries 3 Cannibals 1 boat

– The boat carries two people
– If the Cannibals outnumber the Missionaries they will eat them
– Get them all from one side of the river to the other?

L4-20

Towers of Hanoi

L4-21

Umbrella problem

 A group of 4 people, Andy, Brenda, Carl, & Dana, arrive in a car near a friend's house,
who is having a large party. It is raining heavily, & the group was forced to park
around the block from the house because of the lack of available parking spaces
due to the large number of people at the party. The group has only 1 umbrella, &

agrees to share it by having Andy, the fastest, walk with each person into the
house, & then return each time. It takes Andy 1 minute to walk each way, 2 minutes

for Brenda, 5 minutes for Carl, & 10 minutes for Dana. It thus appears that it will
take a total of 19 minutes to get everyone into the house. However, Dana indicates
that everyone can get into the house in 17 minutes by a different method. How?

The individuals must use the umbrella to get to & from the house, & only 2 people
can go at a time (& no funny stuff like riding on someone's back, throwing the

umbrella, etc.).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

