
Why decompilation?

This course is ostensibly about Optimising Compilers.

It is really about program analysis and transformation.

Decompilation is achieved through analysis and 
transformation of target code; the transformations 

just work in the opposite direction.



The decompilation problem

Even simple compilation discards a lot of information:

• Comments

• Function and variable names

• Structured control flow

• Type information



The decompilation problem
Optimising compilation is even worse:

• Dead code and common subexpressions are 
eliminated

• Algebraic expressions are rewritten

• Code and data are inlined; loops are unrolled

• Unrelated local variables are allocated to the 
same physical register

• Instructions are reordered by code motion 
optimisations and instruction scheduling



The decompilation problem

Some of this information is never going to be 
automatically recoverable (e.g. comments, variable 

names); some of it we may be able to partially 
recover if our techniques are sophisticated enough.

Compilation is not injective. Many different source 
programs may result in the same compiled code, so 

the best we can do is to pick a reasonable 
representative source program.



Intermediate code

It is relatively straightforward to extract a 
flowgraph from an assembler program.

Basic blocks are located in the same way as during 
forward compilation; we must simply deal with the 
semantics of the target instructions rather than our 

intermediate 3-address code.



Intermediate code

For many purposes (e.g. simplicity, retargetability) it might 
be beneficial to convert the target instructions back into 

3-address code when storing it into the flowgraph.

This presents its own problems: for example, many 
architectures include instructions which test or set 

condition flags in a status register, so it may be necessary 
to laboriously reconstruct this behaviour with extra 

virtual registers and then use dead-code elimination to 
remove all unnecessary instructions thus generated.



Control reconstruction

A compiler apparently destroys the high-level control 
structure which is evident in a program’s source code.

After building a flowgraph during decompilation, we can 
recover some of this structure by attempting to match 

intervals of the flowgraph against some fixed set of 
familiar syntactic forms from our high-level language.



Finding loops

Any structured loops from the original program will 
have been compiled into tests and branches; they 
will look like arbitrary (“spaghetti”) control flow.

In order to recover the high-level structure of these 
loops, we must use dominance.



Dominance
In a flowgraph, we say a node m dominates 

another node n if control must go through m 
before it can reach n.

The immediate dominator of a node n is the 
unique node that dominates n but doesn’t 

dominate any other dominator of n.

We can represent this dominance relation with 
a dominance tree in which each edge connects a 

node with its immediate dominator.
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a

b

ENTRY f

d

c

e

EXIT



Dominance

ENTRY f

a

b c

d

e

EXIT



Back edges

We can now define the concept of a back edge.

In a flowgraph, a back edge is one whose head 
dominates its tail.
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Finding loops

Each back edge has an associated loop.

The head of a back edge points to the loop header, 
and the loop body consists of all the nodes from 
which the tail of the back edge can be reached 

without passing through the loop header.
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Finding loops

Once each loop has been identified, we can examine 
its structure to determine what kind of loop it is, 

and hence how best to represent it in source code.



Finding loops
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Here, the loop header contains a conditional which 
determines whether the loop body is executed, and 
the last node of the body unconditionally transfers 

control back to the header.

This structure corresponds 
to source-level

while (...) {...}
syntax.



Finding loops
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Here, the loop header unconditionally allows the 
body to execute, and the last node of the body 
tests whether the loop should execute again.

This structure corresponds 
to source-level

do {...} while (...)
syntax.



Finding conditionals

A similar principle applies when trying to 
reconstruct conditionals: we look for structures 
in the flowgraph which may be represented by 
particular forms of high-level language syntax.



Finding conditionals
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The first node in this interval 
transfers control to one node if 

some condition is true, otherwise it 
transfers control to another node 

(which control also eventually 
reaches along the first branch).

This structure corresponds to 
source-level                                      

if (...) then {...}                        
syntax.



Finding conditionals
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This structure corresponds 
to source-level

if (...) then {...} 
else {...}

syntax.

The first node in this interval transfers control to one 
node if some condition is true, and another node if the 

condition is false; control always reaches some later node.



Control reconstruction

We can keep doing this for whatever other control-
flow constructs are available in our source language.

Once an interval of the flowgraph has been 
matched against a higher-level control structure in 
this way, its entire subgraph can be replaced with a 
single node which represents that structure and 

contains all of the information necessary to 
generate the appropriate source code.



Type reconstruction
Many source languages also contain rich information 

about the types of variables: integers, booleans, 
arrays, pointers, and more elaborate data-structure 

types such as unions and structs.

At the target code level there are no variables, only 
registers and memory locations.

Types barely exist here: memory contains arbitrary 
bytes, and registers contain integers of various bit-

widths (possibly floating-point values too).



Type reconstruction

Reconstruction of the types of source-level 
variables is made more difficult by the 

combination of SSA and register allocation 
performed by an optimising compiler.

SSA splits one user variable into many variables 
— one for each static assignment — and any of 
these variables with disjoint live ranges may be 

allocated to the same physical register.



Type reconstruction
So each user variable may be spread between several 
registers — and each register may hold the value of 

different variables at different times.

It’s therefore a bit hopeless to try to give a type to 
each physical register; the notional type of the value 

held by any given register will change during execution.

int x = 42;
…
char *y = “42”;

MOV r3,#42
…
MOV r3,#0xFF34



Type reconstruction

Happily, we can undo the damage by once again 
converting to SSA form: this will split a single 

register into many registers, each of which can 
be assigned a different type if necessary.

MOV r3,#42
…
MOV r3,#0xFF34

MOV r3a,#42
…
MOV r3b,#0xFF34



Type reconstruction

int foo (int *x) {
  return x[1] + 2;
}

C

f: ldr r0,[r0,#4]
   add r0,r0,#2
   mov r15,r14

ARM

compile



f: ldr r0,[r0,#4]
   add r0,r0,#2
   mov r15,r14

ARM

Type reconstruction
int f (int r0) {
  r0 = *(int *)(r0 + 4);
  r0 = r0 + 2;
  return r0;
}

C

decompile



Type reconstruction
int f (int r0) {
  r0 = *(int *)(r0 + 4);
  r0 = r0 + 2;
  return r0;
}

SSA

int f (int r0a) {
  int r0b = *(int *)(r0a + 4);
  int r0c = r0b + 2;
  return r0c;
}



Type reconstruction

reconstruct types

int f (int r0a) {
  int r0b = *(int *)(r0a + 4);
  int r0c = r0b + 2;
  return r0c;
}

int f (int *r0a) {
  int r0b = *(r0a + 1);
  int r0c = r0b + 2;
  return r0c;
}



Type reconstruction

reconstruct syntax

int f (int *r0a) {
  int r0b = r0a[1];
  int r0c = r0b + 2;
  return r0c;
}

int f (int *r0a) {
  int r0b = *(r0a + 1);
  int r0c = r0b + 2;
  return r0c;
}



Type reconstruction

propagate copies

int f (int *r0a) {
  int r0b = r0a[1];
  int r0c = r0b + 2;
  return r0c;
}

int f (int *r0a) {
  return r0a[1] + 2;
}



Type reconstruction

int f (int *r0a) {
  return r0a[1] + 2;
}

T f (T *r0a) {
  return r0a[1] + 2;
}

In fact, the return type could be 
anything, so more generally:



Type reconstruction

This is all achieved using constraint-based analysis: 
each target instruction generates constraints on the 

types of the registers, and we then solve these 
constraints in order to assign types at the source level.

Typing information is often incomplete 
intraprocedurally (as in the example); constraints 

generated at call sites help to fill in the gaps.

We can also infer unions, structs, etc.



Summary

• Decompilation is another application of program 
analysis and transformation

• Compilation discards lots of information about 
programs, some of which can be recovered

• Loops can be identified by using dominator trees

• Other control structure can also be recovered

• Types can be partially reconstructed with constraint-
based analysis




