
Motivation

Normal form is convenient for intermediate code.

However, it’s extremely wasteful.

Real machines only have a small finite number of registers, 
so at some stage we need to analyse and transform the 
intermediate representation of a program so that it only 

requires as many (physical) registers as are really available.

This task is called register allocation.



Graph colouring

Register allocation depends upon the solution of a 
closely related problem known as graph colouring.





Graph colouring



Graph colouring



Graph colouring



Graph colouring

For general (non-planar) graphs, however, 
four colours are not sufficient; there is no 

bound on how many may be required.



✗

Graph colouring

?

red

green

blue

yellow



✓
Graph colouring

red

green

blue

yellow

purple

brown



Allocation by colouring

This is essentially the same problem that 
we wish to solve for clash graphs.

• How many colours (i.e. physical registers) are 
necessary to colour a clash graph such that no two 
connected vertices have the same colour (i.e. such 
that no two simultaneously live virtual registers are 
stored in the same physical register)?

• What colour should each vertex be?



MOV x,#11
MOV y,#13
ADD t1,x,y
MUL z,t1,#2
MOV a,#17
MOV b,#19
MUL t2,a,b
ADD z,z,t2

Allocation by colouring

z

x y t1

t2 ba



MOV x,#11
MOV y,#13
ADD t1,x,y
MUL z,t1,#2
MOV a,#17
MOV b,#19
MUL t2,a,b
ADD z,z,t2

MOV x,#11
MOV y,#13
ADD t1,x,y
MUL z,t1,#2
MOV a,#17
MOV b,#19
MUL t2,a,b
ADD z,z,t2

MOV x,#11
MOV y,#13
ADD t1,x,y
MUL z,t1,#2
MOV a,#17
MOV b,#19
MUL t2,a,b
ADD z,z,t2

MOV x,#11
MOV y,#13
ADD t1,x,y
MUL z,t1,#2
MOV a,#17
MOV b,#19
MUL t2,a,b
ADD z,z,t2

MOV x,#11
MOV y,#13
ADD t1,x,y
MUL z,t1,#2
MOV a,#17
MOV b,#19
MUL t2,a,b
ADD z,z,t2

MOV x,#11
MOV y,#13
ADD t1,x,y
MUL z,t1,#2
MOV a,#17
MOV b,#19
MUL t2,a,b
ADD z,z,t2

MOV x,#11
MOV y,#13
ADD t1,x,y
MUL z,t1,#2
MOV a,#17
MOV b,#19
MUL t2,a,b
ADD z,z,t2

MOV x,#11
MOV y,#13
ADD t1,x,y
MUL z,t1,#2
MOV a,#17
MOV b,#19
MUL t2,a,b
ADD z,z,t2

MOV r0,#11
MOV r1,#13
ADD r0,r0,r1
MUL r2,r0,#2
MOV r0,#17
MOV r1,#19
MUL r0,r0,r1
ADD r2,r2,r0

Allocation by colouring

z

x y t1

t2 ba

x t1

t2 a

y

b

z



Algorithm

Finding the minimal colouring for a graph is NP-hard, and 
therefore difficult to do efficiently. 

However, we may use a simple heuristic algorithm which 
chooses a sensible order in which to colour vertices and 

usually yields satisfactory results on real clash graphs.



Algorithm

• Choose a vertex (i.e. virtual register) which has 
the least number of incident edges (i.e. clashes).

• Remove the vertex and its edges from the graph, 
and push the vertex onto a LIFO stack.

• Repeat until the graph is empty.

• Pop each vertex from the stack and colour it in 
the most conservative way which avoids the 
colours of its (already-coloured) neighbours.



Algorithm

z

a

x

z

yw

b

c d

x

y

w

a

b

c

d



Algorithm

a

x

z

yw

b

c ddc

a b

w

x

y

z

r0
r1
r2
r3



Algorithm

Bear in mind that this is only a heuristic.

a

b c

x

y z

a

b

c

x

y

z



Algorithm

Bear in mind that this is only a heuristic.

a

b c

x

y z

a

b c

x

y z



Algorithm

Bear in mind that this is only a heuristic.

a

b c

x

y z

a

b c

x

y z

A better (more minimal) colouring may exist.

a

b



Spilling

This algorithm tries to find an approximately 
minimal colouring of the clash graph, but it assumes 

new colours are always available when required.

In reality we will usually have a finite number of 
colours (i.e. physical registers) available; how should 

the algorithm cope when it runs out of colours?



Spilling

The quantity of physical registers is strictly 
limited, but it is usually reasonable to assume that 
fresh memory locations will always be available.

So, when the number of simultaneously live 
values exceeds the number of physical registers, 

we may spill the excess values into memory.

Operating on values in memory is of course 
much slower, but it gets the job done.



Spilling

ADD a,b,c

LDR t1,#0xFFA4
LDR t2,#0xFFA8
ADD t3,t1,t2
STR t3,#0xFFA0

vs.



Algorithm
• Choose a vertex with the least number of edges.

• If it has fewer edges than there are colours,

• remove the vertex and push it onto a stack,

• otherwise choose a register to spill — e.g. the 
least-accessed one — and remove its vertex.

• Repeat until the graph is empty.

• Pop each vertex from the stack and colour it.

• Any uncoloured vertices must be spilled.



Algorithm

a

x

z

y

a: 3, b: 5, c: 7, d: 11, w: 13, x: 17, y: 19, z: 23

b

c d

w

b

d



Algorithm

z

a

x

z

yw

b

c d

x

y

c

d

w



Algorithm

a

x

z

yw

b

c ddc

x

y

z

r0
r1
a and b

spilled to memory

w



Algorithm
Choosing the right virtual register to spill will 

result in a faster, smaller program.

The static count of “how many accesses?” is a 
good start, but doesn’t take account of more 
complex issues like loops and simultaneous 

liveness with other spilled values.

One easy heuristic is to treat one static access 
inside a loop as (say) 4 accesses; this generalises 
to 4n accesses inside a loop nested to level n.



Algorithm
“Slight lie”: when spilling to memory, we (normally) need 
one free register to use as temporary storage for values 

loaded from and stored back into memory.

If any instructions operate on two spilled values 
simultaneously, we will need two such temporary 

registers to store both values.

So, in practise, when a spill is detected we may need to 
restart register allocation with one (or two) fewer 

physical registers available so that these can be kept free 
for temporary storage of spilled values.



Algorithm
When we are popping vertices from the stack and 

assigning colours to them, we sometimes have more 
than one colour to choose from.

If the program contains an instruction “MOV a,b” then 
storing a and b in the same physical register (as long as 
they don’t clash) will allow us to delete that instruction.

We can construct a preference graph to show which 
pairs of registers appear together in MOV instructions, 

and use it to guide colouring decisions.



Non-orthogonal instructions
We have assumed that we are free to choose physical 
registers however we want to, but this is simply not 

the case on some architectures.

• The x86 MUL instruction expects one of its arguments 
in the AL register and stores its result into AX.

• The VAX MOVC3 instruction zeroes r0, r2, r4 and r5, 
storing its results into r1 and r3.

We must be able to cope with such irregularities.



Non-orthogonal instructions

We can handle the situation tidily by pre-allocating a 
virtual register to each of the target machine’s physical 
registers, e.g. keep v0 in r0, v1 in r1, ..., v31 in r31.

When generating intermediate code in normal form, we 
avoid this set of registers, and use new ones (e.g. v32, 

v33, ...) for temporaries and user variables.

In this way, each physical register is explicitly 
represented by a unique virtual register.



Non-orthogonal instructions
We must now do extra work when generating 

intermediate code:

• When an instruction requires an operand in a specific 
physical register (e.g. x86 MUL), we generate a 
preceding MOV to put the right value into the 
corresponding virtual register.

• When an instruction produces a result in a specific 
physical register (e.g. x86 MUL), we generate a trailing 
MOV to transfer the result into a new virtual register.



Non-orthogonal instructions

x = 19;
y = 23;
z = x + y;

MOV v32,#19
MOV v33,#23
MOV v1,v32
MOV v2,v33
ADD v0,v1,v2
MOV v34,v0

If (hypothetically) ADD on the target architecture 
can only perform r0 = r1 + r2:



clash graph

Non-orthogonal instructions
This may seem particularly wasteful, but many of 
the MOV instructions will be eliminated during 
register allocation if a preference graph is used.

v32 v33v34

v0 v1 v2

v32 v33v34

preference graph

v0 v1 v2



clash graph

MOV v32,#19
MOV v33,#23
MOV v1,v32
MOV v2,v33
ADD v0,v1,v2
MOV v34,v0

MOV v32,#19
MOV v33,#23
MOV v1,v32
MOV v2,v33
ADD v0,v1,v2
MOV v34,v0

MOV r1,#19
MOV r2,#23
MOV r1,r1
MOV r2,r2
ADD r0,r1,r2
MOV r0,r0

Non-orthogonal instructions
This may seem particularly wasteful, but many of 
the MOV instructions will be eliminated during 
register allocation if a preference graph is used.

v34 v32 v33

v0 v1 v2



Non-orthogonal instructions

And finally, 

• When we know an instruction is going to corrupt 
the contents of a physical register, we insert an edge 
on the clash graph between the corresponding 
virtual register and all other virtual registers live at 
that instruction — this prevents the register 
allocator from trying to store any live values in the 
corrupted register.



MOV v32,#6
MOV v33,#7
MUL v34,v32,v33
…

clash graph

Non-orthogonal instructions

If (hypothetically) MUL on the target architecture 
corrupts the contents of r0:

v32 v33 v34

v1v0 v2



MOV v32,#6
MOV v33,#7
MUL v34,v32,v33
…

MOV v32,#6
MOV v33,#7
MUL v34,v32,v33
…

MOV r1,#6
MOV r2,#7
MUL r0,r1,r2
…

clash graph

Non-orthogonal instructions

If (hypothetically) MUL on the target architecture 
corrupts the contents of r0:

v32 v33 v34v34v32 v33

v1v0 v2



Procedure calling standards

This final technique of synthesising edges on the clash 
graph in order to avoid corrupted registers is helpful 
for dealing with the procedure calling standard of the 

target architecture.

Such a standard will usually dictate that procedure calls 
(e.g. CALL and CALLI instructions in our 3-address 
code) should use certain registers for arguments and 
results, should preserve certain registers over a call, 

and may corrupt any other registers if necessary.



Procedure calling standards

• Arguments should be placed in r0-r3 before a 
procedure is called.

• Results should be returned in r0 and r1.

• r4-r8, r10, r11 and r13 should be preserved 
over procedure calls.

On the ARM, for example:



Procedure calling standards
Since a procedure call instruction may corrupt some 

of the registers (r0-r3, r9, and r12-r15 on the 
ARM), we can synthesise edges on the clash graph 

between the corrupted registers and all other 
virtual registers live at the call instruction.

As before, we may also synthesise MOV instructions 
to ensure that arguments and results end up in the 
correct registers, and use the preference graph to 

guide colouring such that most of these MOVs can be 
deleted again.



Procedure calling standards

x = 7;
y = 11;
z = 13;
a = f(x,y)+z;

MOV v32,#7
MOV v33,#11
MOV v34,#13
MOV v0,v32
MOV v1,v33
CALL f
MOV v35,v0
ADD v36,v34,v35



MOV v32,#7
MOV v33,#11
MOV v34,#13
MOV v0,v32
MOV v1,v33
CALL f
MOV v35,v0
ADD v36,v34,v35

v34

Procedure calling standards

v32 v33

v0 v1 v2 v3 v9

v36v35

v4 ...v5



MOV v32,#7
MOV v33,#11
MOV v34,#13
MOV v0,v32
MOV v1,v33
CALL f
MOV v35,v0
ADD v36,v34,v35

MOV v32,#7
MOV v33,#11
MOV v34,#13
MOV v0,v32
MOV v1,v33
CALL f
MOV v35,v0
ADD v36,v34,v35

MOV r0,#7
MOV r1,#11
MOV r4,#13
MOV r0,r0
MOV r1,r1
CALL f
MOV r0,r0
ADD r0,r4,r0

v34

Procedure calling standards

v32 v33

v0 v1 v2 v3 v9

v36v35v34v32 v33 v36v35

v4 ...v5



Summary
• A register allocation phase is required to assign each 

virtual register to a physical one during compilation

• Registers may be allocated by colouring the vertices 
of a clash graph

• When the number of physical registers is limited, 
some virtual registers may be spilled to memory

• Non-orthogonal instructions may be handled with 
additional MOVs and new edges on the clash graph

• Procedure calling standards are also handled this way




