
Operating Systems

Steven Hand

Lent Term 2010

Handout 3 - Case Studies

Operating Systems — N/H/MW@12

Operating Systems — N/H/MW@12 1

Unix: Introduction

• Unix first developed in 1969 at Bell Labs (Thompson & Ritchie)

• Originally written in PDP-7 asm, but then (1973) rewritten in the ‘new’ high-level
language C

⇒ easy to port, alter, read, etc.

• 6th edition (“V6”) was widely available (1976).

– source avail ⇒ people could write new tools.

– nice features of other OSes rolled in promptly.

• By 1978, V7 available (for both the 16-bit PDP-11 and the new 32-bit VAX-11).

• Since then, two main families:

– AT&T: “System V”, currently SVR4.

– Berkeley: “BSD”, currently 4.3BSD/4.4BSD.

• Standardisation efforts (e.g. POSIX, X/OPEN) to homogenise.

• Best known “UNIX” today is probably linux, but also get FreeBSD, NetBSD, and
(commercially) Solaris, OSF/1, IRIX, and Tru64.

Unix Case Study— Introduction 2

Unix Family Tree (Simplified)

System V
SVR2

SVR3

SVR4

4.2BSD

4.3BSD

4.3BSD/Tahoe

4.3BSD/Reno

4.4BSD

Eighth Edition

Ninth Edition

Tenth Edition

Mach

OSF/1 SunOS 4

Solaris

Solaris 2

SunOS

SunOS 3

First Edition

Fifth Edition

Sixth Edition

Seventh Edition
3BSD

4.0BSD
4.1BSD

System III

32V

1974
1975

1977

1983
1984
1985
1986

1987
1988
1989

1990

1991
1992

1993

1969

1973

1976

1978
1979
1980
1981
1982

Unix Case Study— Introduction 3

Design Features

Ritchie and Thompson writing in CACM, July 74, identified the following (new)
features of UNIX:

1. A hierarchical file system incorporating demountable volumes.

2. Compatible file, device and inter-process I/O.

3. The ability to initiate asynchronous processes.

4. System command language selectable on a per-user basis.

5. Over 100 subsystems including a dozen languages.

6. A high degree of portability.

Features which were not included:

• real time

• multiprocessor support

Fixing the above is pretty hard.

Unix Case Study— Overview 4

Structural Overview

System Call Interface

Application
(Process)

Application
(Process)

Application
(Process)

Kernel

User

Hardware

Process
Management

Memory
Management

Block I/O Char I/O

File System

Device Driver Device Driver Device Driver Device Driver

• Clear separation between user and kernel portions.

• Processes are unit of scheduling and protection.

• All I/O looks like operations on files.

Unix Case Study— Overview 5

File Abstraction

• A file is an unstructured sequence of bytes.

• Represented in user-space by a file descriptor (fd)

• Operations on files are:

– fd = open (pathname, mode)

– fd = creat(pathname, mode)

– bytes = read(fd, buffer, nbytes)

– count = write(fd, buffer, nbytes)

– reply = seek(fd, offset, whence)

– reply = close(fd)

• Devices represented by special files:

– support above operations, although perhaps with bizarre semantics.

– also have ioctl’s: allow access to device-specific functionality.

• Hierarchical structure supported by directory files.

Unix Case Study— Files and the Filesystem 6

Directory Hierarchy

/

etc/bin/ usr/dev/ home/

steve/

unix.ps index.html

jean/

hda hdb tty

• Directories map names to files (and directories).

• Have distinguished root directory called ’/’

• Fully qualified pathnames ⇒ perform traversal from root.

• Every directory has ’.’ and ’..’ entries: refer to self and parent respectively.

• Shortcut: current working directory (cwd).

• In addition shell provides access to home directory as ~username (e.g. ~steve/)

Unix Case Study— Files and the Filesystem 7

Aside: Password File

• /etc/passwd holds list of password entries.

• Each entry roughly of the form:

user-name:encrypted-passwd:home-directory:shell

• Use one-way function to encrypt passwords.

– i.e. a function which is easy to compute in one direction, but has a hard to
compute inverse (e.g. person to phone-number lookup).

• To login:

1. Get user name

2. Get password

3. Encrypt password

4. Check against version in /etc/password

5. If ok, instantiate login shell.

• Publicly readable since lots of useful info there.

• Problem: off-line attack.

• Solution: shadow passwords (/etc/shadow)

Unix Case Study— Files and the Filesystem 8

File System Implementation

type mode

timestamps (x3)

direct blocks (x12)

single indirect
double indirect

triple indirect

direct
blocks
(512)

data

data

data

data

data

data

to block with 512
single indirect entries

to block with 512
double indirect entries

userid groupid

size nblocks
nlinks flags

• In kernel, a file is represented by a data structure called an index-node or i-node.

• Holds file meta-data:

a) Owner, permissions, reference count, etc.

b) Location on disk of actual data (file contents).

• Question: Where is the filename kept?

Unix Case Study— Files and the Filesystem 9

Directories and Links

home/

steve/ jean/

/

doc/

.

..
unix.ps

index.html

214

78

385

56

Filename I-Node

misc 47

.

..

unix.ps

hello.txt

2

78

107

13

Filename I-Node

misc/ index.html unix.ps

hello.txt

bin/

• Directory is a file which maps filenames to i-nodes.

• An instance of a file in a directory is a (hard) link.

• (this is why have reference count in i-node).

• Directories can have at most 1 (real) link. Why?

• Also get soft- or symbolic-links: a ‘normal’ file which contains a filename.

Unix Case Study— Files and the Filesystem 10

On-Disk Structures

S
u

p
er

-B
lo

ck

B
o

o
t-

B
lo

ck

Inode
Table

Data
Blocks

S
u

p
er

-B
lo

ck

Inode
Table

Data
Blocks

Partition 1 Partition 2

Hard Disk

0 1 2 i i+1 j j+1 j+2 l l+1 m

• A disk is made up of a boot block followed by one or more partitions.

• (a partition is a contiguous range of N fixed-size blocks of size k for some N , k).

• A Unix file-system resides within a partition.

• The file-system superblock contains info such as:

– number of blocks in file-system

– number of free blocks in file-system

– start of the free-block list

– start of the free-inode list.

– various bookkeeping information.

Unix Case Study— Files and the Filesystem 11

Mounting File-Systems

/

etc/bin/ usr/dev/ home/

hda1 hda2 hdb1

steve/ jean/

/

Mount
Point

Root File-System

File-System
on /dev/hda2

• Entire file-systems can be mounted on an existing directory in an already mounted
filesystem.

• At very start, only ‘/’ exists ⇒ need to mount a root file-system.

• Subsequently can mount other file-systems, e.g. mount("/dev/hda2", "/home",

options)

• Provides a unified name-space: e.g. access /home/steve/ directly.

• Cannot have hard links across mount points: why?

• What about soft links?

Unix Case Study— Files and the Filesystem 12

In-Memory Tables

Process A

Process B

0

1

2

3

4

N

11
3
25
17
1

6

0

1

2

3

4

N

2
27
62
5
17

32

0 47
1

17

135

78

process-specific
file tables

system-wide
open file table

Inode 78

acitve inode table

• Recall process sees files as file descriptors

• In implementation these are just indices into a process-specific open file table.

• Entries point to system-wide open file table. Why?

• These in turn point to (in memory) inode table.

Unix Case Study— Files and the Filesystem 13

Access Control

Owner Group World

R W E R W E R W E

= 0640

Owner Group World

R W E R W E R W E

= 0755

• Access control information held in each inode.

• Three bits for each of owner, group and world: { read, write and execute }

• Question: What do these mean for directories?

• In addition have setuid and setgid bits:

– normally processes inherit permissions of invoking user.

– setuid/setgid allow the user to “become” someone else when running a
particular program.

– e.g. prof owns both executable test (0711 and setuid), and score file (0600)

⇒ any user can run it.
⇒ it can update score file.
⇒ but users can’t cheat.

• Question: and what do these mean for directories?

Unix Case Study— Files and the Filesystem 14

Consistency Issues

• To delete a file, use the unlink system call.

• From the shell, this is rm <filename>

• Procedure is:

1. check if user has sufficient permissions on the file (must have write access).

2. check if user has sufficient permissions on the directory (must have write
access).

3. if ok, remove entry from directory.

4. Decrement reference count on inode.

5. if now zero:

a. free data blocks.
b. free inode.

• If the system crashes: must check entire file-system:

– check if any block unreferenced.

– check if any block double referenced.

• (We’ll see more on this later)

Unix Case Study— Files and the Filesystem 15

Unix File-System: Summary

• Files are unstructured byte streams.

• Everything is a file: ‘normal’ files, directories, symbolic links, special files.

• Hierarchy built from root (‘/’).

• Unified name-space (multiple file-systems may be mounted on any leaf directory).

• Low-level implementation based around inodes.

• Disk contains list of inodes (along with, of course, actual data blocks).

• Processes see file descriptors: small integers which map to system file table.

• Permissions for owner, group and everyone else.

• Setuid/setgid allow for more flexible control.

• Care needed to ensure consistency.

Unix Case Study— Files and the Filesystem 16

Unix Processes

Unix
Kernel

Address Space
per Process

Text Segment

Data Segment

Stack Segment

Free
Space

grows downward as
functions are called

grows upwards as more
memory allocated

Kernel Address Space
(shared by all)

• Recall: a process is a program in execution.

• Have three segments: text, data and stack.

• Unix processes are heavyweight.

Unix Case Study— Processes 17

Unix Process Dynamics

execve exit

fork wait

parent
process

program executes

child
process zombie

process

parent process (potentially) continues

• Process represented by a process id (pid)

• Hierarchical scheme: parents create children.

• Four basic primitives:

– pid = fork ()

– reply = execve(pathname, argv, envp)

– exit(status)

– pid = wait (status)

• fork() nearly always followed by exec()

⇒ vfork() and/or COW.

Unix Case Study— Processes 18

Start of Day

• Kernel (/vmunix) loaded from disk (how?) and execution starts.

• Root file-system mounted.

• Process 1 (/etc/init) hand-crafted.

• init reads file /etc/inittab and for each entry:

1. opens terminal special file (e.g. /dev/tty0)

2. duplicates the resulting fd twice.

3. forks an /etc/tty process.

• each tty process next:

1. initialises the terminal

2. outputs the string “login:” & waits for input

3. execve()’s /bin/login

• login then:

1. outputs “password:” & waits for input

2. encrypts password and checks it against /etc/passwd.

3. if ok, sets uid & gid, and execve()’s shell.

• Patriarch init resurrects /etc/tty on exit.

Unix Case Study— Processes 19

The Shell

execve
child

process

program
executes

fg?

repeat
ad

infinitum

yes

no

fork

read get command line

issue promptwrite

exitwait
zombie
process

• The shell just a process like everything else.

• Uses path (= list of directories to search) for convenience.

• Conventionally ‘&’ specifies run in background.

• Parsing stage (omitted) can do lots. . .

Unix Case Study— Processes 20

Shell Examples

pwd

/home/steve

ls -F

IRAM.micro.ps gnome_sizes prog-nc.ps

Mail/ ica.tgz rafe/

OSDI99_self_paging.ps.gz lectures/ rio107/

TeX/ linbot-1.0/ src/

adag.pdf manual.ps store.ps.gz

docs/ past-papers/ wolfson/

emacs-lisp/ pbosch/ xeno_prop/

fs.html pepsi_logo.tif

cd src/

pwd

/home/steve/src

ls -F

cdq/ emacs-20.3.tar.gz misc/ read_mem.c

emacs-20.3/ ispell/ read_mem* rio007.tgz

wc read_mem.c

95 225 2262 read_mem.c

ls -lF r*

-rwxrwxr-x 1 steve user 34956 Mar 21 1999 read_mem*

-rw-rw-r-- 1 steve user 2262 Mar 21 1999 read_mem.c

-rw------- 1 steve user 28953 Aug 27 17:40 rio007.tgz

ls -l /usr/bin/X11/xterm

-rwxr-xr-x 2 root system 164328 Sep 24 18:21 /usr/bin/X11/xterm*

• Prompt is ‘#’.

• Use man to find out about commands.

• User friendly?

Unix Case Study— Processes 21

Standard I/O

• Every process has three fds on creation:

– stdin: where to read input from.

– stdout: where to send output.

– stderr: where to send diagnostics.

• Normally inherited from parent, but shell allows redirection to/from a file, e.g.:

– ls >listing.txt

– ls >&listing.txt

– sh <commands.sh.

• Actual file not always appropriate; e.g. consider:

ls >temp.txt;

wc <temp.txt >results

• Pipeline is better (e.g. ls | wc >results)

• Most Unix commands are filters, i.e. read from stdin and output to stdout ⇒
can build almost arbitrarily complex command lines.

• Redirection can cause some buffering subtleties.

Unix Case Study— Processes 22

Pipes

Process BProcess A

read(fd, buf, n)write(fd, buf, n)

old data
new data

free space

• One of the basic Unix IPC schemes.

• Logically consists of a pair of fds, one for each ‘end’ of the pipe.

• e.g. reply = pipe(int fds[2])

• Concept of “full” and “empty” pipes.

• Only allows communication between processes with a common ancestor (why?).

• Named pipes address this. . .

Unix Case Study— Interprocess Communication 23

Signals

• Problem: pipes need planning ⇒ use signals.

• Similar to a (software) interrupt.

• Examples:

– SIGINT : user hit Ctrl-C.

– SIGSEGV : program error.

– SIGCHLD : a death in the family. . .

– SIGTERM : . . . or closer to home.

• Unix allows processes to catch signals.

• e.g. Job control:

– SIGTTIN, SIGTTOU sent to bg processes

– SIGCONT turns bg to fg.

– SIGSTOP does the reverse.

• Cannot catch SIGKILL (hence kill -9)

• Signals can also be used for timers, window resize, process tracing, . . .

Unix Case Study— Interprocess Communication 24

I/O Implementation

Hardware

Device Driver Device Driver Device Driver Device Driver

Generic File System Layer

Buffer
Cache

Raw Block I/ORaw Character I/O

Cooked
Character I/O

Kernel

Kernel

User

• Recall:

– everything accessed via the file system.

– two broad categories: block and char.

• Low-level stuff gory and machine dependent ⇒ ignore.

• Character I/O is low rate but complex ⇒ most code in the “cooked” interface.

• Block I/O simpler but performance matters ⇒ emphasis on the buffer cache.

Unix Case Study— I/O Subsystem 25

The Buffer Cache

• Basic idea: keep copy of some parts of disk in memory for speed.

• On read do:

1. Locate relevant blocks (from inode)

2. Check if in buffer cache.

3. If not, read from disk into memory.

4. Return data from buffer cache.

• On write do same first three, and then update version in cache, not on disk.

• “Typically” prevents 85% of implied disk transfers.

• Question: when does data actually hit disk?

• Answer: call sync every 30 seconds to flush dirty buffers to disk.

• Can cache metadata too — problems?

Unix Case Study— I/O Subsystem 26

Unix Process Scheduling

• Priorities 0–127; user processes ≥ PUSER = 50.

• Round robin within priorities, quantum 100ms.

• Priorities are based on usage and nice value, i.e.

Pj(i) = Basej +
CPUj(i− 1)

4
+ 2× nicej

gives the priority of process j at the beginning of interval i where:

CPUj(i) =
2× loadj

(2× loadj) + 1
CPUj(i− 1) + nicej

and nicej is a (partially) user controllable adjustment parameter ∈ [−20, 20].

• loadj is the sampled average length of the run queue in which process j resides,
over the last minute of operation

• so if e.g. load is 1 ⇒ approximately 90% of 1 seconds CPU usage will be
“forgotten” within 5 seconds.

Unix Case Study— Process Scheduling 27

Unix Process States

fork()

ru

rk p

rb

z

sl

c

schedule

wakeup

sleep

interrupt

exit

syscall

returnreturn

preempt

same
state

ru = running (user-mode) rk = running (kernel-mode)

z = zombie p = pre-empted

sl = sleeping rb = runnable

c = created

• Note: above is simplified — see CS section 23.14 for detailed descriptions of all states/transitions.

Unix Case Study— Process Scheduling 28

Summary

• Main Unix features are:

– file abstraction

∗ a file is an unstructured sequence of bytes
∗ (not really true for device and directory files)

– hierarchical namespace

∗ directed acyclic graph (if exclude soft links)
∗ can recursively mount filesystems

– heavy-weight processes

– IPC: pipes & signals

– I/O: block and character

– dynamic priority scheduling

∗ base priority level for all processes
∗ priority is lowered if process gets to run
∗ over time, the past is forgotten

• But Unix V7 had inflexible IPC, inefficient memory management, and poor kernel
concurrency.

• Later versions address these issues.

Unix Case Study— Summary 29

Windows NT: History

After OS/2, MS decide they need “New Technology”:

• 1988: Dave Cutler recruited from DEC.

• 1989: team (∼ 10 people) starts work on a new OS (micro-kernel architecture)

• July 1993: first version (3.1) introduced

• (name compatible with windows 3.1)

Bloated and suckful ⇒

• NT 3.5 released in September 1994: mainly size and performance optimisations.

• Followed in May 1995 by NT 3.51 (support for the Power PC, and more
performance tweaks)

• July 1996: NT 4.0

– new (windows 95) look ’n feel

– some desktop users but mostly limited to servers

– for performance reasons, various functions pushed back into kernel (most
notably graphics rendering functions)

– ongoing upgrades via service packs

NT Case Study— Introduction & Overview 30

Windows NT: Evolution

• Feb 2000: NT 5.0 aka Windows 2000

– borrows from windows 98 look ’n feel

– both server and workstation versions, latter of which starts to get wider use

– big push to finally kill DOS/Win 9x family (but fails due to internal politicking)

• Windows XP (NT 5.1) launched October 2001

– home and professional ⇒ finally kills win 9x.

– various “editions” (media center, 64-bit) & service packs (SP1, SP2, SP3)

• Server product Windows Server 2003 (NT 5.2) released 2003

– basically the same modulo registry tweaks, support contract and of course cost

– a plethora of editions. . .

• Windows Vista (NT 6.0) limped onto the scene Q4 2006

– new Aero UI, new WinFX API

– missing Longhorn bits like WinFS, Msh

• Windows Server 2008 (also based on NT 6.0, but good) landed Feb 2008

• Windows 7 (NT 6.1, build 7600) released October 2009. . .

NT Case Study— Introduction & Overview 31

NT Design Principles

Key goals for the system were:

• portability

• security

• POSIX compliance

• multiprocessor support

• extensibility

• international support

• compatibility with MS-DOS/Windows applications

This led to the development of a system which was:

• written in high-level languages (C and C++)

• based around a micro-kernel, and

• constructed in a layered/modular fashion.

NT Case Study— Introduction & Overview 32

Structural Overview

OS/2
Subsytem

OS/2
Applications

Win32
Applications

Kernel Mode

User Mode

Hardware

Native NT Interface (Sytem Calls)

Object
Manager

Process
Manager

VM
Manager

I/O
Manager

Win32
Subsytem

POSIX
Subsytem

Security
Subsytem

MS-DOS
Applications

Posix
ApplicationsWin16

Applications
Logon

Process

MS-DOS
Subsytem

Win16
Subsytem

ERNELKEVICED
Hardware Abstraction Layer (HAL)

RIVERSD

File System
Drivers

Cache
Manager

Security
Manager

LPC
Facility

XECUTIVEE

• Kernel Mode: HAL, Kernel, & Executive

• User Mode: environmental subsystems, protection subsystem

NT Case Study— Introduction & Overview 33

HAL

• Layer of software (HAL.DLL) which hides details of underlying hardware

• e.g. low-level interrupt mechanisms, DMA controllers, multiprocessor
communication mechanisms

• Several HALs exist with same interface but different implementation (often
vendor-specific, e.g. for large cc-NUMA machines)

Kernel
• Foundation for the executive and the subsystems

• Execution is never preempted.

• Four main responsibilities:

1. CPU scheduling
2. interrupt and exception handling
3. low-level processor synchronisation
4. recovery after a power failure

• Kernel is objected-oriented; all objects are either dispatcher objects (active or
temporal things) or control objects (everything else)

NT Case Study— Low-level Functions 34

Processes and Threads
NT splits the “virtual processor” into two parts:

1. A process is the unit of resource ownership.
Each process has:

• a security token,

• a virtual address space,

• a set of resources (object handles), and

• one or more threads.

2. A thread are the unit of dispatching.
Each thread has:

• a scheduling state (ready, running, etc.),

• other scheduling parameters (priority, etc),

• a context slot, and

• (generally) an associated process.

Threads are:

• co-operative: all threads in a process share address space & object handles.

• lightweight: require less work to create/delete than processes (mainly due to
shared virtual address space).

NT Case Study— Low-level Functions 35

CPU Scheduling

• Hybrid static/dynamic priority scheduling:

– Priorities 16–31: “real time” (static priority).

– Priorities 1–15: “variable” (dynamic) priority.

– (priority 0 is reserved for zero page thread)

• Default quantum 2 ticks (∼20ms) on Workstation, 12 ticks (∼120ms) on Server.

• Threads have base and current (≥ base) priorities.

– On return from I/O, current priority is boosted by driver-specific amount.

– Subsequently, current priority decays by 1 after each completed quantum.

– Also get boost for GUI threads awaiting input: current priority boosted to 14
for one quantum (but quantum also doubled)

– Yes, this is true.

• On Workstation also get quantum stretching:

– “. . . performance boost for the foreground application” (window with focus)

– fg thread gets double or triple quantum.

• If no runnable thread, dispatch ‘idle’ thread (which executes DPCs).

NT Case Study— Low-level Functions 36

Object Manager

Temporary/Permanent

Object
Header Type Object

Type Name
Common Info.

Open

Close

Delete

Parse

Security

Query Name

Object Name
Object Directory

Security Descriptor

Open Handle Count

Reference Count
Type Object Pointer

Quota Charges

Open Handles List

Object
Body

Object-Specfic Data
(perhaps including

a kernel object)

Methods:

Process
1

Process
2 Process

3

• Every resource in NT is represented by an object

• The Object Manager (part of the Executive) is responsible for:

– creating objects and object handles

– performing security checks

– tracking which processes are using each object

• Typical operation:

– handle = open(objectname, accessmode)

– result = service(handle, arguments)

NT Case Study— Executive Functions 37

Object Namespace

\

??\ device\ BaseNamedObjects\driver\

doc\

exams.tex

A: C: COM1:
Harddisk0\Serial0\Floppy0\

Partition1\ Partition2\

winnt\ temp\

• Recall: objects (optionally) have a name

• Object Manger manages a hierarchical namespace:

– shared between all processes ⇒ sharing

– implemented via directory objects

– each object protected by an access control list.

– naming domains (using parse) mean file-system namespaces can be integrated

• Also get symbolic link objects: allow multiple names (aliases) for the same object.

• Modified view presented at API level. . .

NT Case Study— Executive Functions 38

Process Manager

• Provides services for creating, deleting, and using threads and processes.

• Very flexible:

– no built in concept of parent/child relationships or process hierarchies

– processes and threads treated orthogonally.

⇒ can support Posix, OS/2 and Win32 models.

Virtual Memory Manager

• NT employs paged virtual memory management

• The VMM provides processes with services to:

– allocate and free virtual memory

– modify per-page protections

• Can also share portions of memory:

– use section objects (≈ software segments)

– section objects are either based (specific base address) or non-based (floating)

– also used for memory-mapped files

NT Case Study— Executive Functions 39

Security Reference Manager

• NT’s object-oriented nature enables a uniform mechanism for runtime access and
audit checks

– everytime a process opens handle to an object, check process’s security token
and object’s ACL

– compare with Unix (file-system, networking, window system, shared memory)

Local Procedure Call Facility

• LPC (or IPC) passes requests and results between client and server processes
within a single machine.

• Used to request services from the various NT environmental subsystems.

• Three variants of LPC channels:

1. small messages (≤ 256 bytes): copy messages between processes

2. zero copy: avoid copying large messages by pointing to a shared memory
section object created for the channel.

3. quick LPC: used by the graphical display portions of the Win32 subsystem.

NT Case Study— Executive Functions 40

I/O Manager

I/O
Manager

File
System
Driver

Intermediate
Driver

Device
Driver HAL

I/O Requests

• The I/O Manager is responsible for:

– file systems

– cache management

– device drivers

• Basic model is asynchronous:

– each I/O operation explicitly split into a request and a response

– an I/O Request Packet (IRP) used to hold parameters, results, etc.

• File-system & device drivers are stackable. . .

NT Case Study— Executive Functions 41

Cache Manager

• Cache Manager caches “virtual blocks”:

– viz. keeps track of cache “lines” as offsets within a file rather than a volume.

– disk layout & volume concept abstracted away.

⇒ no translation required for cache hit.

⇒ can get more intelligent prefetching

• Completely unified cache:

– cache “lines” all live in the virtual address space.

– decouples physical & virtual cache systems: e.g.

∗ virtually cache in 256K blocks,
∗ physically cluster up to 64K.

– NT virtual memory manager responsible for actually doing the I/O.

– so lots of FS cache when VM system lightly loaded, little when system thrashing

• NT also provides some user control:

– if specify temporary attrib when creating file ⇒ data will never be flushed to
disk unless absolutely necessary.

– if specify write through attrib when opening a file ⇒ all writes will
synchronously complete.

NT Case Study— Executive Functions 42

File Systems: FAT16

A

B

8

7
4

EOF

Free

Free

Free

3

n-2

Free

EOF

Disk Info
0

1

2

6

7

8

9

n-1

File Name (8 Bytes)

AD RVSH
Extension (3 Bytes)

Reserved
(10 Bytes)

Time (2 Bytes)

Date (2 Bytes)

First Cluster (2 Bytes)

File Size (4 Bytes)

Attribute Bits

A: Archive

D: Directory

V: Volume Label

S: System

H: Hidden

R: Read-Only

• A file is a linked list of clusters (= a set of 2n contiguous disk blocks, n ≥ 0)

• Each entry in the FAT contains either:

– the index of another entry within the FAT, or

– a special value EOF meaning “end of file”, or

– a special value Free meaning “free”.

• Directory entries contain index into the FAT

• FAT16 could only handle partitions up to (216 × c) bytes ⇒ max 2Gb partition
with 32K clusters (and big cluster size is bad)

NT Case Study— Microsoft File Systems 43

File Systems: FAT32

• Obvious extension: instead of using 2 bytes per entry, FAT32 uses 4 bytes

⇒ can support e.g. 8Gb partition with 4K clusters

• Further enhancements with FAT32 include:

– can locate the root directory anywhere on the partition (in FAT16, the root
directory had to immediately follow the FAT(s)).

– can use the backup copy of the FAT instead of the default (more fault tolerant)

– improved support for demand paged executables (consider the 4K default
cluster size . . .).

• VFAT on top of FAT32 adds long name support and internationalization:

– names now unicode strings of up to 256 characters.

– want to keep same directory entry structure for compatibility with e.g. DOS

⇒ use multiple directory entries to contain successive parts of name.

– abuse V attribute to avoid listing these

Still pretty primitive. . .

NT Case Study— Microsoft File Systems 44

File-Systems: NTFS

File Record
Master File
Table (MFT)

0

1

2

3

4

5

6

7

16

17

$Mft

$MftMirr

$LogFile

$Volume

$AttrDef

\

$Bitmap

$BadClus

user file/directory

user file/directory

15

Standard Information

Filename

Data...

• Fundamental structure of NTFS is a volume:

– based on a logical disk partition

– may occupy a portion of a disk, and entire disk, or span across several disks.

• NTFS stores all file records in a special file called the Master File Table (MFT).

• The MFT is indexed by a file reference: a 64-bit unique identifier for a file

• A file itself is a structured object consisting of set of attribute/value pairs of
variable length. . .

NT Case Study— Microsoft File Systems 45

NTFS: Recovery

• To aid recovery, all file system data structure updates are performed inside
transactions:

– before a data structure is altered, the transaction writes a log record that
contains redo and undo information.

– after the data structure has been changed, a commit record is written to the
log to signify that the transaction succeeded.

– after a crash, the file system can be restored to a consistent state by processing
the log records.

• Does not guarantee that all the user file data can be recovered after a crash —
just that metadata files will reflect some prior consistent state.

• The log is stored in the third metadata file at the beginning of the volume
($Logfile)

– in fact, NT has a generic log file service

⇒ could in principle be used by e.g. database

• Overall makes for far quicker recovery after crash

• (modern Unix fs [ext3, xfs] use similar scheme)

NT Case Study— Microsoft File Systems 46

NTFS: Fault Tolerance

Partition A1

Hard Disk A Hard Disk B

Partition A2

Partition A3

Partition B1

Partition B2

• FtDisk driver allows multiple partitions be combined into a logical volume:

– e.g. logically concatenate multiple disks to form a large logical volume

– based on the concept of RAID = Redundant Array of Inexpensive Disks:

– e.g. RAID level 0: interleave multiple partitions round-robin to form a stripe set:

∗ logical block 0 → block 0 of partition A2, logical block 1 → block 0 of
partition B2, logical block 2 → block 1 of partition A2, etc

– e.g. RAID level 1 increases robustness by using a mirror set: two equally sized
partitions on two disks with identical data contents.

– (other more complex RAID levels also exist)

• FtDisk can also handle sector sparing where the underlying SCSI disk supports it

• (if not, NTFS supports cluster remapping in software)

NT Case Study— Microsoft File Systems 47

NTFS: Other Features

• Security:

– security derived from the NT object model.
– each file object has a security descriptor attribute stored in its MFT record.
– this atrribute holds the access token of file owner plus an access control list

• Compression:

– NTFS can divide a file’s data into compression units (sets of 16 contiguous
clusters in the file)

– NTFS also has support for sparse files
∗ clusters with all zeros not actually allocated or stored on disk.
∗ instead, gaps are left in the sequences of VCNs kept in the file record
∗ when reading a file, gaps cause NTFS to zero-fill that portion of the caller’s

buffer.

• Encryption:

– Use symmetric key to encrypt files; file attribute holds this key encrypted with
user public key

– Not really that useful: private key pretty easy to obtain; and administrator can
bypass entire thing anyhow.

NT Case Study— Microsoft File Systems 48

Environmental Subsystems

• User-mode processes layered over the native NT executive services to enable NT
to run programs developed for other operating systems.

• NT uses the Win32 subsystem as the main operating environment

– Win32 is used to start all processes.

– Also provides all the keyboard, mouse and graphical display capabilities.

• MS-DOS environment is provided by a Win32 application called the virtual dos
machine (VDM), a user-mode process that is paged and dispatched like any other
NT thread.

– Uses virtual 8086 mode, so not 100% compatible

• 16-Bit Windows Environment:

– Provided by a VDM that incorporates Windows on Windows

– Provides the Windows 3.1 kernel routines and stub routings for window
manager and GDI functions.

• The POSIX subsystem is designed to run POSIX applications following the
POSIX.1 standard which is based on the UNIX model.

NT Case Study— User Mode Components 49

Summary

• Main Windows NT features are:

– layered/modular architecture:

– generic use of objects throughout

– multi-threaded processes

– multiprocessor support

– asynchronous I/O subsystem

– NTFS filing system (vastly superior to FAT32)

– preemptive priority-based scheduling

• Design essentially more advanced than Unix.

• Implementation of lower levels (HAL, kernel & executive) actually rather decent.

• But: has historically been crippled by

– almost exclusive use of Win32 API

– legacy device drivers (e.g. VXDs)

– lack of demand for “advanced” features

– “feature interaction”, aka huge swathes of complex poorly implemented
user-space code written by idiots

• Continues to evolve. . .

NT Case Study— Summary 50

Course Review

• Part I: Computer Organisation

– “How does a computer work?”

– The fetch-execute cycle, data representation, etc

– MIPS assembly language

• Part II: Operating System Functions

– OS structures: required h/w support, kernel vs. µ-kernel

– Processes: states, structures, scheduling

– Memory: virtual addresses, sharing, protection

– I/O subsytem: polling/interrupts, buffering.

– Filing: directories, meta-data, file operations.

• Part III: Case Studies

– Unix: file abstraction, command ‘extensibility’

– Windows NT: layering, objects, asynch. I/O.

NT Case Study— Summary 51

Glossary and Acronyms: A–H

AGP Advanced Graphics Port
ALU Arithmetic/Logic Unit
API Application Programming Interface
ARM a 32-bit RISC microprocessor
ASCII American Standard Code for Information Interchange
BSD Berkeley Software Distribution (Unix variant)
BU Branch Unit
CAM Content Addressable Memory
COW Copy-on-Write
CPU Central Processing Unit
DAG Directed Acyclic Graph
DMA Direct Memory Access
DOS 1. a primitive OS (Microsoft); 2. Denial of Service
DRAM Dynamic RAM
FCFS First-Come-First-Served (see also FIFO)
FIFO First-In-First-Out (see also FCFS)
Fork create a new copy of a process
Frame chunk of physical memory (also page frame)
HAL Hardware Abstraction Layer

NT Case Study— Glossary 52

Glossary and Acronyms: I–N

I/O Input/Output (also IO)
IA32 Intel’s 32-bit processor architecture
IA64 Intel’s 64-bit processor architecture
IDE Integrated Drive Electronics (disk interface)
IPC Inter-Process Communication
IRP I/O Request Packet
IRQ Interrupt ReQuest
ISA 1. Industry Standard Architecture (bus); 2. Instruction Set Architecture
Interrupt a signal from hardware to the CPU
IOCTL a system call to control an I/O device
LPC Local Procedure Call
MAU Memory Access Unit
MFT Multiple Fixed Tasks (IBM OS)
MIPS 1. Millions of Instructions per Second; 2. a 32-bit RISC processor
MMU Memory Management Unit
MFT Multiple Fixed Tasks (IBM OS)
MVT Multiple Variable Tasks (IBM OS)
NT New Technology (Microsoft OS Family)
NTFS NT File System

NT Case Study— Glossary 53

Glossary and Acronyms: O–SM

OS Operating System
OS/2 a PC operating system (IBM & Microsoft)
PC 1. Program Counter; 2. Personal Computer
PCB 1. Process Control Block; 2. Printed Circuit Board
PCI Peripheral Component Interface
PIC Programmable Interrupt Controller
PTBR Page Table Base Register
PTE Page Table Entry
Page fixed size chunk of virtual memory
Poll [repeatedly] determine the status of
Posix Portable OS Interface for Unix
RAM Random Access Memory
ROM Read-Only Memory
SCSI Small Computer System Interface
SFID System File ID
Shell program allowing user-computer interaction
Signal event delivered from OS to a process
SJF Shortest Job First
SMP Symmetric Multi-Processor

NT Case Study— Glossary 54

Glossary and Acronyms: SR–X

SRAM Static RAM
SRTF Shortest Remaining Time First
STBR Segment Table Base Register
STLR Segment Table Length Register
System V a variant of Unix
TCB 1. Thread Control Block; 2. Trusted Computing Base
TLB Translation Lookaside Buffer
UCS Universal Character Set
UFID User File ID
UTF-8 UCS Transformation Format 8
Unix the first kernel-based OS
VAS Virtual Address Space
VLSI Very Large Scale Integration
VM 1. Virtual Memory; 2. Virtual Machine
VMS Virtual Memory System (Digital OS)
VXD Virtual Device Driver
Win32 API provided by modern Windows OSes
XP a recent OS from Microsoft
x86 Intel familty of 32-bit CISC processors

NT Case Study— Glossary 55

