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What is Interactive Proof?

• Work in a logical formalism

• precise definitions of concepts

• formal reasoning system

• Construct hierarchies of definitions and proofs

• libraries of formal mathematics

• specifications of components and properties



Interactive Theorem Provers

• Based on higher-order logic

• Isabelle, HOL (many versions), PVS

• Based on constructive type theory

• Coq, Twelf, Agda, ...

• Based on first-order logic with recursion

• ACL2

Here are some useful web links:

Isabelle:	
  http://www.cl.cam.ac.uk/research/hvg/Isabelle/
HOL4:	
  http://hol.sourceforge.net/
HOL	
  Light:	
  http://www.cl.cam.ac.uk/~jrh13/hol-­‐light/
PVS:	
  http://pvs.csl.sri.com/
Coq:	
  http://coq.inria.fr/
ACL2:	
  http://www.cs.utexas.edu/users/moore/acl2/



Higher-Order Logic

• First-order logic extended with functions and sets

• Polymorphic types, including a type of truth values

• No distinction between terms and formulas

• ML-style functional programming

“HOL = functional programming + logic”



Basic Syntax of Formulas
formulas A, B, ... can be written as

(A) t = u ~A

A & B A | B A -­‐-­‐> B

A <-­‐> B ALL x. A EX x. A

(Among many others)

Isabelle also supports symbols such as 
≤ ≥ ≠ ∧ ∨ → ↔ ∀ ∃

See the Tutorial, section 1.3: “Types, terms and formulae”



Some Syntactic Conventions

In ∀x.  A ∧ B, the quantifier spans the entire formula

Parentheses are required in A ∧ (∀x y. B)

Binary logical connectives associate to the right:  A→ 
B → C is the same as A→ (B → C)

¬ A ∧ B = C ∨ D is the same as ((¬ A) ∧ (B = C)) ∨ D

See the Tutorial, section 1.3: “Types, terms and formulae”



Basic Syntax of Terms

• The typed λ-calculus: 

• constants, c 

• variables, x and flexible variables, ?x

• abstractions λx. t 

• function applications t u

• Numerous infix operators and binding operators 
for arithmetic, set theory, etc.

See the Tutorial, section 1.3: “Types, terms and formulae”



Types

• Every term has a type; Isabelle infers the types of 
terms automatically. We write t :: τ

• Types can be polymorphic, with a system of type 
classes (inspired by the Haskell language) that 
allows sophisticated overloading.

• A formula is simply a term of type bool.

• There are types of ordered pairs and functions.

• Other important types are those of the natural 
numbers (nat) and integers (int).



Product Types for Pairs

•(x1, x2) has type τ1 * τ2 provided xi ::	
  τi	
  

•(x1, ..., xn-1, xn) abbreviates (x1, ..., (xn-1, xn))

• Extensible record types can also be defined.



Function Types

• Infix operators are curried functions

• +	
  ::	
  nat	
  =>	
  nat	
  =>	
  nat

• &	
  ::	
  bool	
  =>	
  bool	
  =>	
  bool

• Curried function notation: λx y. t

• Function arguments can be paired

• Example: nat*nat	
  =>	
  nat

• Paired function notation: λ(x,y). t



Arithmetic Types

• nat: the natural numbers (nonnegative integers)

• inductively defined: 0,  Suc n

• operators include +	
  -­‐	
  *	
  div	
  mod

• relations include <	
  ≤	
  dvd (divisibility)

• int: the integers, with +	
  -­‐	
  *	
  div	
  mod ...

• rat, real:  +	
  -­‐	
  *	
  /	
  sin	
  cos	
  ln ...

• arithmetic constants and laws for these types

Only integer constants are available. Note that traditional notation for floating point numbers would be inappropriate, but rational numbers can be expressed.



HOL as a Functional Language

FILE “DemoList.thy” 1

DemoList.thy

theory DemoList imports Plain (*not Main, because lists are really built-in*)
begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
"app Nil ys = ys"

| "app (Cons x xs) ys = Cons x (app xs ys)"

fun rev where
"rev Nil = Nil"

| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

lemma "app xs Nil = xs"
proof (induct xs)

case Nil
show "app Nil Nil = Nil"
by auto

next
case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
by auto

qed

text {*
Simple proofs:

Command ’lemma’ / ’theorem’: state a proposition
Attribute ’simp’: use this theorem as a simplification rule in future proofs
Method ’induct’: structural induction
Method ’auto’: automatic proof (mostly by simplification)
Command ’done’: end of proof

*}

lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply (induct xs)
apply auto
done

lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto
done

recursive data type of lists

recursive functions 
(types can be inferred)

Recursive data types can be defined as in ML, although with somewhat less generality. Recursive functions can also be declared, provided Isabelle can establish their termination; all 
functions in higher-order logic are total. Naturally terminating recursive definitions pose no difficulties for Isabelle. In complicated situations, it is possible to give a hint.



Proof by Induction

FILE “DemoList.thy” 1

DemoList.thy

theory DemoList imports Plain (*not Main, because lists are really built-in*)
begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
"app Nil ys = ys"

| "app (Cons x xs) ys = Cons x (app xs ys)"

fun rev where
"rev Nil = Nil"

| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

lemma "app xs Nil = xs"
proof (induct xs)

case Nil
show "app Nil Nil = Nil"
by auto

next
case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
by auto

qed

text {*
Simple proofs:

Command ’lemma’ / ’theorem’: state a proposition
Attribute ’simp’: use this theorem as a simplification rule in future proofs
Method ’induct’: structural induction
Method ’auto’: automatic proof (mostly by simplification)
Command ’done’: end of proof

*}

lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply (induct xs)
apply auto
done

lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto
done

use it to simplify other formulas

two steps: induction 
followed by automation

end of proof

declaring a lemma



Example of a Structured Proof

FILE “DemoList.thy” 1

DemoList.thy

theory DemoList imports Plain (*not Main, because lists are really built-in*)
begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
"app Nil ys = ys"

| "app (Cons x xs) ys = Cons x (app xs ys)"

fun rev where
"rev Nil = Nil"

| "rev (Cons x xs) = app (rev xs) (Cons x Nil)"

lemma [simp]: "app xs Nil = xs"
apply (induct xs)
apply auto
done

lemma "app xs Nil = xs"
proof (induct xs)

case Nil
show "app Nil Nil = Nil"
by auto

next
case (Cons a xs)
show "app (Cons a xs) Nil = Cons a xs"
by auto

qed

text {*
Simple proofs:

Command ’lemma’ / ’theorem’: state a proposition
Attribute ’simp’: use this theorem as a simplification rule in future proofs
Method ’induct’: structural induction
Method ’auto’: automatic proof (mostly by simplification)
Command ’done’: end of proof

*}

lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply (induct xs)
apply auto
done

lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
apply (induct xs)
apply auto
done

• base case and inductive 
step can be proved 
explicitly

• Invaluable for proofs 
that need intricate 
manipulation of facts
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A Tiny Theory
theory	
  BT	
  imports	
  Main	
  begin

datatype	
  'a	
  bt	
  =
	
  	
  	
  	
  Lf
	
  	
  |	
  Br	
  'a	
  	
  "'a	
  bt"	
  	
  "'a	
  bt"

fun	
  reflect	
  ::	
  "'a	
  bt	
  =>	
  'a	
  bt"	
  where
	
  	
  "reflect	
  Lf	
  =	
  Lf"
|	
  "reflect	
  (Br	
  a	
  t1	
  t2)	
  =	
  Br	
  a	
  (reflect	
  t2)	
  (reflect	
  t1)"

lemma	
  reflect_reflect_ident:	
  "reflect	
  (reflect	
  t)	
  =	
  t"
	
  	
  apply	
  (induct	
  t)
	
  	
  	
  apply	
  auto
	
  	
  done

end

name of the 
new theory

the theory it builds upon

declarations of types, 
constants, etc

proving a theorem

See the Tutorial, section 1.2 (Theories) and 2.1 (An Introductory Theory).



Notes on Theory Structure

• A theory can import any existing theories.

• Types, constants, etc., must be declared before use.

• The various declarations and proofs may 
otherwise appear in any order.

• Many declarations can be confined to local scopes.

• A finished theory can be imported by others.



Some Fancy Type Declarations
typedecl	
  loc	
  -­‐-­‐	
  "an	
  unspecified	
  type	
  of	
  locations"
types	
  
	
  	
  val	
  	
  	
  =	
  nat	
  -­‐-­‐	
  "values"
	
  	
  state	
  =	
  "loc	
  =>	
  val"
	
  	
  aexp	
  	
  =	
  "state	
  =>	
  val"	
  	
  
	
  	
  bexp	
  	
  =	
  "state	
  =>	
  bool"	
  	
  	
  -­‐-­‐	
  "just	
  functions	
  on	
  states"

datatype
	
  	
  com	
  =	
  SKIP	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  |	
  Assign	
  loc	
  aexp	
  	
  	
  	
  	
  	
  	
  	
  	
  ("_	
  :==	
  _	
  "	
  60)
	
  	
  	
  	
  	
  	
  |	
  Semi	
  	
  	
  com	
  com	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ("_;	
  _"	
  	
  [60,	
  60]	
  10)
	
  	
  	
  	
  	
  	
  |	
  Cond	
  	
  	
  bexp	
  com	
  com	
  	
  	
  	
  	
  ("IF	
  _	
  THEN	
  _	
  ELSE	
  _"	
  	
  60)
	
  	
  	
  	
  	
  	
  |	
  While	
  	
  bexp	
  com	
  	
  	
  	
  	
  	
  	
  	
  	
  ("WHILE	
  _	
  DO	
  _"	
  	
  60)

new basic types

recursive type of commands

concrete syntax for commands



Notes on Type Declarations

• Type synonyms merely introduce abbreviations. 

• Recursive data types are less general than in 
functional programming languages.

• No recursion into the domain of a function.

• Mutually recursive definitions can be tricky.

• Recursive types are equipped with proof methods 
for induction and case analysis.

See the tutorial, section 2.5.



Basic Constant Definitions

See the Tutorial, Section 2.7.2 Constant Definitions.



Notes on Constant Definitions

• Basic definitions are not recursive.

• Every variable on the right-hand side must also 
appear on the left.

• In proofs, definitions are not expanded by default!

• Defining the constant C to denote t yields the 
theorem C_def, asserting C=t.

• Abbreviations can be declared through a 
separate mechanism.



Lists in Isabelle

• We illustrate data types and functions using a 
reduced Isabelle theory that lacks lists.

• The standard Isabelle environment has a 
comprehensive list library:

• Functions # (cons), @ (append), map, filter, 
nth, take, drop, takeWhile, dropWhile, ...

• Cases: (case xs of [] ⇒ [] | x#xs ⇒ ...)

• Over 600 theorems!



List Induction Principle

To show φ(xs), it suffices to show the base case and 
inductive step:

• φ(Nil)

• φ(xs) ⇒ φ(Cons(x,xs))

The principle of case analysis is similar, expressing 
that any list has one of the forms Nil or Cons(x,xs) 
(for some x and xs).



Proof General

processed material 
highlighted in blue

Isabelle’s output shown 
in a separate window

the very start of 
a proof attempt

Isabelleʼs user interface, Proof General, was developed by David Aspinall. It has a separate website: http://proofgeneral.inf.ed.ac.uk/

Proof General runs under Emacs, preferably version 23. Isabelle is almost impossible to use other than through Proof General.



Proof by Induction

structural induction 
on the list xs

base case and 
inductive step

induction hypothesis

See the tutorial, section 2.3 (An Introductory Proof). For the moment, there is no important difference between induct_tac (used in the tutorial) and induct (used above). With both of these 
proof methods, you name an induction variable and it selects the corresponding structural induction rule, based on that variableʼs type. It then produces an instance of induction sufficient to 
prove the property in question.



Finishing a Proof

auto proves both subgoals

We must still issue “done” 
to register the theorem

By default, Isabelle simplifies applications of recursive functions that match their defining recursion equations. This is quite different to the treatment of non-recursive definitions.

Isabelleʼs user interface, Proof General, was developed by David Aspinall. It has a separate website: http://proofgeneral.inf.ed.ac.uk/

Proof General runs under Emacs, preferably version 23. Isabelle is almost impossible to use other than through Proof General.



Another Proof Attempt

list reversal function

Can we prove both subgoals?



Stuck!

auto made progress 
but didn’t finish

looks like we need a lemma 
relating rev and app!



Stuck Again!

we dreamt up a lemma...

But it needs another  
lemma! 

The subgoal that we cannot prove looks very complicated. But when we notice the repeated terms in it, we see that it is an instance of something simple and natural: the associativity of the 
function app. This fact does not involve the function rev! We see in this example how crucial it is to prove properties in the most abstract and general form.



The Final Piece of the Jigsaw

This proof of associativity will be successful, and with its help, the other lemmas are easily proved.
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Goals and Subgoals

• We start with one subgoal: the statement to be 
proved.

• Proof tactics and methods typically replace a single 
subgoal by zero or more new subgoals.

• Certain methods, notably auto and simp_all, 
operate on all outstanding subgoals.

• We finish when no subgoals remain.

See the Tutorial, 2.3 An Introductory Proof. The list of subgoals is always flat. Towards the end of this course, there is a brief introduction to structured proofs.



Structure of a Subgoal

assumptions (two 
induction hypotheses)

conclusion

parameters (arbitrary 
local variables)



Proof by Rewriting
app	
  (Cons	
  x	
  xs)	
  ys	
  =	
  Cons	
  x	
  (app	
  xs	
  ys)
	
  	
  	
  rev	
  (Cons	
  x	
  xs)	
  =	
  app	
  (rev	
  xs)	
  (Cons	
  x	
  Nil)
	
  	
  	
  rev	
  (app	
  xs	
  ys)	
  =	
  app	
  (rev	
  ys)	
  (rev	
  xs)
app	
  (app	
  xs	
  ys)	
  zs	
  =	
  app	
  xs	
  (app	
  ys	
  zs)

recursive defns

lemma

induction hyp

rev	
  (app	
  (Cons	
  a	
  xs)	
  ys)	
  =	
  app	
  (rev	
  ys)	
  (rev	
  (Cons	
  a	
  xs))

rev	
  (app	
  (Cons	
  a	
  xs)	
  ys)	
  =
rev	
  (Cons	
  a	
  (app	
  xs	
  ys))	
  =
app	
  (rev	
  (app	
  xs	
  ys))	
  (Cons	
  a	
  Nil)	
  =
app	
  (app	
  (rev	
  ys)	
  (rev	
  xs))	
  (Cons	
  a	
  Nil)	
  =
app	
  (rev	
  ys)	
  (app	
  (rev	
  xs)	
  (Cons	
  a	
  Nil))

app	
  (rev	
  ys)	
  (rev	
  (Cons	
  a	
  xs))	
  =
app	
  (rev	
  ys)	
  (app	
  (rev	
  xs)	
  (Cons	
  a	
  Nil))



Rewriting with Equivalencies

(x	
  dvd	
  -­‐y)	
  =	
  (x	
  dvd	
  y)
(a	
  *	
  b	
  =	
  0)	
  =	
  (a	
  =	
  0	
  ∨	
  b	
  =	
  0)
(A	
  -­‐	
  B	
  ⊆	
  C)	
  =	
  (A	
  ⊆	
  B	
  ∪	
  C)
(a*c	
  ≤	
  b*c)	
  =	
  ((0<c	
  ➝	
  a	
  ≤	
  b)	
  ∧	
  (c<0	
  ➝	
  b	
  ≤	
  a))

• Logical equivalencies are just boolean equations.

• They lead to a clear and simple proof style.

• They can also be written with the syntax P ↔ Q.

introduces a case split 
on the sign of c



Automatic Case Splitting

Simplification will replace

P(if b then x else y)

by

(b ➝ P(x)) ∧ (¬b ➝ P(y))

• By default, this only happens when simplifying the 
conclusion.

• Other case splitting can be enabled.

See the Tutorial, 3.1.9 Automatic Case Splits



Conditional Rewrite Rules

xs	
  ≠	
  []	
  ⇒	
  hd	
  (xs	
  @	
  ys)	
  =	
  hd	
  xs

n	
  ≤	
  m	
  ⇒	
  (Suc	
  m)	
  -­‐	
  n	
  =	
  Suc	
  (m	
  -­‐	
  n)

[|a	
  ≠	
  0;	
  b	
  ≠	
  0|]	
  ⇒	
  b	
  /	
  (a*b)	
  =	
  1	
  /	
  a

• First match the left-hand side, then recursively 
prove the conditions by simplification.

• If successful, applying the resulting rewrite rule.



Termination Issues

• Looping: f(x)	
  =	
  h(g(x)),  g(x)	
  =	
  f(x+2)

• Looping: P(x)	
  ⇒	
  x=0

• simp will try to use this rule to simplify its own 
precondition!

• x+y	
  =	
  y+x  is actually okay!

• Permutative rewrite rules are applied but only if 
they make the term “lexicographically smaller”.



The Methods simp and auto 

• simp performs rewriting (along with simple 
arithmetic simplification) on the first subgoal

• auto simplifies all subgoals, not just the first. 

• auto also applies all obvious logical steps

• Splitting conjunctive goals and disjunctive 
assumptions

• Performing obvious quantifier removal

See the Tutorial, 3.1 Simplification. This section describes the options and possibilities thoroughly.



Variations on simp and auto

simp	
  add:	
  add_assoc

simp	
  del:	
  rev_rev	
  (no_asm_simp)

simp	
  (no_asm)

simp_all	
  (no_asm_simp)	
  add:	
  ...	
  del: ...	
  

auto	
  simp	
  add:	
  ...	
  del: ...	
  

using another rewrite rule

omitting a certain rule

ignoring all assumptions

not simplifying the 
assumptions

do simp for all subgoals
auto with options



Rules for Arithmetic

• An identifier can denote a list of lemmas.

• add_ac and mult_ac: associative/commutative 
properties of addition and multiplication

• algebra_simps: useful for multiplying out 
polynomials

• field_simps: useful for multiplying out the 
denominators when proving inequalities

 Example:  auto	
  simp	
  add:	
  field_simps

These identifiers denote lists of theorems that work together well as rewrite rules for performing various simplification tasks.



Simple Proof by Induction

• State the desired theorem using “lemma”, with its 
name and optionally [simp]

• Identify the induction variable

• Its type should be some datatype (incl. nat)

• It should appear as the argument of a recursive 
function.

• Complicating issues include unusual recursions and 
auxiliary variables.



Completing the Proof

• Apply “induct” with the chosen variable.

• The first subgoal will be the base case, and it 
should be trivial using “simp”.

• Other subgoals will involve induction hypotheses 
and the proof of each may require several steps.

• Naturally, the first thing to try is “auto”, but much 
more is possible.



Basics of Proof General

• You create or visit an Isabelle theory file within the 
text editor, Emacs.

• Moving forward executes Isabelle commands; the 
processed text turns blue.

• Moving backward undoes those commands.

• Go to end processes the entire theory; you can also 
go to start, or go to an arbitrary point in the file.

• Go to home takes you to the end of the blue 
(processed) region.

See the Tutorial, 3.1.11 Finding Theorems, for  a description of allowed search terms.



Proof General Tools
forward and back find theorems

stop!!

query theorem

See the Tutorial, 3.1.11 Finding Theorems, for  a description of allowed search terms.

Hover the mouse over the tools to see ToolTips (brief descriptions of each).
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A Failing Proof by Induction
length of a list 
(tail-recursive)

equivalent to the built-
in length function?

Mismatch between induction 
hypothesis and conclusion!

May as well 
give up!



Generalising the Induction

Insert a universal 
quantifier

Induction hypothesis 
holds for all n

The need to generalise the induction formula in order to obtain a more general induction hypothesis Is well known from mathematics. Logically, note that the induction formula above has 
only one free variable: xs. The induction formula on the previous slide has two free variables: xs and n.



Generalising: Another Way

Designate a variable 
as “arbitrary”

Induction hypothesis 
still holds for all n!

The approach described above is logically similar to the one on the previous slide, but it avoids the use of a universal quantifier (∀) in the theorem statement. Because Isabelle is a logical 
framework, it has meta-level versions of the universal quantifier and the implication symbol, and we generally avoid universal quantifiers in theorems. But it is important to remember that 
behind the convenience of the method illustrated here is a straightforward use of logic: we are still generalising induction formula. For more complicated examples, see the Tutorial, 9.2.1 
Massaging the Proposition.



Unusual Recursions

Two variables in 
the recursion!

Two variables in 
the induction!

A special induction rule!

The subgoals follow 
the recursion!

For full documentation, see Defining Recursive Functions in Isabelle/HOL, by Alexander Krauss.



Recursion: Key Points

• Recursion in one variable, following the structure 
of a datatype declaration, is called primitive.

• Recursion in multiple variables, terminating by size 
considerations, can be handled using fun.

• fun produces a special induction rule.

• fun can handle nested recursion.

• fun also handles pattern matching, which it 
completes.

Isabelle provides the command primrec for primitive recursion as well. It is closely based on the internal derivation of recursion, and can handle function definitions involving certain 
complicated features (in particular, higher-order primitive recursion) where fun fails. See the Tutorial, 2.1 An Introductory Theory. More difficult examples of primrec	
  are covered in 3.3 
Case Study: Compiling Expressions.



Special Induction Rules

• They follow the function’s recursion exactly.

• For Ackermann, they reduce P x y to

• P 0 n,  for arbitrary n

• P (Suc m) 0  assuming P m 1, for arbitrary m

• P (Suc m) (Suc n)  assuming P (Suc m) n and 
P m (ack (Suc m) n), for arbitrary m and n

• Usually they do what you want. Trial and error is 
tempting, but ultimately you will need to think!

The Ackermann example proves several lemmas using the special rule, but several others using ordinary mathematical induction!



Another Unusual Recursion

2 induction hypotheses, 
guarded by conditions!

recursive calls are 
guarded by conditions

Again, see Defining Recursive Functions in Isabelle/HOL. Each induction hypothesis can only be used if the corresponding condition is provable.



Proof Outline
set	
  (merge	
  (x#xs)	
  (y#ys))	
  =	
  set	
  (x	
  #	
  xs)	
  ∪	
  set	
  (y	
  #	
  ys)

set	
  (if	
  x	
  ≤	
  y	
  then	
  x	
  #	
  merge	
  xs	
  (y#ys)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  else	
  y	
  #	
  merge	
  (x#xs)	
  ys)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  =	
  	
  	
  ...

=
(x	
  ≤	
  y	
  ➝	
  set(x	
  #	
  merge	
  xs	
  (y#ys))	
  =	
  ...)	
  &	
  
(¬	
  x	
  ≤	
  y	
  ➝	
  set(y	
  #	
  merge	
  (x#xs)	
  ys)	
  =	
  ...)

=
(x	
  ≤	
  y	
  ➝	
  {x}	
  ∪	
  set(merge	
  xs	
  (y#ys))	
  =	
  ...)	
  &	
  
(¬	
  x	
  ≤	
  y	
  ➝	
  {y}	
  ∪	
  set(merge	
  (x#xs)	
  ys)	
  =	
  ...)

=
(x	
  ≤	
  y	
  ➝	
  {x}	
  ∪	
  set	
  xs	
  ∪	
  set	
  (y	
  #	
  ys)	
  =	
  ...)	
  &	
  
(¬	
  x	
  ≤	
  y	
  ➝	
  {y}	
  ∪	
  set	
  (x	
  #	
  xs)	
  ∪	
  set	
  ys	
  =	
  ...)

The first rewriting step in the proof unfolds the definition of merge. The second one is a case-split involving if. This step introduces a conjunction of implications, creating contexts that 
exactly match the induction hypotheses. But first, the definition of set (a function that maps a list to the finite set of its elements) must be unfolded. The last step highlighted above applies 
the induction hypotheses. The remaining steps, not shown, prove the equality between the set expressions just produced and the right-hand side of the original subgoal.



The Case Expression

• Similar to that found in the functional language ML.

• Automatically generated for every Isabelle 
datatype.

• The simplifier can (upon request!) perform case-
splits analogous to those for “if”.

• Case splits in assumptions (as opposed to the 
conclusion) never happen unless requested.



Case-Splits for Lists

fun	
  ordered	
  ::	
  "'a	
  list	
  =>	
  bool"
where
	
  	
  "ordered	
  []	
  =	
  True"
|	
  "ordered	
  [x]	
  =	
  True"
|	
  "ordered	
  (x#y#xs)	
  =	
  (x≤y	
  &	
  ordered	
  (y#xs))"

fun	
  ordered	
  ::	
  "'a	
  list	
  =>	
  bool"
where
	
  	
  "ordered	
  []	
  =	
  True"
|	
  "ordered	
  (x#l)	
  =	
  
	
  	
  	
  	
  (case	
  l	
  of	
  []	
  =>	
  True
	
  	
  	
  	
  	
  	
  |	
  Cons	
  y	
  xs	
  =>	
  (x≤y	
  &	
  ordered	
  (y#xs)))"

The definition shown on the slide describes the same function as the following one:

fun	
  ordered	
  ::	
  "'a	
  list	
  =>	
  bool"
where
	
  	
  "ordered	
  []	
  =	
  True"
|	
  "ordered	
  [x]	
  =	
  True"
|	
  "ordered	
  (x#y#xs)	
  =	
  (x	
  \<le>	
  y	
  &	
  ordered	
  (y#xs))"



Case-Splitting in Action
Automatic case 

splitting to the rescue!

Help! Look at all 
the case-splits!

There isnʼt room to show the full subgoal, but the second part of the conjunction (beginning with ¬ x ≤ y) has a similar form to the first part, which is visible above.

Note that the last step used was simp_all, rather than auto. The latter would break up the subgoal according to its logical structure, leaving us with 14 separate subgoals! Simplification, on 
the other hand, seldom generates multiple subgoals. The one common situation where this can happen is indeed with case splitting, but in our example, case splitting completely proves the 
theorem.



Completing the Proof

All solved, in 
two seconds.

But what is this? 
Risk of looping!

The identifier ordered.simps refers to the two equations that make up the definition of the function ordered. The suffix (2) selects the second of these. Now “simp	
  del:	
  ordered.simps
(2)” tells auto to ignore this equation. Otherwise, the call will run forever.



Case Splitting for Lists
Simplification will replace

P (case	
  xs	
  of	
  []	
  =>	
  a |	
  Cons	
  a l	
  =>	
  b a l)

by

(xs =[] ➝ P(a)) ∧ (∀a l. xs = a # l ➝ P(b a l))

• It creates a case for each datatype constructor.

• Here it causes looping if combined with the second 
rewrite rule for ordered.

Specifically, a case split will create an instance where the list has the form a#l, and therefore ordered(a#l) will rewrite to another instance of case, ad infinitum.



Summary

• Many forms of recursion are available.

• The supplied induction rule often leads to simple 
proofs.

• The “case” operator can often be dealt with using 
automatic case splitting...

• but complex simplifications can run forever!



A Helpful Tip

Many tracing options can be enabled within Proof General. Switch them off unless you need them, because they can generate an enormous output and take a lot of processor time. Their 
interpretation is seldom easy!
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Logical Frameworks

• A formalism to represent other formalisms

• Support for natural deduction

• A common basis for implementations

• Type theories are commonly used, but Isabelle 
uses a simple meta-logic whose main primitives are 

• ⇒ (implication) 

• Λ (universal quantification).



Natural Deduction in Isabelle

P	
  ⇒	
  (Q	
  ⇒	
  P	
  ∧	
  Q))

P➝Q	
  ⇒	
  (P	
  ⇒	
  Q)

P	
  ∧	
  Q	
  ⇒	
  P

P	
  ∧	
  Q	
  ⇒	
  Q

See the Tutorial, Chapter 5: The Rules of the Game.  The first of these is an introduction rule, conjI in Isabelle. The following three are elimination rules: conjunct1, conjunct2, and	
  mp. 
Isabelle parlance, these three are actually destruction rules because they lack the general form of an elimination rule in natural deduction.



Meta-implication

• The symbol ⇒ (or ==>) expresses the relationship 

between premise and conclusion

• ... and between subgoal and goal.

• It is distinct from ➝, which is not part of Isabelle’s 
underlying logical framework.

• P⇒(Q⇒R) is abbreviated as ⟦P;Q⟧	
  ⇒	
  R	
  

The distinction between meta- and object-connectives is a common source of confusion among students. This distinction is inherent in the use of a logical framework. There is no reason why 
an object-logic would have an implication symbol at all. Isabelle gives a special significance to ⇒, in particular for expressing the structure of inference rules, as shown on previous slide. This 
would be impossible if we make no distinction between ⇒ and →.



A Trivial Proof

reduce the goal 
using the given rule

The method “rule” is one of the most primitive in Isabelle. It matches the conclusion of the supplied rule with that of the a subgoal, which is replaced by new subgoals: the corresponding 
instances of the ruleʼs premises. See the Tutorial, 5.7 Interlude: the Basic Methods for Rules.

Normally, it applies to the first subgoal, though a specific goal number can be specified; many other proof methods follow the same convention.



Proof by Assumption

holds trivially, 
by assumption

The method “assumption” is also primitive. It proves a subgoal if it can unify that subgoalʼs conclusion with one of its premises. If successful, it deletes that subgoal.



Unknowns in Subgoals

We need some 
instance of mp!

formula placeholder

Isabelle includes a class of variables whose names begin with the ? character. They are called unknowns or schematic variables. Logically, they are no different from ordinary free variables, 
but Isabelle treats them differently: it allows them to be replaced by other expressions during unification. Isabelle rewrite rules and inference rules contain many such variables, but we 
normally suppress the question marks to make them easier to read. For example, the rule conjI is really ?P	
  ==>	
  (?Q	
  ==>	
  ?P	
  &	
  ?Q).



Unknowns and Unification

?P3 has been 
replaced by P

Proving ?P3→Q from the assumption P→Q performs unification, and the variable ?P3 is updated. All occurrences of the variable are updated. In this way, proving one subgoal can make 
another subgoal impossible to prove. Sometimes there are multiple choices and only one will allow the proof to go through.



Discharging Assumptions

(P	
  ⇒	
  Q)	
  ⇒	
  P➝Q

⟦P	
  ∨	
  Q;	
  P⇒R;	
  Q⇒R⟧	
  ⇒	
  R	
  

Such rules take derivations that depend upon particular assumptions (written as [P] and [Q] above) and “discharge” those assumptions, which means that the conclusion is not regarded as 
depending on them. The backwards interpretation is more natural: to prove P➝Q, it suffices to assume P and prove Q. 

Meta-level implication (⇒) expresses the discharging of assumptions as well as the relationship between premises and conclusion.



A Proof using Assumptions

Subgoal is an implication, 
no assumptions

A full list of the predicate calculus inference rules for higher-order logic is available in Isabelleʼs Logics: HOL, a somewhat outdated but still useful reference manual.



After Implies-Introduction

Prove P using P ∨ P

Assumption will be 
used, then deleted



Disjunction Elimination

erule is good with 
elimination rules

An instance of ?P ∨ ?Q 
has been found



The Final Step

+ applies a method 
one or more times



Quantifiers

⟦∃x.P(x);	
  Λx.P(x)⇒Q⟧	
  ⇒	
  Q	
  

P(x)	
  ⇒	
  ∃x.P(x)

meta-universal quantifier 
states the variable condition

Isabelleʼs logical framework includes the typed lambda calculus, so quantifiers can be declared as constants of appropriate type. Variable-binding syntax can also be specified.



A Tiny Quantifier Proof

Find, use, delete an 
existential assumption



Conjunction Elimination

Find, use, delete a 
conjunctive assumption

The x that is 
claimed to exist

The proof above refers to conjE, which is an alternative to the rules conjunct1 and conjunct2. It has the standard elimination format (shared with disjunction elimination and existential 
elimination), so it can be used with the method erule.



Now for ∃-Introduction

Two assuptions 
instead of one

Apply the rule exI



An Unknown for the Witness

Proof by assumption will 
unify these two terms

A proof of existence normally requires a witness, namely a specific term satisfying the required property. Isabelle allows this choice to be deferred. The structure of the term, in this case ?x4	
  
x, holds information about which bound variables may appear in the witness. Here, 	
  This	
  is may appear in the witness.



Done!
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Set Notation in Isabelle

• Set notation is crucial to mathematical discourse.

• Set-theoretic abstractions naturally express many 
complex constructions.

• A set in high-order logic is a boolean-valued map.

• The elements of such a set must all have the same 
type...

• and we have the universal set for each type.

See the Tutorial, section 6.1 Sets.



Set Theory Primitives

Please note that we do not write {x|P(x)}. Isabelle would interpret the | as expressing disjunction and the expression as denoting the singleton set containing the element x|P(x)!



Big Union and Intersection

And the analogous forms of intersections...



Functions

• Also inj, surj, bij, inv, etc. (injective,...) 

• Don’t re-invent image and inverse image!!

Inverse image is also known as pre-image. Using the actual image primitives gives access to the many theorems proved about them.



Finite Sets

Finite sets can be written explicitly, enumerating their elements in the obvious way. The notion of finiteness is also available, along with the notion of cardinality.



Intervals, Sums and Products
	
  	
  {..<u}	
  ==	
  {x.	
  x	
  <	
  u}
	
  	
  	
  {..u}	
  ==	
  {x.	
  x	
  ≤	
  u}
	
  	
  {l<..}	
  ==	
  {x.	
  l<x}
	
  	
  	
  {l..}	
  ==	
  {x.	
  l≤x}
{l<..<u}	
  ==	
  {l<..}	
  ∩	
  {..<u}
	
  {l..<u}	
  ==	
  {l..}	
  ∩	
  {..<u}

setsum	
  f	
  A and setprod	
  f	
  A
∑i∈I. f and ∏i∈I. f

Isabelle provides syntax for bounded and unbounded intervals. These are polymorphic: they are defined over all types that admit an ordering, and in particular they are applicable to intervals 
over the natural numbers, integers, rationals or reals.

Sums and products of functions over finite sets can also be written.



A Simple Set Theory Proof

plain ASCII syntax is 
an alternative to 
special symbols

Special symbols can be inserted using Proof Generalʼs maths menu. ASCII can simply be typed.

The main point of this example is that many such proofs are trivial, using auto or other automatic proof methods.



A Harder Proof Involving Sets

induction on the finite set, A

a way to specify the types of variables

This example needs a type constraint because arithmetic concepts such as sum and product are heavily overloaded. If you use fixes, then you must also use shows!

Isabelleʼs type classes allow this theorem to be proved in an overloaded form, but for simplicity here we restrict ourselves to type real.



Outcome of the Induction

base case: A is empty

inductive step: A = insert x F

The base case is trivial, because both sides of the equality clearly equal zero. In the induction step, the induction hypothesis (which concerns the set F) will be applicable, because

setsum	
  f	
  (insert	
  a	
  F)	
  =	
  f	
  a	
  +	
  setsum	
  f	
  F

Note that Isabelle uses a fancy notation for summations, but only if the body of the summation is nontrivial.



Almost There!

need to apply a distributive law



Finished!

We can delete the first “auto”...

Recall that algebra_simps is a list of simplification rules for multiplying out algebraic expressions.



Proving Theorems about Sets

• It is not practical to learn all the built-in lemmas.

• Instead, try an automatic proof method:

• auto

• force

• blast

• Each uses the built-in library, comprising hundreds 
of facts, with powerful heuristics.



Finding Theorems about Sets
Step 1: click this button!

See the Tutorial, section 3.1.11 Finding Theorems. Virtually all theorems loaded within Isabelle can be located using this function. Unfortunately, it does not locate theorems that are proved 
in external libraries.



Finding Theorems about Sets

Step 2: type some patterns

The easiest way to refer to infix operators is by entering small patterns, as shown above. More complex patterns are also permitted. The constraints are treated conjunctively: use additional 
constraints if you get too many results, and fewer constraints if you get no results.



The Results!
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Defining a Set Inductively

• The set of even numbers is the least set such that

• 0 is even.

• If n is even, then n+2 is even.

• These can be viewed as introduction rules.

• We get an induction principle to express that no 
other numbers are even.

• Induction is used throughout mathematics, and to 
express the semantics of programming languages.

See the Tutorial, Chaper 7. Inductively Defined Sets.



Inductive Definitions in Isabelle

The Tutorial discusses precisely the same example, section 7.1.1.



 Even Numbers Belong to Ev

ordinary induction 
yields two subgoals



Proving Set Membership

after simplification, the subgoals 
resemble the introduction rules



Finishing the Proof

We have used these as 
conditional rewrite rules.

Isabelle also supports 
introduction rules 

(backward chaining)



Rule Induction

• Proving something about every element of the set.

• It expresses that the inductive set is minimal. 

• It is sometimes called “induction on derivations”

• There is a base case for every non-recursive 
introduction rule

• ...and an inductive step for the other rules.



Ev Has only Even Numbers

rule induction is needed!

naming the induction rule

The classic sign that we need rule induction is an occurrence of the inductive set as a premise of the desired result. Of course, sometimes the theorem can be proved by referring to other 
facts that have been previously proved using rule induction.



An Example of Rule Induction

base case: n replaced by 0

induction step:  n 
replaced by Suc (Suc n)



Nearly There!

Too difficult for auto

The auto method provides some support for arithmetic. However, complicated arithmetic arguments require specialised proof methods.



The arith Proof Method

for hard arithmetic subgoals



Defining Finiteness

make the rules available 
to auto, blast

The empty set is finite. Adding one element to a finite set yields another finite set.



The Union of Two Finite Sets

perform induction on A

The goals are easily proved by the properties of sets and the introduction rules.



A Subset of a Finite Set

to prove that every 
subset of A is finite

as seen in the induction hypothesis

The proof is far more difficult than the preceding one, illustrating advanced techniques, in particular the sledgehammer tool.



A Crucial Point in the Proof

now what??

None of Isabelleʼs automatic proof methods (auto, blast, force) have any effect on this subgoal. Informally, we might consider case analysis on whether a∈B. This would require using 
proof tactics that have not been covered. Fortunately, Isabelle provides a general automated tool, sledgehammer.



Time to Try Sledgehammer!

Sledgehammer calls several automated theorem provers in the background: in other words, Isabelle is still receptive to commands. You can continue to look for a proof manually.



Success!

this command should 
prove the goal

this one may return a 
more compact command

Both outputs are highlighted in Proof General. They are live: clicking on either will insert that command into the proof script and execute it.



The Completed Proof



Notes on Sledgehammer

• It is always available, though it usually fails...

• It does not prove the goal, but returns a call to 
metis. This command usually works...

• The minimise option removes redundant 
theorems, increasing the likelihood of success.

• Calling metis directly is difficult unless you know 
exactly which lemmas are needed.

Metis is an automatic theorem prover for first order logic, written by Joe Hurd. Sledgehammer calls high-performance theorem provers, such as E and Vampire, using them as relevance 
filters to select from the thousands of lemmas available in Isabelle. Isabelle problems are translated for these automatic theorem provers using lightweight translations, which do not preserve 
soundness. For that reason, proofs found by those theorem provers may be incorrect. If that happens, the call to metis will generate an error message or fail to terminate. It is possible to 
force the use of sound translations, but sledgehammer seldom finds proofs using those.
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Overview

• The operational semantics of programming 
languages can be given inductively.

• Type checking

• Expression evaluation

• Command execution, including concurrency

• Properties of the semantics are frequently proved 
by induction.

• Running example: an abstract language with WHILE



Language Syntax
typedecl	
  loc	
  -­‐-­‐	
  "an	
  unspecified	
  type	
  of	
  locations"
types	
  
	
  	
  val	
  	
  	
  =	
  nat	
  -­‐-­‐	
  "values"
	
  	
  state	
  =	
  "loc	
  =>	
  val"
	
  	
  aexp	
  	
  =	
  "state	
  =>	
  val"	
  	
  
	
  	
  bexp	
  	
  =	
  "state	
  =>	
  bool"	
  	
  	
  -­‐-­‐	
  "just	
  functions	
  on	
  states"

datatype
	
  	
  com	
  =	
  SKIP	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  |	
  Assign	
  loc	
  aexp	
  	
  	
  	
  	
  	
  	
  	
  	
  ("_	
  :==	
  _	
  "	
  60)
	
  	
  	
  	
  	
  	
  |	
  Semi	
  	
  	
  com	
  com	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ("_;	
  _"	
  	
  [60,	
  60]	
  10)
	
  	
  	
  	
  	
  	
  |	
  Cond	
  	
  	
  bexp	
  com	
  com	
  	
  	
  	
  	
  ("IF	
  _	
  THEN	
  _	
  ELSE	
  _"	
  	
  60)
	
  	
  	
  	
  	
  	
  |	
  While	
  	
  bexp	
  com	
  	
  	
  	
  	
  	
  	
  	
  	
  ("WHILE	
  _	
  DO	
  _"	
  	
  60)

Arithmetic & boolean expressions are 
just functions over the state

For simplicity, this example does not specify arithmetic or boolean expressions in any detail. Although this approach is unrealistic, it allows us to illustrate key aspects of formalised proofs 
about programming language semantics.



Language Semantics

A “big-step” semantics

In a big step semantics, the transition〈c,s〉→ sʼ means, executing the command c starting in the state s can terminate in state sʼ.



Formalised Language Semantics
an inductive predicate 
with special syntax

declare as introduction rules 
for auto and blast

In the previous lecture, we used a related declaration, inductive_set. Note that there is no real difference between a set and a predicate of one argument. However, formal semantics 
generally requires a predicate three or four arguments, and the corresponding set of triples is a little more difficult to work with. Attaching special syntax, as shown above, also requires the 
use of a predicate. Therefore, formalised semantic definitions will generally use inductive.



Rule Inversion

• When〈skip, s〉→ s’ we know s = s’

• When〈if b then c0 else c1, s〉→ s’ we know

• b and 〈c0, s〉→ s’, or...

• ¬b and 〈c1, s〉→ s’

• This sort of case analysis is easy in Isabelle.

Rule inversion refers to case analysis on the form of the induction, matching the conclusions of the introduction rules (those making up the inductive definition) with a particular pattern. It is 
useful when only a small percentage of the introduction rules can match the pattern. This type of reasoning is extremely common in informal proofs about operational semantics. It would not 
be useful in the inductive definitions covered in the previous lecture, where the conclusions of the rules had little structure.



Rule Inversion in Isabelle
declared as an elimination 
rule to auto and blast

name of the new lemma

〈skip, s〉→ s’ implies s = s’

the typical format of an 
elimination rule

The pattern for each rule inversion lemma appears in quotation marks. Isabelle generates a theorem and gives it the name shown. Each theorem is also made available to Isabelleʼs 
automatic tools.

It is possible to write elim! rather than just elim; the exclamation mark tells Isabelle to apply the lemma aggressively. However, this must not be done with the theorem whileE: it expands an 
occurrence of 〈while b do c, s〉→ sʼ  and generates another formula of essentially the same form, thereby running for ever.



Rule Inversion Again

expresses the existence of 
the intermediate state, s’



A Non-Termination Proof

Not provable by induction!

The inductive version considers 
all possible commands



Non-Termination in Isabelle
7 subgoals, one for each 

rule of the definition
Most are trivial, 
by distinctness

 trivial for another reason



Done!

This really is a trivial proof. I timed this call to auto and it needed only 6 ms.



Determinacy

If a command is executed in a given state, and it 
terminates, then this final state is unique.



Determinacy in Isabelle
allow the other state to vary

trivial by rule inversion

The proof method blast uses introduction and elimination rules, combined with powerful search heuristics. It will not terminate until it has solved the goal. Unlike auto and force, it does not 
perform simplification (rewriting) or arithmetic reasoning.



Proved by Rule Inversion

call blast multiple times 
(here auto is too slow)

The proof involves a long, tedious and detailed series of rule inversions. Apart from its length, the proof is trivial. This proof needed only 32 ms.



Semantic Equivalence
We can even define 

the infix syntax

It is trivially shown 
to be an 

equivalence relation

The printed version of these notes does not include the actual proofs, because they are revealed during the presentation. They are reproduced below.  It is necessary to unfold the definition 
of semantic equivalence, equiv_c. By default, Isabelle does not unfold nonrecursive definitions.

lemma	
  equiv_refl:
	
  	
  "c	
  ~	
  c"
by	
  (auto	
  simp	
  add:	
  equiv_c_def)	
  

lemma	
  equiv_sym:
	
  	
  "c1	
  ~	
  c2	
  ==>	
  c2	
  ~	
  c1"
by	
  (auto	
  simp	
  add:	
  equiv_c_def)	
  

lemma	
  equiv_trans:
	
  	
  "c1	
  ~	
  c2	
  ==>	
  c2	
  ~	
  c3	
  ==>	
  c1	
  ~	
  c3"
by	
  (auto	
  simp	
  add:	
  equiv_c_def)	
  



More Semantic Equivalence!

shorthand for a one-line proof

commands built from 
equivalent commands are 

equivalent

The properties shown here establish that semantic equivalence is a congruence relation with respect to the command constructors Semi and Cond. The proofs are again trivial, providing we 
remember to unfold the definition of semantic equivalence, equiv_c. Proving the analogous congruence property for While is harder, requiring rule induction with an induction formula similar 
to that used for another proof about While earlier in this lecture.

The proof method force is similar to auto, but it is more aggressive and it will not terminate until it has proved the subgoal it was applied to. In these examples, auto will give up too easily.



And More!!

By some fluke, force will not solve the second of these. Sometimes you just have to try different things.

Note that a proof consisting of a single proof method can be written using the command “by”, which is more concise than writing “apply” followed by “done”. It is a small matter here, but 
structured proofs (which we are about to discuss) typically consist of numerous one line proofs expressed using “by”.



A New Introduction Rule

formalised like this

used implicitly like this

declared like this

Giving the attribute intro! to a theorem informs Isabelleʼs automatic proof methods, including auto, force and blast, that this theorem should be used as an introduction rule. In other 
words, it should be used in backward-chaining mode: the conclusion of the rule is unified with the subgoal, continuing the search from that ruleʼs premises. It is now unnecessary to mention 
this theorem when calling those proof methods. The theorem shown can now be proved using blast alone. We do not need to refer to equivI	
  or to the definition of equiv_c. The approach 
used to prove other examples of semantic equivalence in this lecture do not terminate on this problem in a reasonable time. The proof shown only requires 12 ms.

The exclamation mark (!) tells Isabelle to apply the rule aggressively. It is appropriate when the premise of the rule is equivalent to the conclusion; equivalently, it is appropriate when applying 
the rule can never be a mistake. The weaker attribute intro  should be used for a theorem that is one of many different ways of proving its conclusion.



Final Remarks on Semantics

• Small-step semantics is treated similarly.

• Variable binding is crucial in larger examples, and 
should be formalised using the nominal package.

• choosing a fresh variable

• renaming bound variables consistently

• Serious proofs will be complex and difficult!

Documentation on the nominal package can be downloaded from http://isabelle.in.tum.de/nominal/

Many examples are distributed with Isabelle. See the directory HOL/Nominal/Examples.

Other relevant publications are available here: http://www4.in.tum.de/~urbanc/publications.html
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A Proof about “Divides”

 b dvd a  ↔  (∃k. a = b × k)

locally bound variables

an assumption

A messy proof with 
two subgoals...

We unfold the 
definition and get...?



Complex Subgoals

• Isabelle provides many tactics that refer to bound 
variables and assumptions.

• Assumptions are often found by matching.

• Bound variables can be referred to by name, but 
these names are fragile.

• Structured proofs provide a robust means of 
referring to these elements by name.

• Structured proofs are typically verbose but much 
more readable than linear apply-proofs.

The old-fashioned tactics mentioned above, such as rule_tac, are described in the Tutorial, particularly from section 5.7 onwards.



A Structured Proof

But how do you 
write them?



The Elements of Isar

• A proof context holds a local variables and 
assumptions of a subgoal.

• In a context, the variables are free and the 
assumptions are simply theorems.

• Closing a context yields a theorem having the 
structure of a subgoal.

• The Isar language lets us state and prove 
intermediate results, express inductions, etc.

The Tutorial has little to say about structured proofs. Separate introductions exist, for example, “A Tutorial Introduction to Structured Isar Proofs” by Tobias Nipkow.

Structured proofs can be tricky to write at first. Interaction with proof General  is essential: it is virtually impossible to write a structured proof otherwise.



Getting Started

indicates the start of a 
structured proof

The simplest way to get started is as shown: applying auto with any necessary definitions. The resulting output will then dictate the structure of the final proof.

This style is actually rather fragile. Potentially, a change to auto could alter its output, causing a proof based around this precise output to fail. There are two ways of reducing this risk. One 
is to use a proof method less general than auto to unfold the definition of the divides relation and to perform basic logical reasoning. The other is to encapsulate the proofs of the two 
subgoals in local blocks that can be passed to auto; this approach requires a rather sophisticated use of Isar. In fact, these concerns appear to be exaggerated: proofs written in this style 
seldom fail.



The Proof Skeleton

separates proofs of goals

terminates the proof

a name for the bound variable

dummy 
proofs

assumption

conclusion

We have used sorry to omit the proofs. These dummy proofs allow us to construct the outer shell and confirm that it fits together. We use show to state (and eventually prove for real!) the 
subgoalʼs conclusion. Since we have renamed the bound variable ka to m, we must rename it in the assumption and conclusions. The context that we create with fix/assume, together with 
the conclusion that we state with show, must agree with the original subgoal. Otherwise, Isabelle will generate an error message.



Fleshing Out that Skeleton

inserting a helpful fact

labels for facts more labels

a real proof!

Looking at the first subgoal, we see that it would help to transform the assumption to resemble the body of the quantified formula that is the conclusion. Proving that conclusion should then be 
trivial, because the existential witness (m-­‐1) is explicit. We use sorry to obtain this intermediate result, then confirm that the conclusion is provable from it using blast. Because it is a one 
line proof, we write it using “by”. It is permissible to insert a string of “apply” commands followed by “done”, but that looks ugly.

We give labels to the assumption and the intermediate result for easy reference. We can then write “using	
  1”, for example, to indicate that the proof refers to the designated fact. However, 
referring to the previous result is extremely common, and soon we shall streamline this proof to eliminate the labels.  Also, labels do not have to be integers: they can be any Isabelle 
identifiers.



Completing the Proof

found using sledgehammer

sledgehammer does it again!

We have narrowed the gaps, and now sledgehammer can fill them. Replacing the last “sorry” completes the proof.

There is of course no need to follow this sort of top-down development. It is one approach that is particularly simple for beginners.



Streamlining the Proof

• hence means have, using the previous fact

• thus means show, using the previous fact

• There are numerous other tricks of this sort!



Another Proof Skeleton

specify m’s type

declare a premise separately

restricting the range of abs	
  m

makes the conclusion trivial

null proof step

This is an example of an obvious fact is proof is not obvious. Clearly m≠0, since otherwise m*n=0. If we can also show that |m|≥2 is impossible, then the only remaining possibility is |m|=1.

In this example, auto can do nothing. No proof steps are obvious from the problemʼs syntax. So the Isar proof begins with “-­‐”, the null proof. This step does nothing but insert any “pending 
facts” from a previous step (here, there arenʼt any) into the proof state. It is quite common to begin with “proof	
  -­‐”.



Starting a Nested Proof

default proof step

To begin with “proof” (not to be confused with “proof	
  -­‐”) applies a default proof method. In theory, this method should be appropriate for the problem, but in practice, it is often unhelpful. 
The default method is determined by elementary syntactic criteria. For example, the formula “¬ (2 ≤ abs m)” begins with a negation sign, so the default method applies the corresponding 
logical inference: it reduces the problem to proving False under the assumption 2 ≤ abs m.



A Nested Proof Skeleton

assumption

conclusion

Proofs can be nested to any depth. The assumptions and conclusions of each nested proof are independent of one another. The usual scoping rules apply, and in particular the facts mn and 
0 are visible within this inner scope.



A Complete Proof

a chain of steps leads 
to contradiction

This example is typical of a structured proof. From the assumption, 2 ≤ abs m, we deduce a chain of consequences that become absurd. We connect one step to the next using “hence”, 
except that we must introduce the conclusion using “thus”.

Note that we have beefed up the fact “0” from simply m≠0 to include as well n≠0, which we need to obtain a contradiction from 2 × abs n ≤ 1. In fact, “0” here denotes a list of facts.



Calculational Proofs

form a series of 
equalities and inequalities

The chain of reasoning in the previous proof holds by transitivity, and in normal mathematical discourse would be written as a chain of inequalities and inequalities. Isar supports this 
notation.



The Next Step

refers to the previous 
right-hand side



The Internal Calculation

Isabelle displays the internal 
calculation when it encounters 

also and finally

Use “also” to attach a new link to the chain, extending the calculation. Use “finally” to refer to the calculation itself. It is usual for the proof script merely to repeat explicitly what this 
calculation should be, as shown above. If this is done, the proof is trivial and is written in Isar as a single dot (.).

We could instead avoid that repetition and reach the contradiction directly as follows:

	
  	
  	
  	
  	
  also	
  have	
  "...	
  =	
  1"
	
  	
  	
  	
  	
  	
  by	
  (simp	
  add:	
  mn)
	
  	
  	
  finally	
  show	
  "False"	
  using	
  0
	
  	
  	
  	
  	
  	
  by	
  auto

Internally, this proof is identical to the previous one. It merely differs in appearance, not bothering to note that 2 × abs n ≤ 1 has been derived.



Ending the Calculation

We have deduced 
2 × abs n ≤ 1



Structure of a Calculation

• The first line is have/hence

• Subsequent lines begin, also	
  have	
  “...	
  =	
  “

• Any transitive relation may be used. New ones may 
be declared.

• The concluding line begins, finally	
  have/show, 
repeats the calculation and terminates with (.)
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A Proof about Binary Trees

Must we copy each case 
and such big contexts?

Inductive proofs frequently involve several subgoals, some of them with multiple assumptions and bound variables. Creating an Isar proof skeleton from scratch would be tiresome, and the 
resulting proof would be quite lengthy.



Finding Predefined Cases

Built-in 
cases

name of 
induction hyps

abbreviation of conclusion

Many induction rules have attached cases designed for use with Isar. By referring to such a case, a proof script implicitly introduces the contexts shown above. There are placeholders for the 
bound variables (specific names must be given). Identifiers are introduced to denote induction hypotheses and other premises that accompany each case. Also, the identifier ?case is 
introduced to abbreviate the required instance of the induction formula.



The Finished Proof

the two cases

instances of 
the goal list of bound variables

Isabelle has proved the 
induction step

With all these abbreviations, the induction formula does not have to be repeated in its various instances. The instances that are to be proved are abbreviated as ?case; they (and the 
induction hypotheses) are automatically generated from the supplied list of bound variables.

Observe the use of “thus” rather than “show” in the inductive case, thereby providing the induction hypotheses to the method. In a more complicated proof, these hypotheses can be denoted 
by the identifier Br.hyps.



A More Sophisticated Proof

a named induction rule

an arbitrary variable

non-empty premises

An inductive definition generates an induction rule with one case (correspondingly named) for each introduction rule. This particular proof requires the variable B to be taken as arbitrary, 
which means, universally quantified: it becomes an additional bound variable in each case. This proof also carries along a further premise, B⊆A, instances of which are attached to both 
subgoals.



Proving the Base Case

“thus” makes the premise available

“arbitrary” variables must be named!

The base case would normally be just emptyI. But here, there is an additional bound variable. Note that we could have written, for example, (emptyI	
  C) and Isabelle would have adjusted 
everything to use C instead of B.



A Nested Case Analysis

“arbitrary” variables must 
(again) be named!

case analysis on this formula

Here we know B ⊆ insert a A, as it is the inherited premise of this case. But do we in fact know B⊆A?



The Complete Proof

true and 
false cases

induction hypothesis and premise

the true case: B⊆A

the false case: ¬ B⊆A

direct quotation of a fact

Here is an outline of the proof. If B⊆A, then it is trivial, as we can immediately use the induction hypothesis. If not, then we apply the induction hypothesis to the set B-{a}.  We deduce that B-
{a} ∈ Fin, and therefore B = insert a (B-{a}) ∈ Fin.

This proof script contains many references to facts. The facts attached to the case of an inductive proof or case analysis are denoted by the name of that case, for example, insertI, True or 
False. We can also refer to a theorem by enclosing the actual theorem statement in backward quotation marks. We see this above in the proof of B-{a} ⊆ A.



Which Theorems are Available?

a recently proved fact

the false case: ¬ B⊆A

facts for the case insertI

separate hyps and 
prems for insertI



Existential Claims: “obtain”

 b dvd a  ↔  (∃k. a = b × k)

obtain variables satisfying properties

Isabelle proves an 
elimination rule

Frequently, our reasoning involves quantities (such as j above) that are known to satisfy certain properties. Here, the “divides” premise implies the existence of a divisor, j. What Isabelle does 
internally can be difficult to understand, especially if the proof fails. It proves a theorem having the general form of an elimination rule, which in the premise introduces one or more bound 
variables: the variables that we “obtain”.



Continuing the Proof

we now have the 
key property of j



The Finished Proof

removing k



Introducing “then”

includes facts from the previous step
here, the induction context

Isar proof steps often include facts that are “piped in” (by analogy with UNIX) from previous steps. The use of labels is thereby minimised. Facts so included may be treated specially by the 
proof method, particularly if the proof method is to apply an elimination rule. The more automatic methods simply add the facts to the subgoalʼs assumptions.

The simplest way to include previous facts is by the keyword “then”. Isabelle highlights, as shown above, the fact that have been “picked”.



Another Example of  “obtain”

(map f xs = y#ys) ↔ (∃z zs. xs = z#zs & f z = y & map f zs = ys)

we “obtain” two quantities

The slightly queer logical equivalence shown above, combined with the assumption map	
  f	
  xs	
  =	
  map	
  f	
  (y	
  #	
  ys), which arises from the induction, implies the existence of z and zs 
satisfying a useful equality.



Facts from Two Sources

the effect of “then”
the effect of “using”

The ability to introduce facts from multiple sources is both convenient and powerful. It is vital to look at Isabelleʼs response so that you are aware of what is going on.



Finishing Up

“then” / “using” again!

a direct use of the 
induction hypothesis

Unusually, we prove length zs = length ys using the method “rule” rather than some automatic method such as “auto”. This step needs the induction hypothesis, and we could indeed have 
included it via “using	
  Cons” and then invoked “auto”. But this particular result is simply the conclusion of the induction hypothesis, whose premise was proved in the previous step. Whether 
to prefer automatic methods or precise steps is a matter of taste, and people argue about which approach is preferable.

Now consider the proof being undertaken at this moment, as shown by Isabelleʼs output. The reasoning should be clear: the included facts obviously imply the final goal for this case, written 
above as “?case”.



The Complete Proof

then	
  have  =  hence

then	
  show  =  thus



Additional Proof Structures

from 〈facts〉 ...	
   =  ...	
  using 〈facts〉

with 〈facts〉 ...   =  then	
  from 〈facts〉... 

(where ... is have / show / obtain)

Full details, probably much more than you want at this stage, can be found in The Isabelle/Isar Reference Manual by Makarius Wenzel.
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Basic Principles of Modelling

• Define mathematical abstractions of the objects of 
interest (systems, hardware, protocols,...).

• Whenever possible, use definitions — not axioms!

• Ensure that the abstractions capture enough detail.

• Unrealistic models have unrealistic properties.

• Inconsistent models will satisfy all properties.

All models involving the real world are approximate!

Constructing models using definitions exclusively is called the definitional approach. A purely definitional theory is guaranteed to be consistent. Axioms are occasionally necessary in abstract 
models, where the behaviour is too complex to be captured by definitions. However, a system of axioms can easily be inconsistent, which means that they imply every theorem. The most 
famous example of an inconsistent theory is Fregeʼs, which was refuted by Russellʼs paradox. A surprising number of Fregeʼs constructions survived this catastrophe. Nevertheless, an 
inconsistent theory is almost worthless.

Useful models are abstract, eliminating unnecessary details in order to focus on the crucial points. The frictionless surfaces and pulleys found in school physics problems are a well-known 
example of abstraction. Needless to say, the real world is not frictionless and this particular model is useless for understanding everyday physics such as walking. But even models that 
introduce friction use abstractions, such as the assumption that the force of friction is linear, which cannot account for such phenomena as slipping on ice. Abstraction is always necessary in 
models of the real world, with its unimaginable complexity; it is often necessary even in a purely mathematical context if the subject material is complicated.



Hardware Verification

• Pioneered by M. J. C. Gordon and his students, 
using successive versions of the HOL system.

• Used to model substantial hardware designs, 
including the ARM4 processor.

• Works hierarchically from arithmetic units and 
memories right down to flip-flops and transistors.

• Crucially uses higher-order logic, modelling signals as 
boolean-valued functions over time.

The material in this lecture is based on Prof Gordonʼs lecture notes for Specification and Verification II, which are available on the Internet at http://www.cl.cam.ac.uk/~mjcg/Teaching/
SpecVer2/



Devices as Relations

A relation in a, b, c, d

Specification Examples
• Simple combinational behaviour:!

"
#
$

#
$i2

i1 o

! Xor(i1, i2, o) = (o = ¬(i1 = i2))

• Bidirectional wires:

s d

g

! Ntran(g, s, d) = (g ⇒ (d = s))

Modelling Hardware: TFM/MN/MJCG – p.7/32

g → s = d

The relation describes the possible 
combinations of values on the ports.

Values could be bits, words, signals 
(functions from time to bits), etc

a
b

c
d

Dev

The second device on the slide above is an N-type field effect transistor, which can be conceived as a switch: when the gate goes high, the source and drain are connected. The logical 
implication shown next to the transistor formalises this behaviour. Note that the connection between the source and drain is bidirectional, with no suggestion that information flows from one 
port to the other.



Relational CompositionComposing Behaviours
• Consider the following two devices:

D1a x

S1[a, x]

D2x b

S2[x, b]

• Logical conjunction (∧) models the effect of connecting
components together:

D1 D2a b
x!

S1[a, x] ∧ S2[x, b]

Modelling Hardware: TFM/MN/MJCG – p.10/32

two devices modelled 
by two formulas

Composing Behaviours
• Consider the following two devices:

D1a x

S1[a, x]

D2x b

S2[x, b]

• Logical conjunction (∧) models the effect of connecting
components together:

D1 D2a b
x!

S1[a, x] ∧ S2[x, b]

Modelling Hardware: TFM/MN/MJCG – p.10/32

the connected ports 
have the same value

Hiding Internal Structure
• Consider the composite device

D1 D2a b
x

S1[a, x] ∧ S2[x, b]

• Existential quantification (∃) models the effect of making
wires internal to the design:

D1 D2a b
x

∃x.S1[a, x] ∧ S2[x, b]

• Existential quantification is called a hiding operator—it
‘hides’ internal wires.

Modelling Hardware: TFM/MN/MJCG – p.11/32

the connected ports 
have some value

The diagrams are taken from Prof Gordonʼs lecture notes.

Because we model devices by relations, connecting devices together must be modelled by relational composition. Syntactically, we specify circuits by logical terms that denote relations and 
we express relational composition using the existential quantifier. The quantifier creates a local scope, thereby hiding the internal wire.



Specifications and Correctness

• The implementation of a device in terms of other 
devices can be expressed by composition.

• The specification of the device’s intended behaviour 
can be given by an abstract formula.

• Sometimes the implementation and specification 
can be proved equivalent: Imp⇔Spec.

• The property Imp⇒Spec ensures that every 
possible behaviour of the Imp is permitted by Spec.

Impossible implementations satisfy all specifications!

The implementation describes a circuit, while the specification should be based on mathematical definitions that were established prior to the implementation. A limitation of this approach is 
that impossible implementations can be expressed: in the most extreme case, implementations that identify the values true and false. In hardware, this represents a short circuit connecting 
power to ground, possibly a short circuit that only occurs when a particular combination of values appears on other wires, activating an unfortunate series of transistors. In the real world, 
short circuits have catastrophic effects, while in logic, identifying true with false allows anything to be proved. Therefore, absence of short circuits needs to be established somehow if this 
relational approach is to be used safely. 

For combinational circuits (those without time), both the implementation and the specification express truth tables with no concept of a “donʼt care” entry, so logical equivalence should be 
provable. Sequential circuits involve time, and frequently the specification samples the clock only a specific intervals, ignoring the situation otherwise. Specifications can involve many other 
forms of abstraction. In general, we cannot expect to prove logical equivalence.

Proving the logical equivalence of the implementation with the specification does not prove the absence of short circuits, but it does prove that the short circuits coincide with inconsistencies 
in the specification itself. Needless to say, a correct specification should be free of inconsistencies, but there is no way in general to guarantee this. How then do we benefit from using logic? 
Specifications tend to be much simpler than implementations and they are less likely to contain errors. Moreover, the attempt to prove properties relating specifications and implementations 
frequently identifies errors, even if we cannot promise all embracing guarantees.



The Switch Model of CMOSCMOS Primitives
• Formal specifications of primitives:

!
s d

g
! Ptran(g, s, d) = (¬g ⇒ (d = s))

s d

g
! Ntran(g, s, d) = (g ⇒ (d = s))

g
! Gnd g = (g = F)

p

"
! Pwr p = (p = T)

• This is the so-called switch model of CMOS.

Modelling Hardware: TFM/MN/MJCG – p.17/32

CMOS (complementary metal oxide semiconductor) technology combines P- and N-type transistors on a chip to make gates and other devices. The slide shows primitive concepts: the two 
types of transistors, ground (modelled by the value False) and power (model by the value True). The corresponding Isabelle definitions are easily expressed. Lambda-notation is a 
convenient way to express a function is argument is a triple.



Full Adder: Specification
Another Example

• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

a b

cincout

sum
2 × cout + sum = a + b + cin

A full adder forms the sum of three one-bit inputs, yielding a two-bit result. The higher-order output bit is called “carry out”, and it will typically be connected to the “carry in” of the next stage. 
Because we typically use True and False to designate hardware bit values, the obvious conversion to 1 and 0 is necessary in order to express arithmetic properties. Even with this small 
step, expressing the specification in higher-order logic is trivial. The identifier denotes the abstract relation satisfied by a full adder, namely the legal combinations of values on the various 
ports.



Full Adder: Implementation

A full adder is easily expressed at the gate level in terms of exclusive-OR (to compute the sum) and other simple gating to compute the carry. The diagram above, again from Prof Gordonʼs 
notes, expresses a full adder as would be implemented directly in terms of transistors.



Full Adder in Isabelle

(∃b. P b) = (P True ∨ P False)

The logical formula above is a direct translation of the diagram on the previous slide. Needless to say, the translation from diagram to formula should ideally be automatic, and better still, 
driven by the same tools that fabricate the actual chip.

The theorem expresses the logical equivalence between the implementation (in terms of transistors) and the specification (in terms of arithmetic). This type of proof is trivial for reasoning 
tools based on BDDs or SAT solvers. Isabelle is not ideal for such proofs, and this one requires over four seconds of CPU time. In the simplifier call, the last theorem named is crucial, 
because it forces a case split on every existentially quantified wire.



An n-bit Ripple-Carry Adder

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

an−1 bn−1

sn−1

• Cascading several full adders yields an n-bit adder.

•  The implementation is expressed recursively.

• The specification is obvious mathematics.



Adder Specification

Another Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

values of n-bit words

The function bits_val converts a binary numeral (supplied in the form of a boolean valued function, f) to a non-negative integer.The specification of the adder then follows the obvious 
arithmetic specification closely. When n=0, the specification merely requires cin=cout.



Adder ImplementationAnother Example
• An n-bit ripple-carry adder:

Add1 Add1 Add1 Add1· · · cincout

sn s2 s1 s0

an a2 a1 a0bn b2 b1 b0

• We wish to prove that:

(2n × cout) + s = a + b + cin

• There are, as usual, three steps:

• define a model of the circuit in logic
• formulate the correctness of the circuit
• prove the correctness of the circuit

Modelling Hardware: TFM/MN/MJCG – p.22/32

an−1 bn−1

sn−1
internal wire, to be hidden

a zero-bit adder simply 
connects the carry lines!

An (n+1)-bit adder consists of a full adder connected to an n-bit adder. Note that AdderImp n specifies an n-bit adder, and in particular, a 0-bit adder is nothing but a wire connecting carry 
in to carry out.



Partial Correctness Proof

assumptions

conclusion

We are proving partial correctness only: that the implementation implies the specification. The term “partial correctness” here refers to a limitation of the approach, namely that an 
inconsistent implementation (one with short circuits) can imply any specification. Termination, obviously, plays no role in this circuit.

The base case is trivial. Our task in the induction step Is shown on the slide. It is expressed in terms of predicates for the implementation and specification. The induction hypothesis asserts 
that the implementation implies the specification for n. We now assume the implementation for n+1 and must prove the corresponding specification.



Using the Induction Hypothesis

internal wire
holds by ind hyp

name of ind hyp

By assumption, we have AdderImp(Suc n) and therefore both AdderImp n and Add1Imp. The simplest use of “obtain” would derive those assumptions, but we can skip a step and go 
directly to AdderSpec n by referring to the induction hypothesis.



A Tiresome Calculation

rearranging the terms

replacing outputs by inputs

This equation is suggested by earlier attempts to prove the induction step directly. The proof involves using the correctness of a full adder to replace Add1Imp by Add1Spec, then unfolding 
the latter to get the sum c + a n + b n. The precise form of the left-hand side has been chosen to match a term that will appear in the main proof. This kind of reasoning is tedious even with 
the help of Isar. Better support for arithmetic could make this proof almost automatic.



The Finished Proof

implementation ⇒ 
specification

We end up with a fairly simple structure. Note that we could have used it Add1Correct earlier in the proof, obtaining Add1: "Add1Spec ...” directly.

To repeat: we have proved that every possible configuration involving the connectors to our circuit satisfies the specification of an n-bit adder. Tools based on BDDs or SAT 
solvers can prove instances of this result for fixed values of n, but not in the general case.



Proving Equivalence

HELP!!

just need to prove this...

To prove that the specification implies the implementation would yield their exact equivalence. It would also guarantee the lack of short circuits in the implementation, as the specification is 
obviously correct.

The verification requires the lemma shown above, which resembles the recursive case of AdderImp. We might expect its proof to be straightforward. Unfortunately, the obvious proof attempt 
leaves us with 16 subgoals. A bit of thought informs us that these cases represent impossible combinations of bits. These arithmetic equations cannot hold. But how can we prove this 
theorem with reasonable effort?



A Crucial Lemma

a trivial upper bound on 
the value of a bit string

now proof is trivial, 
by arithmetic

inserting three 
instances of that fact

The crucial insight is that all of the impossible cases involve bit strings that have impossibly high values. It is trivial to prove the obvious upper bound on an n-bit string. Less obvious is that 
Isabelleʼs arithmetic decision procedures can dispose of the impossible cases with the help of that upper bound. We use a couple of tricks. One is that “using” can be inserted before the 
“apply” command, where it makes the given theorems available. The other trick is the keyword “of”, which is described below.



The Opposite Implication

The implementation and 
specification are equivalent!

With the help of AdderSpec_Suc, the opposite direction of the logical equivalence is a trivial induction.



Making Instances of Theorems

• thm [of a b c]
replaces variables by terms from left to right

• thm [where x=a]
replaces the variable x by the term a

• thm [OF thm1 thm2 thm3]
discharges premises from left to right 

• thm [simplified]
applies the simplifier to thm

• thm [attr1, attr2, attr3]
applying multiple attributes

We proved AdderSpec_Suc with the help of “using”, which inserted a crucial lemma into the proof. We needed specific instances of the lemma because Isabelleʼs arithmetic decision 
procedures cannot make use of the general formula. Fortunately, we needed only three instances and could express them using the keyword “of”. This type of keyword is called an attribute. 
Attributes modify theorems and sometimes declare them: we have already seen attributes like [simp] and [intro] many times.

The most useful attributes are shown on the slide. Replacing variables in a theorem by terms (which must be enclosed in quotation marks unless they are atomic) can also be done using 
“where”, which replaces a named variable.  in the left to right list of terms or theorems, use an underscore (_) to leave the corresponding item unspecified. An example is bits_val_less 
[of _ n], which denotes bits_val ?f n < 2 ^ n.

Joining theorems conclusion to premise can be done in two different ways. An alternative to OF is THEN: thm1 [THEN thm2] joins the conclusion of thm1 to the premise of thm2. Thus it is 
equivalent to thm2 [THEN thm1]. The result of such combinations can often be simplified. Finally, we often want to apply several attributes one after another to a theorem.

See the Tutorial, section 5.15 Forward Proof: Transforming Theorems.
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The Mutilated Chess Board

Can this damaged board be tiled using dominoes?

A clear proof requires an abstract model.

An earlier version of this formalisation is described in the paper referenced below. Comparing that version of the proof with the present one gives an indication of the progress made by 
Isabelle developers, especially as regards structured proof.

L. C. Paulson.
A simple formalization and proof for the mutilated chess board.
Logic J. of the IGPL 9 3 (2001), 499–509.

http://jigpal.oxfordjournals.org/cgi/reprint/9/3/475



Proof Outline

• Every row of length 2n can be tiled with dominoes. 

• Every board of size m × 2n can be tiled.

• Every tiled area has the same number of black and 
white squares.

• Removing some white squares from a tiled area 
leaves an area that cannot be tiled.

• No mutilated 2m × 2n board can be tiled.

The diagram is compelling with no reasoning at all. By comparison, even the five steps shown above are more complicated than we would like. However, the Isabelle formalisation is simpler 
and shorter than the others that I am aware of.



An Abstract Notion of Tiling

• A tile is a set of points (such as squares).

• Given a set of tiles (such as dominoes),

• the empty set can be tiled,

• and so can a∪t provided 

• t can be tiled, and

• a is a tile disjoint from t (no overlaps!)

Instead of formalising chess boards concretely, we look more abstractly at the question of covering a set by non-overlapping tiles.



Tilings Defined Inductively

given a set of tiles...

the empty set and 
a∪t can be tiled 

we give the introduction 
rules to auto and blast



Simple Proofs about Tilings
for auto and blast...

referring to unnamed 
assumptions

another way to 
specify induction

a comma can join 
two methods

Two disjoint tilings can be combined by taking their union, yielding another tiling. The induction is trivial, using the associativity of union. Section 4 of the paper “A simple formalization and 
proof for the mutilated chess board” explains the proof in more detail.

If each of our tiles is a finite set, then all the tilings we can create are also finite. The induction is again trivial. Even if we have infinitely many tiles, a tiling can only use finitely many of them.

We see something new here: the identifier assms. It provides a uniform way of referring to the assumptions of the theorem we are trying to prove, if we have neglected to equip those 
assumptions with names.

Another novelty is the method induct	
  set:	
  tiling, which specifies induction over the named set without requiring us to name the actual induction rule.

Yet another novelty: we can join a series of methods using commas, creating a compound method that executes its constituent methods from left to right. Lengthy chains of methods would 
be difficult to maintain, but joining two or three as shown is convenient. Now the proof can be expressed using “by”, because it is accomplished by a single (albeit compound) method.



Dominoes for Chess Boards

each square is denoted 
by its rank and file

... and consists of 
two squares

a domino is 
horizontal or 

vertical

Tell the simplifier: 
every tiling using 
dominoes is finite

The formalisation of dominoes is extremely simple: each domino is a two element set of the form {(i,j), (i,j+1)} or {(i,j), (i+1,j)}, expressing a horizontal or vertical orientation. 
The set of dominoes is not actually inductive and we could have defined it by a formula, but the inductive set mechanism is still convenient.

Because each domino contains two elements, dominoes are trivially finite. The declaration shown above combines two finiteness properties, asserting that tilings that 
consist of dominoes are finite, and it gives this fact to the simplifier. Concluding a series of attributes by simp or intro is common.



White and Black Squares

abbreviations 
provide notation

colours defined using 
modular arithmetic

case analysis on 
the named set

The distinction between white and black is made using modulo-2 arithmetic. The constants “whites” and “blacks” do not have definitions in the normal sense; they are declared as 
abbreviations, which means that these constants never occur in terms. They provide a shorthand for expressing the terms “coloured 0” and “coloured (Suc 0)”. Recall that to define a constant 
in Isabelle introduces an equation that can be used to replace the constant by the defining term. And this equation is not even available to the simplifier by default. With abbreviations, no such 
equations exist. 

See the Tutorial, section 4.1.4 Abbreviations, for more information. More generally, section 4.1 describes concrete syntax and infix annotations for Isabelle constants.

It is now trivial to prove that every domino has a white square and a black square, by case analysis on the two kinds of domino. The proof requires giving the simplifier some facts about 
intersection and the modulus function.



Rows and Columns
 {0..<k} = {0, ..., k−1}

even-length rows can be tiled

even-length blocks can be tiled

The first theorem states that any row of even length can be tiled by dominoes. In the inductive step, observe how the expression {0..<2	
  *	
  Suc	
  n} is rewritten to involve an 
explicit domino, {(i,	
  2*n),	
  (i,	
  Suc(2*n))}. Structured proofs make this sort of transformation easy, provided we are willing to write the desired term explicitly. 

The alternative approach, of choosing rewrite rules that transform a term precisely as we wish, eliminates the need to write the intermediate stages of the transformation, 
but it can be more time-consuming overall. You know this other approach has been adopted if you see this sort of command:

apply	
  (simp	
  add:	
  mult_assoc	
  [symmetric]	
  del:	
  fact_Suc)

The theorem mult_assoc	
  is given a reverse orientation using the attribute [symmetric], while the theorem fact_Suc is removed from this simplifier call.

The induction at the bottom of this slide is an example of the alternative approach done correctly. We first prove a lemma to rewrite the induction step precisely as we wish: in other words, so 
that it will create an instance of dominoes_tile_row. The lemma is easily proved and the inductive proof is also easy.



For Tilings, #Whites = #Blacks

the result of “obtain”

The crux of the argument is that any area tiled by dominoes must contain the same number of white and black squares. This statement is easily expressed using set theoretic primitives such 
as cardinality and intersection. The proof is by induction on tilings. It is trivial for the empty tiling. For a non-empty one, we note that the last domino consists of a white square and a black 
square, added to another tiling that (by induction) has the same number of white and black squares.



No Tilings for Mutilated Boards

default proof 
of a negation

accumulating 
some facts

card (whites ∩ (t - sqs)) < 
card (blacks ∩ (t - sqs))

The other crucial point is that if some white squares are removed, then there will be fewer white squares than black ones; although obvious to us, this proof requires the series of calculations 
shown on the slide. Once we have established this inequality, then it is trivial to show that the remaining squares cannot be tiled.



The Final Proof...

a local constant, t

An 8 x 8 chess board can be generalised slightly, but the dimensions must be even (otherwise, the removed squares will not be white) and positive (otherwise, nothing can be removed).

Here we display yet another novelty: a “defines” element. Within the proof, t is a constant whose definition is available as the theorem t_def. But once the proof is finished, Isabelle stores 
a theorem that does not mention t at all.

The “fixes” element is necessary because otherwise the “defines” element will be rejected on the grounds that it has “hanging” variables (m and n) on the right-hand side.



The Result for Chess Boards

the theorem as 
it is stored



Finding Structured Proofs

the magic
apply	
  -­‐

It’s okay to fool around 
with apply, but what if 
this keeps happening?

A common way to arrive at structured proofs is to look for a short sequence of apply-steps that solve the goal at hand. If successful, you can even leave this sequence (terminated by 
“done”) as part of the proof, though it is better style to shorten it to a use of “by”. Sometimes however almost everything you try produces an error message. The problem may be that you are 
piping facts into your proof using then/hence/thus/using. Some proof methods (in particular, “rule” and its variants) expect these facts to match a premise of the theorem you give to 
“rule”. The simplest way to deal with this situation is to type apply	
  -­‐, which simply inserts those facts as new assumptions. It would be very ugly to leave -­‐ as a step in your final proof, but 
it is useful when exploring.



Other Facets of Isabelle

• Document preparation: you can generate LATEX 
documents from your theories.

• Axiomatic type classes: a general approach to 
polymorphism and overloading when there are 
shared laws.

• Code generation: you can generate executable code 
from the formal functional programs you have 
verified.

• Locales: encapsulated contexts, ideal for formalising 
abstract mathematics.

See the Tutorial, section 4.2, for an introduction to document preparation.

Locales are documented in the “Tutorial to Locales and Locale Interpretation” by Clemens Ballarin, which can be downloaded from Isabelleʼs documentation page.



Axiomatic Type Classes

• Controlled overloading of operators, including + − 
× / ^ ≤ and even gcd

• Can define concept hierarchies abstractly:

• Prove theorems about an operator from its 
axioms

• Prove that a type belongs to a class, making 
those theorems available

• Crucial to Isabelle’s formalisation of arithmetic

Axiomatic type classes are inspired by the type class concept in the programming language Haskell, which is based on the following seminal paper:

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In 16th Annual Symposium on Principles of Programming Languages, pages 60–76. ACM Press, 1989.

A very early version was available in Isabelle by 1993:

Tobias Nipkow. Order-sorted polymorphism in Isabelle. In Gérard Huet and Gordon Plotkin, editors, Logical Environments, pages 164–188. Cambridge University Press, 1993.

More recent papers include the following:

Markus Wenzel. Type Classes and Overloading in Higher-Order Logic. In: Elsa L. Gunter and Amy P. Felty, Theorem Proving in Higher Order Logics. Springer Lecture Notes In Computer 
Science 1275 (1997), 307 - 322.

Lawrence C. Paulson. Organizing Numerical Theories Using Axiomatic Type Classes. J. Automated Reasoning 33 1 (2004), 29–49.

Full documentation is available: see “Haskell-style type classes with Isabelle/Isar”, which can be downloaded from Isabelleʼs documentation page, http://www.cl.cam.ac.uk/research/
hvg/Isabelle/documentation.html



Code Generation

• Isabelle definitions can be translated to equivalent 
ML and Haskell code.

• Inefficient and non-executable parts of definitions 
can be replaced by equivalent, efficient terms.

• Algorithms can be verified and then executed.

• The method eval provides reflection: it proves 
equations by execution.

See “Code generation from Isabelle/HOL theories”, by Florian Haftmann; it can be downloaded from Isabelleʼs documentation page.
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