Fundamental Property of LR for \leq_{idw}

If $\Gamma \vdash e : ty'$ with $\text{loc}(e) \subseteq \omega$, then $\Gamma \vdash e \leq_{idw} e : ty'$.

More generally, if $\Gamma, x : ty \vdash e : ty'$ with $\text{loc}(e) \subseteq \omega$, then

$$\Gamma \vdash e_1 \leq_{idw} e_2 \Rightarrow \Gamma \vdash e[e_1/x] \leq_{idw} e[e_2/x] : ty'$$

Proved by showing that each syntactic construct of the language preserves $\Gamma \vdash e_1 \leq_{r} e_2 : ty$ (see [15] Prop. 4.8).

For example...

If $\Gamma, f : ty_1 \rightarrow ty_2, x : ty_1 \vdash e \leq_{r} e' : ty_2$, then

$$\Gamma \vdash \text{fun } f = (x : ty_1) \rightarrow e \leq_{r} \text{fun } f = (x : ty_1) \rightarrow e' : ty_1 \rightarrow ty_2$$

This is proved via an important "compactness property" of $\langle s, \bar{f}s, e \rangle \downarrow$, namely ...
An unwinding theorem

Given $f : \text{ty}_1 \rightarrow \text{ty}_2$, $x : \text{ty}_1 \vdash e_2 : \text{ty}_2$, for each $0 \leq n \leq \omega$ define $f_n \in \text{Prog}_{\text{ty}_1 \rightarrow \text{ty}_2}$ by:

- $f_0 \triangleq \text{fun } f = (x : \text{ty}_1) \rightarrow fx$
- $f_{n+1} \triangleq \text{fun}(x : \text{ty}_1) \rightarrow e_2[f_n/f]$
- $f_\omega \triangleq \text{fun } f = (x : \text{ty}_1) \rightarrow e_2$.

Then for all $f : \text{ty}_1 \rightarrow \text{ty}_2 \vdash e : \text{ty}$ and all states s

$s, e[f_\omega/f] \downarrow \text{ iff } \exists n \geq 0. s, e[f_n/f] \downarrow.$

(proof: see OS&PE, Theorem 5.3)

Unwinding theorem implies

$f_\omega \leq_{\text{defx}} g \equiv \forall n (f_n \leq_{\text{defx}} g)$

and more generally

$f_\omega \leq_r g \equiv \forall n (f_n \leq_r g)$
Unwinding Theorem implies
\[e[fw/f] \leq_{\text{ctx}} g \equiv \forall n (e[fn/f] \leq_{\text{ctx}} g) \]
and more generally
\[e[fw/f] \leq_{r} g \equiv \forall n (e[fn/f] \leq_{r} g) \]

These “syntactic admissibility” properties provide a direct link with the use of chain-complete partial orders in denotational semantics.

Some observations

- Simple operational semantics does not imply simple properties! (in particular, properties of recursion can be subtle)

- Not all SOS’s are equally convenient for proofs

- The “ghost” of Domain Theory in operationally-based proof methods.
Second part of the course is based on section 3 of
AMP, "Relational Properties of Domains,"

(see also the Abramsky-Jung handbook chapter on Domain Theory)

Recursive Domain Equations

• why do we (semanticists) need to solve them? ...

• and why is it hard to do so?
Denotational semantics as a tool for reasoning about contextual equiv. \simeq_{ctx}

Require: mathematical structure D plus operations on D for the prog. lang. constructs permitting compositional definition of $[e] \in D$ denotation of program phrase e

that is at least computationally adequate:

$[e_1] = [e_2] \in D \Rightarrow e_1 \simeq_{ctx} e_2$

($[_]=_ \text{ coinciding with } \simeq_{ctx} \text{ is called full abstraction}$)

Denotational semantics as a tool for reasoning about contextual equiv. \simeq_{ctx}

Require: mathematical structure D plus operations on D for the prog. lang. constructs often(?) lead to use of recursively defined domains

given domain construction $D \rightarrow \Phi(D)$

seek domain $D = \text{rec } X. \Phi(X)$ which is "minimal" with property $D \simeq \Phi(D)$
Denotational semantics as a tool for reasoning about contextual equiv. \(\simeq_{\text{ctx}} \)

Require: mathematical structure \(D \) plus operations on \(D \) for the prog. lang. constructs (often?) lead to use of recursively defined domains

Given domain construction \(D \to \Phi(D) \)
Seek domain \(D = \text{rec } X. \Phi(X) \) which is "minimal" with property \(D \simeq \Phi(D) \)

Needed for computational adequacy results

Example

Domain \(E \) for denotations of expressions calculating an int using a storage location for holding codes of functions \(\text{int} \to \text{int} \)

E.g. of such an expression in Ocaml

\[
\begin{align*}
\text{let } y & = \text{ref } (\text{fun } x : \text{int} \to x) \text{ in} \\
y & = (\text{fun } x : \text{int} \to \text{if } x = 0 \text{ then } 1 \text{ else } x \times (\!y)(x - 1)) \\
(\!y) & 42
\end{align*}
\]

computes 42!
Example

Domain E for denotations of expressions calculating an int using a storage location for holding codes of functions $\text{int} \to \text{int}$

\[
\begin{align*}
\text{denotations of expressions} & \quad E \cong S \to (\mathbb{Z} \times S) \\
\text{denotations of states} & \quad S \cong \mathbb{Z} \to E
\end{align*}
\]

So need $E \cong \Phi(E)$ where

\[
\Phi(-) \equiv (\mathbb{Z} \to (-)) \to (\mathbb{Z} \times (\mathbb{Z} \to (-))
\]

(If \rightarrow means all partial Φs, then no such set E exists, by Cantor.)
Classic example: untyped λ-calculus

Given iso $i : D \cong D \rightarrow D$ one can give denotations to λ-terms

\[t ::= x \mid \lambda x . t \mid tt \]

as elements $\llbracket t \rrbracket_\rho \in D$

- $\llbracket x \rrbracket_\rho = \rho(x)$
- $\llbracket \lambda x . t \rrbracket_\rho = i^{-1}(d \in D \mapsto \llbracket t \rrbracket_\rho[x \mapsto d])$
- $\llbracket t t' \rrbracket_\rho = i(\llbracket t \rrbracket_\rho)(\llbracket t' \rrbracket_\rho)$

Classic example: untyped λ-calculus

Given iso $i : D \cong D \rightarrow D$ one can give denotations to λ-terms

\[t ::= x \mid \lambda x . t \mid tt \]

as elements $\llbracket t \rrbracket_\rho \in D$

but there is no such set

\[\emptyset \neq 1 \cong 0 \rightarrow 0 \; \text{; and if } |D| \geq 1, \text{ then } |D \rightarrow D| \geq |D\rightarrow 1| = |\mathcal{P}(D)| > |D| \quad \text{(Cantor)} \]
Scott || Plotkin (1969)

Denotational semantics in categories of domains = partially ordered sets with least element, lubs of chains,
& continuous functions = monotone functions preserving lubs of chains

fewer functions allows possibility of things like \(D \sqsubseteq D \to D \)

Scott || Plotkin (1969)

"Limit-colimit" construction of \(\text{rec} X. \Phi (X) \) as inverse limit of posets

\[
D_0 \leftarrow \Phi (D_0) \leftarrow \Phi (D_1) \leftarrow \Phi (D_2) \leftarrow \cdots
\]

\[
\{ \bot \} \leftarrow \Phi (D_0) \leftarrow \Phi (D_1) \leftarrow \Phi (D_2) \leftarrow \cdots
\]

\[
\forall n. \quad \Phi (D_{n+1}) = \Phi (D_n)
\]

\[
\{ d \in \Pi_n D_n \mid d_n \}
\]
History - selected highlights

Ward; Lehmann; Smyth-Plotkin (1982)

Use of order-enriched category theory to provide a general framework for the limit-colimit construction of \(\text{rec} X. \Phi(X) \).

⇒ generalization to solving domain equations with parameters and recursively defined domain constructions ("nested datatypes", GADTs, ...)

History - selected highlights

Freyd (1992) Categorical axiomatization of \(\text{rec} X. \Phi(X) \) via notion of "algebraic compactness" & "free dialgebras".

⇒ simplified proofs of adequacy w.r.t. operational semantics (AMP)

induction/coinduction principles for recursive domains (Fiore, AMP)