Partially ordered sets

A binary relation \sqsubseteq on a set D is a partial order iff it is

- ▶ reflexive: $d \sqsubseteq d$
- ▶ transitive: $d \sqsubseteq d' \sqsubseteq d'' \supset d \sqsubseteq d''$
- ▶ anti-symmetric: $d \sqsubseteq d' \sqsubseteq d \supset d = d'$.

Such a pair (D, \sqsubseteq) is called a partially ordered set, or poset.

Cpo's and domains

A(n ω -)chain complete poset, or (ω -)cpo for short, is a poset (D, \sqsubseteq) in which all countable increasing chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \ldots$ have least upper bounds, $\bigsqcup_{n>0} d_n$:

$$\forall m \geq 0. d_m \sqsubseteq \bigsqcup_{n \geq 0} d_n$$

$$\forall d \in D. (\forall m \geq 0. d_m \sqsubseteq d) \supset \bigsqcup_{n \geq 0} d_n \sqsubseteq d$$

A domain is a cpo that possesses a least element. \perp :

$$\forall d \in D.\bot \sqsubseteq d$$

Domains

Examples

Non-examples

Partial functions

The set $X \longrightarrow Y$ of partial functions from a set X to a set Y is a domain with

- ▶ Partial order: $f \sqsubseteq g$ iff $dom(f) \subseteq dom(g)$ and $\forall x \in dom(f)$. f(x) = g(x).
- ▶ Lub of chain $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq ...$ is the partial function f with $dom(f) = \bigcup_{n \geq 0} dom(f_n)$ and

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in dom(f_n) \text{ for some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

▶ Least element \bot = totally undefined partial function.

Monotonicity, continuity, strictness

- ▶ A function $f: D \to E$ between posets is monotone iff $\forall d, d' \in D$. $d \sqsubseteq d' \supset f(d) \sqsubseteq f(d')$.
- ▶ If D and E are cpos, the function f is continuous iff it is monotone and preserves lubs of chains, i.e. for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \ldots$ in D, it is the case that

$$f(\bigsqcup_{n>0} d_n) = \bigsqcup_{n>0} f(d_n)$$
 in E

▶ If D and E have least elements, then the function f is strict iff $f(\bot) = \bot$.

Least pre-fixed points

Let **D** be a poset and $f: D \rightarrow D$ be a function.

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written fix(f). It is thus (uniquely) specified by the two properties:

$$f(fix(f)) \sqsubseteq fix(f)$$

$$\forall d \in D. \ f(d) \sqsubseteq d \supset fix(f) \sqsubseteq d$$

These imply that fix(f) is a fixed point of f, that is, f(fix(f)) = fix(f)

Tarski's Fixed Point Theorem

Let $f: D \to D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

$$fix(f) = \bigsqcup_{n > 0} f^n(\bot)$$

Tarski's Fixed Point Theorem

Let $f:D\to D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

$$fix(f) = \bigsqcup_{n \ge 0} f^n(\bot)$$

Proof. By continuity of f, $f(\bigsqcup_{n\geq 0}f^n(\bot))=\bigsqcup_{n\geq 0}f(f^n(\bot))=\bigsqcup_{n\geq 0}f^{n+1}(\bot)=\bigsqcup_{n\geq 1}f^n(\bot)=\bigsqcup_{n\geq 0}f^n(\bot)$; and if $f(d)\sqsubseteq d$, then

- $f^0(\perp) = \perp \square d$
- $ightharpoonup f^n(\bot) \sqsubseteq d$ implies $f^{n+1}(\bot) = f(f^n(\bot)) \sqsubseteq f(d) \sqsubseteq d$

so
$$\bigsqcup_{n\geq 0} f^n(\bot) \sqsubseteq d$$
.

Plotkin's Uniformity Principle

Suppose μ is an operation assigning to each domain D and continuous function $f:D\to D$ an element $\mu_D(f)\in D$. Then $\mu=fix$ if and only if μ satisfies properties (F) and (U).

(F)
$$f(\mu_D(f)) = \mu_D(f)$$

 $D \xrightarrow{s} D'$
(U) If $f \mid f'$ commutes (i.e. $f' \circ s = s \circ f$)
 $D \xrightarrow{s} D'$
with f, f', s continuous and s strict,
then $s(\mu_D(f)) = \mu_{D'}(f')$.

$\mu = fix \supset \mu \text{ satisfies } (F) & (U)$

(F) — least pre-fixed points are fixed points.
(u):
$$s(fix(f)) = s(\coprod_{n \ge 0} f^n(\bot))$$

$$= \coprod_{n \ge 0} s(f^n(\bot)) \text{ since } s \text{ continuous}$$

$$= \coprod_{n \ge 0} (f')^n(s(\bot)) \text{ since } s \text{ of } = f' \text{ os}$$

$$= \coprod_{n \ge 0} (f')^n(\bot) \text{ since } s \text{ strict}$$

$$= fix(f')$$

μ satisfies (F)&(U) $\supset \mu = fix$

Let Ω be the domain $\{0 \subseteq 1 \subseteq 2 \subseteq \dots \subseteq \omega\}$ and $s: \Omega \to \Omega$ the continuous function

$$\int S(n) = n+1$$

$$S(\omega) = \omega$$

NB ω is the unique fixed point of s, so by (F) we must have $\mu_{\Omega}(s) = \omega$.

$$\mu$$
 satisfies (F)&(U) $\supset \mu = fix$

Given any continuous $f:D\to D$, define a strict continuous function $f:D\to D$ by

 $\begin{cases}
 \hat{f}(n) = f''(\perp) \\
 \hat{f}(\omega) = fix(f).
 \end{cases}$ Thus if commutes, so by (u) we have

$$\mu_D(f) = \hat{f}(\mu_D(s)) = \hat{f}(\omega) = fix(f)$$