ML programs are typed

Programs of type ty: $\mathsf{Prog}_{ty} \triangleq \{ e \mid \emptyset \vdash e : ty \}$

where

Type assignment relation $\Gamma \vdash e : ty$

is inductively generated by axioms and rules following the structure of e, for example:

\[
\begin{align*}
\Gamma & \vdash e_1 : ty_1 \\
\Gamma[x \mapsto ty_1] & \vdash e_2 : ty_2 \\
\hline
\Gamma & \vdash (\text{let } x = e_1 \text{ in } e_2) : ty_2
\end{align*}
\]

Theorem (Type Soundness). If $e, s \Rightarrow v, s'$ and $e \in \mathsf{Prog}_{ty}$, then $v \in \mathsf{Prog}_{ty}$.

ML programs are typed

Programs of type ty: $\textbf{Prog}_{ty} \triangleq \{ e | \emptyset \vdash e : ty \}$

where

Type assignment relation

$$\Gamma \vdash e : ty$$

is inductively generated by axioms and rules following the structure of e, for example:

$$\Gamma \vdash e_1 : ty_1 \quad \Gamma[x \mapsto ty_1] \vdash e_2 : ty_2 \quad x \notin \text{dom}(\Gamma)$$

$$\Gamma \vdash (\text{let } x = e_1 \text{ in } e_2) : ty_2$$

Theorem (Type Soundness). If $e, s \Rightarrow v, s'$ and $e \in \textbf{Prog}_{ty}$, then $v \in \textbf{Prog}_{ty}$.

proof by induction on the derivation of $e, s \Rightarrow v, s'$
ML programs are typed

Programs of type ty: $\text{Prog}_{ty} \triangleq \{ e \mid \emptyset \vdash e : ty \}$

where

Type assignment relation $\Gamma \vdash e : ty$

is inductively generated by axioms and rules following the structure of e, for example:

$\Gamma \parallel e_1 : ty_1 \quad \Gamma[x \mapsto ty_1] \vdash e_2 : ty_2 \quad x \notin \text{dom}(\Gamma)$

$\Gamma \parallel (\text{let } x = e_1 \text{ in } e_2) : ty_2$

Theorem (Type Soundness). If $e, s \Rightarrow v, s'$ and $e \in \text{Prog}_{ty}$, then $v \in \text{Prog}_{ty}$.

What about "progress"?
ML transition relation

\[(s, e) \rightarrow (s', e')\]

is inductively generated by rules following the structure of \(e\)—e.g. a simplification step

\[
(s, e_1) \rightarrow (s', e'_1)
\]

\[
\overline{(s, \text{let } x = e_1 \text{ in } e_2) \rightarrow (s', \text{let } x = e'_1 \text{ in } e_2)}
\]

a basic reduction

\[
u \text{ a canonical form}
\]

\[
(s, \text{let } x = v \text{ in } e) \rightarrow (s, e[v/x])
\]

(see Sect. A.5 for the full definition).

Write \(\rightarrow^*\) for reflexive-transitive closure of \(\rightarrow\).

For example...
Recall (p.381):

\[F \triangleq \]
\[
\text{let } a = \text{ref}()\text{in} \\
\text{let } b = \text{ref}()\text{in} \\
\text{fun } x \to \\
\text{if } x == a \text{ then } b \\
\text{else } a
\]

\[G \triangleq \]
\[
\text{let } c = \text{ref}()\text{in} \\
\text{let } d = \text{ref}()\text{in} \\
\text{fun } y \to \\
\text{if } y == d \text{ then } d \\
\text{else } c
\]

For \(T \triangleq \text{fun } f \to \text{let } x = \text{ref}()\text{in} f(f\ x) == f\ x, \)

\(TF \) has value \(\text{false} \), whereas \(TG \) has value \(\text{true} \),

so \(F \not\sim_{ctx} G \).
\((\emptyset, \text{TF}) \rightarrow^* (s, Tv)\) where \(s \triangleq \{l_1 \mapsto (\cdot), l_2 \mapsto (\cdot)\}\)

\(v \triangleq \text{fun } x \rightarrow \text{if } x = l_1 \text{ then } l_2 \text{ else } l_1\)

\((s, \text{let } x = \text{ref}() \text{ in } v(vx) == vx)\)

\(\downarrow^*\)

\((s', v(vl_3) == vl_3)\)

where \(s' \triangleq \{l_1 \mapsto (\cdot), l_2 \mapsto (\cdot), l_3 \mapsto (\cdot)\}\)

\((s', vl_1 == vl_3)\)

\(\downarrow^*\)

\((s', l_2 == vl_3)\)

\(\downarrow^*\)

\((s', l_2 == l_1) \rightarrow^* (s', \text{false})\)
\[(\emptyset, T_G) \rightarrow^* (s, T_{v'}) \quad \text{where} \quad \left\{ \begin{array}{l}
 s \overset{\Delta}{=} \{ l_1 \mapsto (), l_2 \mapsto () \} \\
 v' \overset{\Delta}{=} \text{fun } x \rightarrow \text{if } x = = l_2 \text{ then } l_2 \text{ else } l_1
\end{array} \right.

(s, \text{let } x = \text{ref}() \text{ in } v(vx) = = vx)

\downarrow^*

(s', v(vl_3) = = vl_3)

\downarrow^*

(s', vl_1 = = vl_3)

\downarrow^*

(s', l_1 = = vl_3)

\downarrow^*

(s', l_1 = = l_1) \rightarrow^* (s', \text{true})
Theorem A.2 \(s,e \Rightarrow v,s' \iff (s,e) \rightarrow^*(s',v) \)

Proof via two lemmas:

1. \(s,e \Rightarrow v,s' \) implies \((s,e) \rightarrow^*(s',v)\) (by induction on derivation of \(s,e \Rightarrow v,s' \))

2. \((s,e) \rightarrow (s',e')\) implies \(\forall v,s'' \ (s',e' \Rightarrow v,s'' \) implies \(s,e \Rightarrow v,s''\)) (by induction on derivation of \((s,e) \rightarrow (s',e')\))

Repeated use of 2 gives

\((s,e) \rightarrow^* (s',e') \) & \(s',e' \Rightarrow v,s'' \) implies \(s,e \Rightarrow v,s''\)

So since \(s',v \Rightarrow v,s' \), get converse of 1:

\((s,e) \rightarrow^* (s',v) \) implies \(s,e \Rightarrow v,s' \)

\[\square\]
ML programs are typed

Programs of type ty: \[\text{Prog}_\text{ty} \triangleq \{ e \mid \emptyset \vdash e : \text{ty} \} \]

where

Type assignment relation \[\Gamma \vdash e : \text{ty} \]

is inductively generated by axioms and rules following the structure of e, for example:

\[\Gamma \vdash e_1 : \text{ty}_1 \quad \Gamma[x \mapsto \text{ty}_1] \vdash e_2 : \text{ty}_2 \quad x \notin \text{dom}(\Gamma) \]

\[\Gamma \vdash (\text{let } x = e_1 \text{ in } e_2) : \text{ty}_2 \]

Theorem (Type Soundness). If $e, s \Rightarrow v, s'$ and $e \in \text{Prog}_\text{ty}$, then $v \in \text{Prog}_\text{ty}$.

What about “PROGRESS”?
Progress

Evaluation of well-typed programs does not get stuck, in the sense that

if \(e \in \text{Prog}_{ty} \) and \(\text{loc}(e) \subseteq \text{dom}(s) \)

then either \(e \) is in canonical form

or \((s, e) \rightarrow (s', e') \) holds for some \(s' \) and \(e' \).

(Proof by induction on the structure of \(e \).)