UoCCL MPhil in Advanced Computer Science

L16: Semantics of HOT Languages

Lent Term 2010

Exam Briefing and Exercises

Exam briefing

This module will be assessed via a two-hour written test. There will be a choice of questions
on the test paper, consisting of a mixture of “essay-style” and “problem-style” questions,
with more weight given to the former than the latter.

To prepare for the problem-style questions, try some of the Exercises below. The essay-
style questions will ask you to write about material that was covered in the lectures. To
prepare, review the lecture slides and read the recommended texts, Operational Semantics
and Program Equivalence and Relational Properties of Domains. Examples of essay-style ques-
tions:

I. Describe the operational semantics of a fragment of OCaml with (at least) integer stor-
age locations and recursive functions, both in terms of an evaluation (“big-step”) and
a transition (“small-step”) relation. What is the relationship between the two styles
of operational semantics? Give a type system for the language and state preservation
and progress properties for the operational semantics with respect to the type system.
(Proofs of these properties are not required.)

II. Let D be the category whose objects are w-chain complete partial orders with least
element and whose morphisms are strict continuous functions. Explain what is meant
by a locally continuous functor F : D x D — D and a minimal invariant for such an F.
Show that a minimal invariant is a reqular free di-algebra in the sense of Freyd. (Stan-
dard properties of least fixed points of continuous functions may be used without
proof if clearly stated.)

Exercises

Operational Semantics (Lectures 1-8) See exercises B.1-B.7 on pp 409 and 410 of Opera-
tional Semantics and Program Equivalence.

Denotational Semantics (Lectures 9-16) [Throughout, “domain” means w-chain complete
partial order with least element.]

. Suppose that D, E, and F are domains. Show that a function f : D Xx E — E is
continuous if and only if f(d,—) : E — F and f(—,e) : D — F are continuous for all
deDandecE.

. Let D and E be domains and f : D x E — E be a continuous function. Show that there
is a continuous function Y f : D — E such thatforalld € D, (Y f)(d) = f(d, (Y f)(d)).

. Let D and E be domains and let f : D — E and g : E — D be continuous functions.
Prove that fix(g o f) = g(fix(f o g))-

. Suppose that D and E are domains and that f : D — D and and g: D x E — E are
continuous functions. Let (d,e) be the least element of D X E satisfying

d = f(d)
e =g(de).
Prove that d = fix(f).

. Given domains D and E show how to make the set D — E of continuous functions
from D to E into a domain with the following property: for all continuous functions
f: F x D — E, there is a unique continuous function f : F — (D — E) such that for
allze Fandx € D, (fz)x = f(z,x).

. Consider the denotational semantics of the untyped A-calculus in a domain satisfying
D = (D - D) (lecture 10). Show that the usual law of y-expansion, e = Ax.e x (where
x not free in e) is not satisfied up to denotational equality. Adapt the denotational
semantics to use a domain D’ satisfying D’ = D’ — D’ and show that this does satisfy
n-expansion (as well as p-reduction, (Ax.e)e’ = ele’/x]). How many elements does
any minimal invariant solution of the domain equation X = X — X have?

. Let Ag be the set of closed A-terms and let == C Ay x Ag be the usual call-by-name
evaluation relation inductively defined by the rules

e1 = Ax.e elea/x]=c¢

Ax.e = Ax.e e1ep = ¢

A subset S C Ag x Ay is called an applicative simulation if it satisfies: (e,e’) € S and
e = Ax.e; implies ¢/ = Ax.e] for some ¢} such that Ve, € Ag. (e1]ea/x],€}[e2/x]) € S.
Given ¢, ¢’ € Ay, we write e < ¢’ if there is some applicative simulation S with (¢, ¢’) €
S. (The relation < is called applicative similarity.)

(a) Show that = is a reflexive and transitive relation.

(b) Let <« € D x Ap be the relation constructed in lecture 13 between the minimal
invariant domain D = (D — D), and closed A-terms. Show that {(e,¢’) | [e] <
¢’} is an applicative simulation.

(c) Show that d C d' <¢’ < e implies d <e. [Hint: use the fact that (<, <) is the
least pre-fixed point of the monotone function ®¥ defined in lecture 13; show
that ®3(R, <1) < (R, <1) where R = {(d,e) | 3d',¢’.d C d’' ¢’ < e}.]

(d) Combine (b) and (c) to show that e < ¢ if and only if [e] <¢’. Deduce that < is
a congruence, in the sense that e < ¢’ implies ¢”[e/x]| < ¢"[¢/x] (for any A-term
¢’ with at most one free variable x).

