3

Topics in Logic and Complexity Handout 11

Anuj Dawar

MPhil Advanced Computer Science, Lent 2010

Capturing P

With a sentence of the form $\exists < (lo(<) \land \phi)$, we can also define NP-complete problems.

 $\exists < (\log(<) \land \forall xy[(y = x + 1 \to E(x, y)) \land (x = \max \land y = \min \to E(x, y))]).$

defines the graphs that contain a *Hamiltonian cycle*.

4

Capturing P

The *expressive power* of LFP is strictly weaker than P.

On the other hand, LFP can express all queries in P on *ordered structures*.

Thus, every query in ${\sf P}$ can be defined by a sentence of the form

$\exists < \ (\log(<) \land \phi)$

where lo(<) is the first-order formula that says that < is a linear order and ϕ is a sentence of LFP.

Partial Fixed Point Logic

For any formula $\phi(R)$ (not necessarily *positive* in R), we can define the operator F_{ϕ} in any structure of the appropriate vocabulary.

We can also define the iteration:

$$PF^{0} = \emptyset$$
$$PF^{i+1} = F_{\phi}(PF^{i}).$$

If A has *n* elements, then there are only 2^{n^k} distinct relations of arity *k* on A, and therefore, for $j > 2^{n^k}$, there is an i < j such that $PF^j = PF^i$, and we conclude that the sequence is eventually periodic.

We say that the sequence *converges* if the period is 1. That is, if for some i, $PF^{i+1} = PF^i$.

PFP

The logic PFP (or *partial fixed point logic*) is defined syntactically like IFP, except it uses the operator **pfp** in place of **ifp**

The semantics of the predicate expression $\mathbf{pfp}_{R,\mathbf{x}}\phi$ is given by the rule:

If the sequence $PF^{j}(j \in \mathbb{N})$ converges, then the expression denotes the relation PF^{i} , where $PF^{i} = PF^{i+1}$, and it denotes the empty relation otherwise.

IFP vs. PFP

Every formula of IFP is equivalent to one of PFP.

The predicate expression

 $\mathbf{ifp}_{R,\mathbf{x}}\phi$

is equivalent to

$\mathbf{pfp}_{R,\mathbf{x}}(R(\mathbf{x}) \lor \phi).$

6

Example

Let $\phi(R, x, y)$ be $E(x, y) \lor \exists z (E(x, z) \land R(z, y))$ $F_{\phi}^{m} = IF_{\phi}^{m} = PF_{\phi}^{m} = \{(v, w) \mid \text{ there is a path } v - w \text{ of length } \leq m\}$

 $F^{\infty} = IF^{\infty} = PF^{\infty}$ is the transitive closure of the graph Let $\psi(R, x, y)$ be

 $(E(x,y) \land \forall x \forall y \neg R(x,y)) \lor \exists z (E(x,z) \land R(z,y)).$

 $IF_{\phi}^{m} = IF_{\psi}^{m}$ For the partial fixed point:

 $PF^m = \{(v, w) \mid \text{ there is a path } v - w \text{ of length } = m\}.$

7

Complexity of PFP

Every collection of finite structures definable in PFP is decidable by an algorithm in *polynomial space*.

To decide $\mathbb{A} \models \phi[\mathbf{a}]$, when $\phi \equiv \mathbf{pfp}_{R,\mathbf{x}}\psi(\mathbf{t})$ $R_{\text{old}} := \emptyset; R_{\text{new}} := \emptyset$; converge := false for i := 1 to 2^{n^l} do $R_{\text{old}} := R_{\text{new}}$ $R_{\text{new}} := F_{\psi}(R_{\text{new}})$ if $R_{\text{new}} = R_{\text{old}}$ then converge := true end if converge and $\mathbf{a} \in R$ then accept else reject

Capturing PSPACE

9

11

Every collection of finite *ordered* structures decidable in polynomial space is definable in PFP. (Abiteboul, Vianu)

Given a machine M and an integer k, we can define formulas ϕ_{σ} (for each *symbol* σ in the alphabet), ψ_q (for each *state* q of M) and η in k free variables so that:

if $T_{\sigma_1} \dots T_{\sigma_s}, S_{q_1} \dots S_{q_m}, H$ code the *current* configuration of M, then

 $\phi_{\sigma_1}\ldots\phi_{\sigma_s},\psi_{q_1}\ldots\psi_{q_m},\eta$

code the $\frac{next}{next}$ configuration.

Evenness

The collection of structures with an *even* number of elements is not definable in PFP.

Recall that \mathcal{E} is the collection of all structures in the empty signature.

Lemma

For every PFP formula ϕ there is a first order formula ψ , such that for all structures \mathbb{A} in \mathcal{E} , $\mathbb{A} \models (\phi \leftrightarrow \psi)$.

12

Capturing PSPACE

Since PFP can express all queries in PSPACE on *ordered* structures, the collection of formulas of the form.

$\exists < (\log(<) \land \phi)$

where lo(<) is the first-order formula that says that < is a linear order and ϕ is a sentence of PFP, can express all queries in PSPACE.

Moreover, *every* such formula expresses a query in PSPACE. So, this is a logic exactly capturing PSPACE.

Defining the Stages

Given a formula $\psi(R, \mathbf{x})$ defining a (not necessarily monotone) operator.

 ψ^1 is obtained from ψ by replacing all occurrences of subformulas of the form $R(\mathbf{t})$ by $t \neq t$.

 ψ^{i+1} is obtained by replacing in ψ , all subformulas of the form $R(\mathbf{t})$ by $\psi^{i}(\mathbf{t}, \mathbf{y})$

 ψ^i is a *first-order* formula defining PF^i .

On \mathcal{E} , there is a *fixed* bound p such that $\mathbf{pfp}_{R,\mathbf{x}}\psi$ is defined by:

 $\psi^p \land \forall \mathbf{x}(\psi^p \leftrightarrow \psi^{p+1})$

15

Finite Variable Logic

We write L^k for the first order formulas using only the variables x_1, \ldots, x_k .

$\mathbb{A}\equiv^k\mathbb{B}$

denotes that \mathbb{A} and \mathbb{B} agree on all sentences of L^k .

$(\mathbb{A},\mathbf{a})\equiv^k (\mathbb{B},\mathbf{b})$

denotes that there is no formula ϕ of L^k such that $\mathbb{A} \models \phi[\mathbf{a}]$ and $\mathbb{B} \not\models \phi[\mathbf{b}]$

For a tuple **a** in \mathbb{A} , Type^k(\mathbb{A} , **a**) denotes the collection of all formulas $\phi \in L^k$ such that $\mathbb{A} \models \phi[\mathbf{a}]$.

Stages

For every formula ϕ of LFP (or PFP), there is a k such that the query defined by ϕ is closed under \equiv^k .

Consider a formula $\psi(R, \mathbf{x})$ defining an operator.

Let the variables occurring in ψ be x_1, \ldots, x_k , with $\mathbf{x} = (x_1, \ldots, x_l)$, and y_1, \ldots, y_l be new.

Finite Variable Logic

For any k,

 $\mathbb{A} \equiv^k \mathbb{B} \quad \Rightarrow \quad \mathbb{A} \equiv_k \mathbb{B}$

However, for any q, there are \mathbb{A} and \mathbb{B} such that

 $\mathbb{A} \equiv_q \mathbb{B}$ and $\mathbb{A} \not\equiv^2 \mathbb{B}$.

Take \mathbb{A} and \mathbb{B} to be linear orders longer than 2^q .

Stages

Define, by induction, the formulas ψ^m .

 $\psi^0 = \exists x \, x \neq x$

 ψ^{m+1} is obtained from $\psi(R, \mathbf{x})$ by replacing all sub-formulas $R(t_1, \ldots, t_l)$ with

$$\exists y_1 \dots \exists y_l \left(\bigwedge_{1 \le i \le l} y_i = t_i\right) \land \phi^m(\mathbf{y})$$

Note that each ψ^m has at most k+1 variables.

LFP and PFP

If $(\mathbb{A}, \mathbf{a}) \equiv^{k+l} (\mathbb{B}, \mathbf{b})$, then for all m:

 $\mathbb{A} \models \psi^m[\mathbf{a}] \quad \text{if, and only if,} \quad \mathbb{B} \models \psi^m[\mathbf{b}].$

So, (\mathbb{A}, \mathbf{a}) and (\mathbb{B}, \mathbf{b}) are not distinguished by $\mathbf{lfp}_{R, \mathbf{x}} \psi$.

Also

```
\mathbb{A} \models \forall \mathbf{x}(\psi^m \leftrightarrow \psi^{m+1}) \quad \text{if, and only if,} \quad \mathbb{B} \models \forall \mathbf{x}(\psi^m \leftrightarrow \psi^{m+1}).
```

So, (\mathbb{A}, \mathbf{a}) and (\mathbb{B}, \mathbf{b}) are not distinguished by $\mathbf{pfp}_{R,\mathbf{x}}\psi$.

Using Pebble Games

To show that a class of structures S is not definable in first-order logic:

$\forall k \; \forall q \; \exists \mathbb{A}, \mathbb{B} \; (\mathbb{A} \in S \land \mathbb{B} \notin S \land \mathbb{A} \equiv_q^k \mathbb{B})$

Since $\mathbb{A} \equiv_q^q \mathbb{B} \Rightarrow \mathbb{A} \equiv_q \mathbb{B}$, we can ignore the parameter k

To show that S is not closed under any \equiv^k (and hence not definable in LFP or PFP):

 $\forall k \; \exists \mathbb{A}, \mathbb{B} \; \forall q \; (\mathbb{A} \in S \land \mathbb{B} \notin S \land \mathbb{A} \equiv_q^k \mathbb{B})$

If $\mathbb{A} \equiv_q^k \mathbb{B}$ holds for all q, then *Duplicator* actually wins an *infinite* game. That is, she has a strategy to play forever.

Pebble Games

The k-pebble game is played on two structures \mathbb{A} and \mathbb{B} , by two players—*Spoiler* and *Duplicator*—using k pairs of pebbles $\{(a_1, b_1), \ldots, (a_k, b_k)\}.$

Spoiler moves by picking a pebble and placing it on an element $(a_i \text{ on an element of } \mathbb{A} \text{ or } b_i \text{ on an element of } \mathbb{B}).$

Duplicator responds by picking the matching pebble and placing it on an element of the other structure

Spoiler wins at any stage if the partial map from \mathbb{A} to \mathbb{B} defined by the pebble pairs is not a partial isomorphism

If *Duplicator* has a winning strategy for q moves, then A and B agree on all sentences of L^k of quantifier rank at most q. (Barwise)

19

Evenness

To show that *Evenness* is not definable in PFP, it suffices to show that:

for every k, there are structures \mathbb{A}_k and \mathbb{B}_k such that \mathbb{A}_k has an even number of elements, \mathbb{B}_k has an odd number of elements and

$\mathbb{A} \equiv^k \mathbb{B}.$

It is easily seen that *Duplicator* has a strategy to play forever when one structure is a set containing k elements (and no other relations) and the other structure has k + 1 elements.

Hamiltonicity

Take $K_{k,k}$ —the complete bipartite graph on two sets of k vertices. and $K_{k,k+1}$ —the complete bipartite graph on two sets, one of kvertices, the other of k + 1.

These two graphs are \equiv^k equivalent, yet one has a Hamiltonian cycle, and the other does not.

Reading List for this Handout

- 1. Libkin. Sections 11.1 and 11.2
- 2. Grädel et al. Section 2.7