BASIC REWRITING THEORY

Exercises from 'Term Rewriting and All That' by F. Baader and T. Nipkow

1. Let $T_{\Sigma}(\{x\})$ be the set of terms from a signature Σ over one variable x. The reduction relation \to_I on $T_{\Sigma}(\{x\})$ is defined by $s \to_I t$ iff s is an instance of t and $s \neq t$. Show that \to_I is confluent and terminating. Can this result be generalised to the case of more than one variable?

2. Let e be a constant, i a unary function symbol, and m a binary function symbol, and consider the equational presentation G given by

$$\mathsf{m}(x,\mathsf{m}(y,z)) \approx \mathsf{m}(\mathsf{m}(x,y),z)$$
, $\mathsf{m}(\mathsf{e},x) \approx x$, $\mathsf{m}(\mathsf{i}(x),x) \approx \mathsf{e}$

Show that $\mathsf{m}(x, \mathsf{e}) \stackrel{*}{\leftrightarrow}_G x$.

3. Let f be a binary function symbol, and consider the equational presentation E given by

$$\mathsf{f}(x,\mathsf{f}(y,z))\approx\mathsf{f}(\mathsf{f}(x,y),z)\ ,\ \mathsf{f}(\mathsf{f}(x,y),x)\approx x$$

Show that $f(x, x) \stackrel{*}{\leftrightarrow}_E x$ and $f(f(x, y), z) \stackrel{*}{\leftrightarrow}_E f(x, z)$.

4. Show that a reduction relation is confluent and normalising iff every element has a unique normal form.

5. For *D* the equational presentation

$$x*(y+z)\approx (x*y)+(x*z)\;,\;\;(x+y)*z\approx x*z+y*z$$

show that \approx_D , equality modulo distributivity, is decidable.

6. For substitutions σ , σ' , θ , show that if $\sigma \preceq \sigma'$ then $\sigma\theta \preceq \sigma'\theta$. Does $\sigma \preceq \sigma'$ imply $\theta\sigma \preceq \theta\sigma'$?

6. For substitutions σ, σ' and a term s, show that if $\sigma s = \sigma' s$ then σ and σ' coincide on the variables of s.

7. Let S and T be unification problems. Show that if σ is a m.g.u. of S and θ a m.g.u. of $\sigma(T)$ then $\theta\sigma$ is a m.g.u. of $S \cup T$.

8. Check if the following unification problems are solvable.

(i)
$$f(x,y) \stackrel{?}{=} f(h(a),x)$$

(*ii*)
$$f(x,y) \stackrel{?}{=} f(h(x),x)$$

(*iii*)
$$f(x, b) \stackrel{?}{=} f(h(y), z)$$

$$(iv) f(x,x) \stackrel{?}{=} f(h(y),y)$$

9. Check if the following matching problems are solvable.

(i)
$$f(x,y) \stackrel{?}{\prec} f(h(a),x)$$

(ii) $f(x,y) \stackrel{?}{\prec} f(h(x),x)$
(iii) $f(x,b) \stackrel{?}{\prec} f(h(y),z)$

$$(iv) f(x,x) \stackrel{!}{\precsim} f(h(y),y)$$

10. Modify the transformation rules for unification such that they directly solve the matching problem (rather than first replacing all variables on the right-hand sides by constants). Allow for variables on both sides and detect unsovability as early as possible.

11. Show that $\xrightarrow{+}$ is terminating iff so is \rightarrow .

12. A *strict order* is a transitive and irreflective relation. Show that $\xrightarrow{+}$ is a strict partial order iff \rightarrow is acyclic.

13. A relation is called *bounded* if for each element the length of all paths starting from it is bounded; that is, $\forall x. \exists n. x \xrightarrow{n}$.

- (i) Is every terminating relation bounded?
- (*ii*) Show that a finitely branching relation terminates iff it is bounded.

14. Does confluence imply the following property?

$$y_1 \leftarrow x \rightarrow y_2 \implies y_1 \stackrel{=}{\rightarrow} z \stackrel{=}{\leftarrow} y_2 \text{ for some } z$$

where $u \xrightarrow{=} v \iff u \to v$ or u = v. Give a proof or a counterexample.

15. Show that if \rightarrow has the diammond property, every element is in normal form or has no normal form.

16. Let \rightarrow satisfy the following weak form of the diammond property: if $y \leftarrow x \rightarrow z$ and $y \neq z$ then there is a *u* such that $y \rightarrow u \leftarrow z$. Show that if an element *a* has a normal form, then (*i*) there is no infinite reduction sequence starting from *a*, and (*ii*) all reductions from *a* to its normal form have the same length.

17. Show that if $(l \approx r) \in E$ and $\operatorname{Var}(l) \supseteq \operatorname{Var}(r)$ does not hold, then \to_E is non-terminating.

18. Find r_1 and r_2 such that the rewriting system given by

$$f(g(x)) \rightarrow r_1$$
, $g(h(x)) \rightarrow r_2$

is confluent.

19. Is the rewriting system R given by

$$f(g(f(x))) \to g(x)$$

confluent? Find a convergent rewriting system R' such that \approx_R and $\approx_{R'}$ are equal.

20. Compute all critical pairs for each of the following rewriting systems.

(i)
$$f(g(f(x))) \to x$$
, $f(g(x)) \to g(f(x))$

$$(ii) \ \mathsf{0} + y \to y \ , \ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \ , \ x + \mathsf{0} \to x \ , \ x + \mathsf{s}(y) \to \mathsf{s}(x+y)$$

$$(iii)$$
 f $(x,x) \rightarrow a$, f $(x,g(x)) \rightarrow b$

$$(iv) \ \mathsf{m}(\mathsf{m}(x,y),z) \to \mathsf{m}(x,\mathsf{m}(y,z)) \ , \ \mathsf{m}(x,1) \to x$$

- $(v) \ \mathsf{m}(\mathsf{m}(x,y),z) \to \mathsf{m}(x,\mathsf{m}(y,z)) \ , \ \mathsf{m}(1,x) \to x$
- $\begin{array}{l} (vi) \ \mathsf{f}(x,\mathsf{f}(y,z)) \to \mathsf{f}(\mathsf{f}(x,y),\mathsf{f}(x,z)) \ , \ \ \mathsf{f}(\mathsf{f}(x,y),z) \to \mathsf{f}(\mathsf{f}(x,z),\mathsf{f}(y,z)) \ , \\ \ \ \mathsf{f}(\mathsf{f}(x,y),\mathsf{f}(y,z)) \to y \end{array}$

Which systems are locally confluent? Which ones are convergent?

21. Show that the following system is convergent

$$f(f(x)) \to f(x) \leftarrow g(g(x)) , f(g(x)) \to g(x) \leftarrow g(f(x))$$

Can you determine the normal form of a term as a function of the number of fs and gs in it?

22. Find a measure function into \mathbb{N} which proves termination of the rewriting relation

 $ubav \rightarrow uabv$ $(u, v \in \{a, b\}^*)$.

23. Find a measure function into \mathbb{N} which proves termination of $\rightarrow_1 \cup \rightarrow_2$, for

$$uabbv \rightarrow_1 uaav \ uabv \rightarrow_2 vbu$$
 $(a, b \in A, u, v \in A^*)$.

24. Prove that the lexicographic product of two terminating relations is terminating by well-founded induction.

25. Show that the following process always terminates. There is a box full of black and white balls. Each step consists of removing an arbitrary ball from the box. If it happens to be a black ball, one also adds an arbitrary finite number of white balls to the box.

26. Given a relation > on a set A, define the relation >_{Lex} on A^* as follows: $w_1 >_{Lex} w_2$ if w_2 is a proper prefix of w_1 or if $w_1 = uav$, $w_2 = ubw$ $(a, b \in A, u, v \in A^*)$, and a > b. Does termination of > imply termination of >_{Lex}?

27. Consider the identity $E = \{ f(g(f(x))) \approx x \}$. Choose an appropriate reduction order > and apply the basic completion procedure to the input (E, >).

28. Consider the identity $E = \{f(g(f(x))) \approx f(g(x))\}$. Choose an appropriate reduction order > and apply the basic completion procedure to the input (E, >).

29. Show that the TRS

$$(x*y)*(y*z) \rightarrow y \ , \ x*((x*y)*z) \rightarrow x*y \ , \ (x*(y*z))*z \rightarrow y*z$$

is confluent.