Category Theory Exercises: Week 2

October 2009

These exercises are not compulsory, and they will not contribute to your final grade. Please send your solutions or questions by e-mail to bk291@cam.ac.uk, or leave them in Bartek Klin’s pigeonhole next to Reception.

Exercise 1. Let D be a subcategory of C, and let \(f : X \to Y \) be an arrow in D. Prove that:

- if \(f \) is a mono in \(C \) then it is a mono in \(D \),
- if \(f \) is a section in \(D \) then it is a section in \(C \).

Exercise 2. A partial function from a set \(A \) to a set \(B \), denoted \(f : A \twoheadrightarrow B \), is:

- a subset \(C \subseteq A \) with
- a function \(f : C \to B \).

Note that \(C \) is fully determined by \(f \) and is therefore omitted in the notation \(f : A \twoheadrightarrow B \). \(C \) is called the domain of definition of \(f \). Composition of partial functions is defined in the obvious way and is clearly associative; also, identity functions are clearly units for composition. Thus one gets the category of sets and partial functions \(\text{Par} \).

Characterize binary products in \(\text{Par} \).

Hint: First realize why the Cartesian product of sets does not satisfy the definition of categorical product in \(\text{Par} \).