A common theme

Equalizer: Product: Pullback:

Diagrams

Defn. A diagram D in a category C consists of:

- a graph G(D),
- an object D_v for each vertex v in G(D),
- an arrow D_e for each edge e in G(D),
- s.t. if $e:v\to w$ is an edge then

$$dom(D_e) = D_v$$
 and $cod(D_e) = D_w$.

A diagram D is commutative (or commutes), if for any two paths in G(D) with common source and target, the compositions of the corresponding sequences of arrows are equal.

Cones and cocones

Defn. A cone for a diagram D in ${\bf C}$ is:

- an object C in \mathbb{C} ,
- an arrow $c_v:C o D_v$ for each vertex v,
- s.t. for each edge e:v o w , $\ D_e\circ c_v=c_w$.

Defn. A cocone for a diagram D in ${\bf C}$ is:

- an object C in \mathbb{C} ,
- an arrow $c_v:D_v\to C$ for each vertex v,
- s.t. for each edge e:v o w , $c_w\circ D_e=c_v$.

Limits and colimits

Defn. A cone C is a limit for D if for any cone C' for D there is a unique arrow $m:C'\to C$ s.t. $c_v\circ m=c_v'$ for each vertex v.

Defn. A cocone C is a colimit for D if for any cocone C' for D there is a unique arrow $m:C\to C'$ s.t. $m\circ c_v=c_v'$ for each vertex v.

Examples

Diagram shape	Limit	Colimit
\emptyset	Final object	Initial object
	Product	Coproduct
• ====	Equalizer	Coequalizer
• —> • <	Pullback	
• <		Pushout

Some facts about (co)limits

- Fact. (Co)Limits, if they exist, are unique up to isomorphism.
- Defn. A category is (finitely) (co)complete if it has all (finite) (co)limits.
- Fact. If a category has products of arbitrary families of objects, and equalizers, then it is complete.
- Fact. If a category has a final object, all binary products and equalizers, then it is finitely complete.
- Note: We only consider (co)limits of small diagrams.
- Fact. A category with limits of all (large) diagrams is necessarily a preorder.
- Also: A small complete category is necessarily a preorder.

Limits and colimits in Sets.

Fact. Sets is complete and cocomplete.

Limits: For a diagram D, take the set

$$\{\langle x_v, x_w, \ldots \rangle \in D_v \times D_w \times \cdots \mid \forall e : v \to w. \ D_e(x_v) = x_w\}$$

with obvious projections as the limiting cone.

Colimits: For a diagram D, take the set

$$(D_v + D_w + \cdots)/\equiv$$

where \equiv is the least equivalence s.t.

$$D_e(x_v) \equiv x_v$$
 for all $e: v \to w$, $x_v \in D_v$,

with obvious injections as the colimiting cocone.

limit = subset of product, colimit = quotient of sum