Isomorphisms

Fix an arbitrary category C for a while.

Defn. An arrow $f:A\to B$ is an isomorphism (short: iso) if there exists $g:B\to A$ (the inverse) such that: $f\circ g=1_B$ and $g\circ f=1_A$.

Then A and B are isomorphic, written $A \cong B$.

Fact: The inverse, if it exists, is unique. (Denote it f^{-1} .)

Fact: The composition of two isomorphisms is an isomorphism.

Example: Isomorphisms in Sets are exactly bijections.

Exercise: What are isomorphisms in a poset? In a monoid?

Monos and epis

Defn. An arrow
$$f:A\to B$$
 is a monomorphism ("a mono") if for all $g,h:C\to A$,
$$f\circ g=f\circ h \text{ implies } g=h.$$

Example: In Sets, monos are exactly the injective functions.

Defn. An arrow $f:A\to B$ is an epimorphism ("an epi") if for all $g,h:B\to C$, $g\circ f=h\circ f$ implies g=h.

Example: In Sets, epis are exactly the surjective functions.

Monos and epis ctd.

Example: in Pos, Mon, Grp, monicity = injectivity.

But epis are not necessarily surjective e.g. in Mon, consider the inclusion $(\mathbb{N}, +, 0)$ in $(\mathbb{Z}, +, 0)$.

Exercise: what are monos/epis in a poset? In a monoid?

Fact: composition of two monos is a mono.

Fact: if $g \circ f$ is a mono then f is a mono.

Dualize!

Fact: all isomorphisms are both mono and epi.

Exercise: Is it the case that all arrows that are both mono and epi are isomorphisms?

Sections and retractions

- Defn. An arrow $f:A\to B$ is a section if there is $g:B\to A$ (a left inverse) s.t. $g\circ f=1_A$
- Defn. An arrow $f:A\to B$ is a retraction if there is $g:B\to A$ (a right inverse) s.t. $f\circ g=1_B$
- Fact: every section is mono, every retraction is epi. (sections are called split monos, retractions split epis)
- Example: in Sets, every epi is a retraction and every mono with nonempty domain is a section.
- Exercise: Find an epi in Pos that is not a retraction.
- Fact: every isomorphism is both a section and a retraction.
- Fact: every epi section is an isomorphism.

Dualize!

Initial and final objects

- Defn. An object A is initial if for any object B, there is a unique arrow $f:A\to B$.
- Dually: An object A is final if for any object B, there is a unique arrow $f:B\to A$.
- Example: \emptyset is initial, and singletons are final in Sets One-element monoids are *both* initial and final in Mon. The least (greatest) element is initial (final) in a poset.

Fact: Initial objects, if they exist, are unique up to isomorphism:

- any two initial objects are isomporphic,
- any object isomorphic to an initial objects is initial.

Dually, final objects are unique up to isomorphism.

Initial objects are denoted 0, final objects are denoted 1.