
From left to right adjoints

Let $F: \mathbf{C} \to \mathbf{D}$ be left adjoint to $G: \mathbf{D} \to \mathbf{C}$

with unit $\eta: \mathrm{Id}_{\mathbf{C}} \to GF$.

For any $D \in |\mathbf{D}|$, define $\epsilon_D : FGD \to D$ by $\epsilon_D = (1_{GD})^\sharp$

$$\mathbf{C} \leftarrow \mathcal{D}$$

Fact: $\epsilon: FG \to \mathrm{Id}_D$ is a natural transformation.

Fact: G is right adjoint to F with counit ϵ .

Moreover, $G\epsilon \circ \eta G = \mathrm{id}_G$ and $\epsilon F \circ F \eta = \mathrm{id}_F$.

1

Adjunctions

Defn: An adjunction between categories ${f C}$ and ${f D}$ consists of:

- functors $F: \mathbf{C} \to \mathbf{D}$ and $G: \mathbf{D} \to \mathbf{C}$,
- natural transformations $\eta: \mathrm{Id}_{\mathbf{C}} o GF$, $\epsilon: FG o \mathrm{Id}_D$, (unit) (counit)

such that $G\epsilon \circ \eta G = \mathrm{id}_G$ and $\epsilon F \circ F \eta = \mathrm{id}_F$.

Such an adjunction is denoted $F \dashv G$.

Fact: In an adjunction $F \dashv G$, F is left adjoint to G and G is right adjoint to F.

Examples:

- An adjunction where η , ϵ are natural isomorphisms is an equivalence of categories.
- Adjunctions between posets are Galois connections.

Transposing along adjunctions

Fact: Any adjunction $F \dashv G$ yields a bijection:

$$\hom_{\mathbf{C}}(C,GD)\cong \hom_{\mathbf{D}}(FC,D)$$
 for any $C\in |\mathbf{C}|$, $D\in |\mathbf{D}|$

Moreover, this bijection is natural in C and D:

$$\operatorname{Hom}_{\mathbf{C}}(-,G-) \cong \operatorname{Hom}_{\mathbf{D}}(F-,-)$$
 ($\mathbf{C}^{\operatorname{op}} \times \mathbf{D} \to \mathbf{Sets}$)

Fact: For any functors $\mathbf{C} \xrightarrow{F} \mathbf{D}$, a natural bijection as above induces an adjunction $F \dashv G$.

Equivalent defn: An adjunction is a pair of functors $\mathbf{C} \xrightarrow{F} \mathbf{D}$

with a bijection
$$\hom_{\mathbf{C}}(C,GD)\cong \hom_{\mathbf{D}}(FC,D)$$
 natural in C and D . right adjoint left adjoint