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Outline

0 Lecture 04: Semiring Examples
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Lexicographic Semiring, example continued

sp X bw
Let (S, @, ®, 0, 1) = sp X bw.

sp = (N°°, min, +, oo, 0)
bw = (N°°, max, min, 0, co)
spX bw = (N*® x N, min x max, + x min, (co, 0), (0, o))

(17, 10) & (21,100) = (17, 10)
(17, 10)® (17,100) = (17, 100)
(17, 10)® (21,100) = (38, 10)
(17, 10)® (17,100) = (34, 10)
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Sample instance for sp x bw

SR

(2, 50) (5, 70) (6, 20)

@é& 90) é} a, 1o®

(6, 70) (1, 50)

ho
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The adjacency matrix

1 2 3 4
1 [ (o0, 0) (2, 50) (8, 90) (6, 70) (
2 | (2,50) (o0, 0) (5,70) (oo, 0) (
s | (8,90) (5,70) (oo, 0) (1,50) (
4 | (8, 70) (o0, 0) (1,50) (oo, 0) (
5 | (00, 0) (6,20) (1,10) (00, 0) (
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Shortest-path DAG rooted at 1

AN

(2, 50) (5, 70) (6, 20)

o Funbs

(6, 70) (1, 50)

RO
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Shortest-path DAG rooted at 3

S

o i

(6, 70) (1, 50)

ho
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Shortest-path DAG rooted at 5

SN

(2, 50) (5, 70) (6, 20)

@g& 90) é} (1, 1o®

(6, 70) (1, 50)

ho
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The routing matrix

1 2 3 4 5
1 [ (0, 00) (2, 50) (7,50) (6,70) (8, 20)
2 | (2,50) (0, c0) (5, 70) (6, 50) (6, 20)
s | (7,50) (5, 70) (0, c0) (1, 50) (1, 10)
4 | (6, 70) (6,50) (1, 50) (0, ) (2, 10)
5 | (8,20) (6,20) (1,10) (2, 10) (0, )
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A Strange Lexicographic Semiring

sp x oneforall
Let (S, @, ®, 0, 1) = sp X oneforall. J

sp = (N°°, min, 4, oo, 0)
oneforall = (2{&6.¢ u n {}, {a b, ¢})

sp X oneforall = (N> x 2{& 6. ¢} min XU, + x N, (o0, {}), (0, {a, b,
(17, {a}) ® (21,{b}) = (17, {a})
(17, {a}) @ (17,{b}) = (17, {a, b})
(17, {a}) ® (21,{b}) = (38, {})
(17, {a}) ® (17,{b}) = (34, {})
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Sample instance for sp x oneforall

AN

(2{a}) (5{abc}) (6 {c})

(8 {bc}) (3) (1 {b})>@

(6 {ab}) (1 {b})

s
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The adjacency matrix

1 2 3 4 5

(o0, {}) (2, {a}) (8 {b, c}) (6, {a b}) (o, {})
(2, {a}) (00, {}) (5. {a b c}) (o, {}) (6 {c})

(8 {b, c}) (5 {a b, c}) (o0, {}) (1, {63) (1, {b})

(6, {a; b}) (o0, {}) (1, {b}) (00, {3) (o0 {})
(o0, {}) (6, {c}) (1, {b}) (00, {3) (o0 {})

1
2
3
4
5
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Sample instance for sp x oneforall

NG

(2{a}) (5{abc}) (6 {c})

TNy

(8 {be}) (3) (1 {b}) ——(5)

T

(6 {ab}) (1 {b})

Shotest paths — for the first component only — rooted at node 1
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The routing matrix

If R(/, j) = (v, S)and x € S, then there is at least one path of weight
v from i to j with x in every arc weight along the path. J

1 2 3 4 5

(0, {abc}) (2,{a}) (7, {a b}) (6 {a b}) (8 {b})
(2, {ay) (0, {abc}) (5 7) (6,7) (6,7)
(7, {a b}) (5.7 (0,{abc}) (1.7 (1, 7)
(6, {a, b}) (6, 7) (1,7)  (0,{abc}) (2,7

a »p O N =

(8, {b}) (6, 7) (1,7) 2.7) (0 {abc)

Please fill in the “?”...
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Outline

@ Lecture 05: More Semiring constructions
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Challenge

Construct a semiring path so that if R(/, j) = (v, W), then W is a set of

all paths from j to j with weight v.

The Free Monoid over (the set)

free(X) = (¥, -, €)
where
@ Y *is the set of all finite sequences over ¥,
@ - is concatenation,
@ cis the empty sequence.

v

Given the graph G = (V, E), we might consider using free(E) to
represent paths.
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A general construction

@ (S®, 1) a monoid.
@ uniontimes(S, ®, 1) = (2°, U, ®«,{}, {1}), where

Ay B={a®blacA be B}.

Claim
uniontimes(S, ®, 1) is a semiring

Will this work?

paths = uniontimes(free( E))
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Sample instance for path

7

(12)] ((25))
PACIRED)
(21) / {52)}
(13— (35)) >@
(31)) T (53)
((14))
N {@3) )

T. Griffin (cl.cam.ac.uk) An Albebraic Approach to Internet Routing Le T.G.Griffin(©2009 18/60



But is there a problem?

paths is not g-stable, for any q

R(1,5) = {(1.2)(2,5),

15)(5,3)(3,2)(2,5),
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But what about sp x paths?

sp = (N°°, min, +, oo, 0)
paths = (257, U, -x, {}, {e})
sp X paths = (N x 25" min XU, + x -, (o0, {}), (0, {€}))

(17, {(1,2)(2,3)) @ (17,{(1,3)}) = (17, {(1,2)(2,3)})
(17, {(1,2)(2,3)}) © (17,{(1,3)}) = (17, {(1,2)(2,3), (1,3)})
(17, {(1.2)(2.3)}) © (21.{(3.4), (3.5)}) = (38, {(1,2)(2.3)(3.4). (1.2)(
(17, 10)® (17,100) = (34, {(1,2)(2,3)(3,4), (1,2)(

Show that this “works”. What is going on? (on Exercises Il list)
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Outline

0 Lecture 06: Beyond Semirings
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Path Weight with functions on arcs?

Forgraph G=(V, E),and path p =iy, o, i3, - - , k.

Semiring Path Weight
Weight functionw : E — S

w(p) = w(ir, i) ® Wiz, i3) @ --- @ W(ixk_1, f).

How about functions on arcs?
Weight function w: E — (S — S)

w(p) = w(is, b)(w(ia, i3)(---w(ik_1, i)(@)---)),

where a is some value originated by node ik

How can we make this work?
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Algebra of Monoid Endomorphisms ([GMO08])

A homomorphism is a function that preserves structure. An
endomprhism is @ homomorphism mapping a structure to itself. J

Let (S, @, 0) be a commutative monoid.

(S, ® FCS— S, 0, i, w) is a algebra of monoid endomorphisms
(AME) if

e vVfe FVYb,ce S:f(b®c)=f(b)®f(c)

e Vic F:f(0)=0

@ Jie Fvae S:i(a)=a

@ lwe FVacS:w(@=0
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Solving (some) equations over a AMEs

We will be interested in solving for x equations of the form

x=f(x)®b
Let
O =
fk+1 — fo fk
and
) = Ob) @ f'(b) @ P(b) @ --- @ fK(b)
)by = fO(b) @ fi(b) @ FP(b) @ --- & (b)) ---

Definition (g stability)

If there exists a g such that for all b f(@(b) = f(a+1)(p), then f is
g-stable. Therefore, f*)(b) = f(@(b).
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Key result (again)

Lemma
If f is g-stable, then x = f*)(b) solves the AME equation

x=f(x) & b.

Proof: Substitute f(*)(b) for x to obtain

O(b) @ fi(b) @ fP(b) @ --- @ fI(b)) @ b
b) @ f2(b) @ --- @ fq+1(b) ® b
) ® f1(b) @ f2(b) @ fat(b)
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AME of Matrices

Given an AME S = (S, &, F), define the semiring of n x n-matrices
over S,

Mn(S) = (Mn(S), |, G)?
where for A, B € M,(S) we have

(ABB)(i, j) = A(i, j) & B(, j)-

Elements of the set G are represented by n x n matrices of functions in
F. That is, each function in G is represented by a matrix A with
A(i, j) € F. If B € Mj(S) then define A(B) so that

52

(AB))(i, )= > Al q)(B(q. /)
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Here we go again...

Path Weight
Forgraph G=(V, E)withw: E — F
The weight of a path p = iy, o, I3, - - - , Ik is then calculated as

w(p) = w(i, i)(W(iz, B)(- -~ W(ik—1, ik)(wa)---))-

adjacency matrix

o ow(i, j) if(i, j) € E,
All; ) = { w otherwise

We want to solve equations like these

X =A(X)EB
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So why do we need Monoid Endomorphisms??

Monoid Endomorphisms can be viewed as semirings

Suppose (S, @, F) is a monoid of endomorphisms. We can turn it into

a semiring
(F, &, 0)

where (f & g)(a) = f(a) @ g(a)

Functions are hard to work with....
@ All algorithms need to check equality over elements of semiring,

@ f=gmeansVaec S:f(a)=g(a),
@ S can be very large, or infinite.
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Lexicographic product of AMEs

(S, @s, F)>-<)(T, @1, G)=(SxT, ®s X BT, F x G)

Theorem ([Sai70, GGO7, Gur08])
M(S X T) <= M(S) AM(T) A (C(S)VK(T)) }
Where
Property Definition
M Va,b,f: f(a® b) = f(a)® f(b)
C Va,b,f:f(a)=f(b) = a=>b
K Va, b, f: f(a) = f(b)
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Functional Union of AMEs

(S, @, F)4m (S, @, G) = (S, @, F+ G)

Fact
M(S+m T) < M(S)AM(T)
Property Definition
Where -5 va.b.f: f(a® b) = 7(a) & 7(b)
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Left and Right
right

right(S, &, F) = (S, &, {i})

left
left(S, @, F) = (S, ®, K(S))

where K(S) represents all constant functions over S. For a € S, define
the function k4(b) = a. Then K(S) = {k, | a € S}.

v

Facts
The following are always true.
M(right(S))
Mm(left(S)) (assuming & is idempotent)
c(right(S))
K(left(S))

v
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Scoped Product

SOT = (S X left(T)) +m (right(S) x T)

Theorem
M(SOT) < M(S) AM(T).
Proof.
M(SOT)
M((S X left(T)) +m (right(S) X T))
<= M(S X left(T)) A M(right(S) X T)
<= M(S) AM(left(T)) A (c(S) v K(left(T))

)
A M(right(S)) AM(T) A (c(right(S)) V K(T))
<~ M(S) AM(T)
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Delta Product (OSPF-like?)

SAT = (S X T) +n (right(S) X T)

Theorem
M(SAT) < M(S)AM(T) A (C(S)VK(T)).
Proof.
M(SOT)
M((S X T) +nm (right(S) X T))
<= M(S X T) A M(right(S) X T)
<= M(S) AM(left(T)) A (c(S) VK(T))

A M(right(S)) A M(T) A (C(right(S)) v K(T))
— M(S) AM(T) A (C(S) V K(T))
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How do we represent functions?

Definition (transforms (indexed functions))

A set of transforms (S, L, ) is made up of non-empty sets S and L,
and a function
>el—(S—S).

We normally write / > s rather than >(/)(s). We can think of / € L as
the index for a function fi(s) = /> s, so (S, L, ) represents the set of
function F = {f; | | € L}.

v
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Examples

Example 1: Trivial
Let (S, ®) be a semigroup.

transform(S, @) = (S, S, >g),

where a>g b=a®b

Example 2: Restriction
For T CS,

Restrict(T, (S, ®)) =(S, T, >g),
where abg b=a®b

T. Griffin (cl.cam.ac.uk) An Albebraic Approach to Internet Routing Le T.G.Griffin(©2009 35/60



Example 3 :

mildly abstract description of BGP’s
ASPATHs

Let apaths(X) = (£(X*) U {0}, X X X, >) where
E(X*) = finite, elementary sequences over X (no repeats)
(mn) > oo = o

(m n) > = {”'/ (ifmgn-I)

oo (otherwise)
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Exercises |l

@ Complete the routing matrix for the instance of sp X oneforall in
Lecture 04.

@ Try to explain why our instance of sp X paths (Lecture 05) has a
finite routing matrix. Is the semiring 0-stable?

© Prove that uniontimes(S, ®, 1) is a semiring.
@ Show that (F, &, o) — from Lecture 06 — is a semiring.

@ Construct two interesting instances of the scoped product
(Lecture 07!), each with adjacency and routing matrix.
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Outline

° Lecture 07: Advanced Constructions |

T. Griffin (cl.cam.ac.uk) An Albebraic Approach to Internet Routing Le



Minimal Sets (finite anti-chains)

min<(A)
Suppose that (S, <) is a pre-ordered set. Let A C S be finite. Define

min<(A) = {acA|Vvbe A:~(b< a)}

Example 1

(5, <) = (&t e, g
minc({{a, b, c}, {a}}) = {{a}}
minc({{a, b, ¢}, {a}.{a b}, {b,c}}) = {{a}{b.c}}

T. Griffin (cl.cam.ac.uk) An Albebraic Approach to Internet Routing Le T.G.Griffin(©2009 39/60



Example 2

(S, <) = (V.9
V* = finite sequences of nodes fro
p<q <= |[pl<|q]|
minﬁ({(L 35 17)’ (47 5)}) = {(47 5)}
min<({(1, 3, 17), (4, 5), (7, 8)}) = {4 3), (7, 8)}
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Minimal Sets (continued)

Suppose that (S, <) is a pre-ordered set.

Pmin(S, <) = {AC S| Aisfinite and min<(A) = A}

The minset semigroup construction
minset(S, <) = (Pmin(S), @min)
is the semigroup where

A @5 B = minc(AUB).
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Martelli's semiring ([Mar74, Mar76])

@ Acutset C C E for nodes i/ and j is a set of edges such there is
no path from i to j in the graph (V, E — C).

@ Cis minimal if no proper subset of C is a cut set.

@ Martelli’s semiring is such that A®) (i, j) is the set of all minimal
cut sets for i and j.

@ The arc (i, j) is has weight w(i, j) = {{(i, j)}}.

@ Sis the set of all subsets of the power set of E.

@ XaVYis{xuy|xeX, ye Y} with any non-minimal sets
removed.

@ X ® Yis XU Y with any non-minimal sets removed.

Example

X = {{(27 3}’ {(17 3)7 (27 4)}}

Y = {(1,3), (2 3} {(1, 3), (2, 4)}}
XovY = {{(1,3), (2 3}, {(1,3), (2, 4)}}
XQY = {{(2’ 3}, {(1? 3)7 (27 4)}}
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Martelli

i, NEE — w(i,)) = {{G,N}}

0
4J Y OB () R (O
Q /33 DI O B O B ()
OB (CEY I R
(2

H@nyy  fer @3 9
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Martelli

0 e @ AN [ @ B @ ey
P I C O N P I B I
0 e W e W e @ @
LG B (1 ) B B (SO I T I (N O

{aHL {0} o) oL@ @
| @ @ 9} 0!
@ @) 9} 9}

@ {12,621 {12,(4IL{ED,GD1LIED, @I} ) {0} @D}
(4 w

d

T. Griffin (cl.cam.ac.uk) An Albebraic Approach to Internet Routing Le T.G.Giriffin(©2009 44 /60



Martelli

W @ e
o ® e e w 9
W e @ W
(o ey @
HEAL U o} HOLHLIEH fo} 9
Aa {o} {0} 19} to}

{o} {9} 19} fo}

{0} {101.2).3.2)}.{(1.2).(4.)LA{(#D. G221 {(4.). (4.3} {9 [R{CEOIR{CAVH

ke {041 1(12),G.2)1 ((L2). (431 (A1, (3.2)} (41, (43)} 19t HOALAEDH

Aok @ @h igt {e}

@t e {9} {e}
HOARAGDH @h HEDRAL D lo}
{aL{GEDY ) TUOIR(RONCETS! 0}

il @ ) @ @
) ) @ 0
) HEDLAH) {02, GD1{02), @)} @ TR
3 H(L2), (L)1, 1(1,2).(3.2)},1(1.2),(4.3)}} HAHLIEN L)
o @ 0 o} @
G2} @ {0}

fo}

Han}} {0.2).621{0.2),.4311@D.G.2)}. (4D, (4.3} [RCRH ¢
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More minset constructions (many details omitted ...)

For semirings
Suppose that T = (S, @, ®) is a semiring.

minsetL(T) = (735;,(8), 69%;1’ ®r§1iLn)
minsetR(T) = (775;(8)7 @ﬁna ®r§1ﬁ1)

wherea<l b «—= a=ag@b,a<®kb < b=adb, and
Aes B=minc{a®b|acA be Bj}.

For ordered semigroups
Suppose that T = (S, <, ®) is a semiring.

minset(T) = (P (S), &5 @5

min Eﬂn)
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Yet another minset constructions (many details omitted

)

For “routing algebras”
Suppose that T = (S, L, <, > € (L x S) — S) a routing algebra in the
style of Sobrinho [Sob03, Sob05]. Then

mjnset(T) ( mm(S) L, @mm’ rf\ln)

where A >~ A=minc{\> | a € A}
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Martelli’s semiring expressed in a small language?

[INGGO09]
martelli = swap(minset(sg2osr(2F, U)))
where
swap(S, @, ®) = (S, ®, ®)
sg2ost(S, @) = (S, <G, @)
minset(S, <, ®) = (Pm,n(s), @r%. ) ®§1in)
mjnset(S, S) = (Pm|n( )’ 69r%l )
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Outline

e Lecture 08: Routing without distribution?
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Local Optimality

Say that R is a locally optimal solution when

R=(A®R)al

That is, for i # j we have

R(i, j) = EP AU, 9 ®R(q, j)= € w(i. 9) @ R(q, )),

qeV qeN(i)

where N(i) = {q | (i, q) € E} is the set of neighbors of i.

In other words, R(/, j) is the best possible value given the values
R(q, j), for all neighbors q of i.

T. Griffin (cl.cam.ac.uk) An Albebraic Approach to Internet Routing Le T.G.Griffin(©2009

50/60




With Distributivity

A is an adjacency matrix over semiring S.

For Semirings, the following two problems are essentially the same —
locally optimal solutions are globally optimal solutions. J

Global Optimality | Local Optimality

Find R such that Find R such that
®

R(i, )= Y w() | R=(AzR)al
peP(i, j)

Prove this!
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Without Distributivity

When ® does not distribute over &, the following two problems are J
distinct.

Global Optimality Local Optimality

Find R such that Find R such that
®

R(, )= Y w() | R=(AsR)al
peP(i, J)

Global Optimality

This has been studied, for example [LT91b, LT91a] in the context of
circuit layout. | do not know of any application of this problem to
network routing. (Yet!)

Local Optimality

At a very high level, this is the type of problem that BGP attempts to
solve!!

v
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Example of local optima for bw x sp

@\ @ Node 1 would prefer the path
1 — 3 — 4 with weight (1, 2).
(10, 5 (10, 5 @ But it is stuck with the best it
can get: the path
>d3}(1 1) 1 — 3 — 2 — 4, with weight
(1, 11).
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What are the conditions needed to guarantee
existence of local optima?

For a non-distributed structure S = (S, ¢, ®), can be used to find
local optima when the following property holds.

Increasing

I:Va, be S:a#0 = a<bw®a
where a< bmeansa=a® b.

Non-decreasing
In order to derive | we often need the non-decreasing property:

ND:Va, beS:a<b®a
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Finding local optima with the iterative method

AB) = B
A+IB) = (A AK(B)) @B J

Think of the iterative version as a very abstract implementation of
“vectoring”....

When distributivity holds we have A @ B = AKI(B). |

Claim

When S is increasing and @ is selective and idempotent, then AlXl(B)
converges to a locally optimal solution.

For various flavors of proof see [GG08, kCGG06, Sob03, Sob05].
OPEN PROBLEM : no bounds are yet known!
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