Lecture Notes on

Denotational Semantics

Part Il of the Computer Science Tripos 2009/10

Dr Marcelo Fiore
Cambridge University Computer Laboratory

© A. M. Pitts, G. Winskel, M. Fiore

Contents

Notes il
1 Introduction 1
1.1 Basic example of denotational semantics 2
1.2 Examplewhile-loops as fixedpoints 7
1.3 EXEICISES o o i e e e e 12
2 Least Fixed Points 13
2.1 Posets and monotone functions 13
2.1.1 POSets e 13
2.1.2 Monotone functions 16
2.2 Leastelements and pre-fixed points 6 1
2.3 Cpo’sandcontinuousfunctions. 9 1
2.3.1 Domains e 19
2.3.2 Continuousfunctions 26
2.4 Tarski’s fixed pointtheorem 28
2.5 EXErCISES o v i i e e e 30
3 Constructions on Domains 31
3.1 Flatdomains. 31
3.2 Productsofdomains 32
3.3 Functiondomains 35
3.4 EXercises e 39
4 Scott Induction 41
4.1 Chain-closed and admissiblesubsets 41
42 Examples 42
4.3 Building chain-closedsubsets. 44
43.1 Basicrelations 44
4.3.2 Inverse image and substitution 45
4.3.3 Logicaloperations 46
4.4 EXErCISES i i i e e e 47
5 PCF 49
51 Termsandtypes i i 49
5.2 Free variables, bound variables, and substitution 50
53 Typing 51
54 Evaluation. e 54
5.5 Contextualequivalence, 58
5.6 Denotationalsemantics 60
5.7 EXercises e 62

6 Denotational Semantics of PCF 65

6.1 Denotationoftypes 65
6.2 Denotationofterms 66
6.3 Compositionality 73
6.4 Soundness 75
6.5 EXEICISES o 76
7 Relating Denotational and Operational Semantics 77
7.1 Formal approximationrelations. 77
7.2 Proof of the Fundamental Property<of 80
7.3 Extensionality 83
7.4 EXErCISES i e e 86
8 Full Abstraction 87
8.1 Failure of full abstraction 78
8.2 PCF+por. e 93
8.3 Fully abstract semanticsforPCF 4 9
8.4 EXEICISES o 95
Notes

These notes are designed to accompany 8—10 lectures ondlienat Semantics for
Part Il of the Cambridge University Computer Science Triplsey are substantially
those of Andrew Pitts (who lectured the course from 1997 t69)ith some
changes and additions by Glynn Winskel (who lectured thessfrom 2000 to
2007) and by Marcelo Fiore (who lectured the course from 2008e material has
been drawn from several different sources, including theksanentioned below,
previous versions of this course, and similar courses aesafimer universities.

Recommended books

e Winskel, G. (1993). The Formal Semantics of Programming Languages
MIT Press.

This is an excellent introduction to both the operationad aenotational
semantics of programming languages. As far as this coursmiserned, the
relevant chapters are 5, 8, 9, 10 (Sections 1 and 2), and 11.

e Tennent, R. D. (1991).Semantics of Programming LanguageBrentice-
Hall.

Parts | and Il are relevant to this course.

Further reading

e Gunter, C. A. (1992)Semantics of Programming Languages. Structures and
TechniquesMIT Press.

This is a graduate-level text containing much material rexeced in this
course. As far as this course is concerned, the relevantetsegre 1, 2, and
4-6.

Feedback

Please fill out the online lecture course feedback form v tHRL htt ps:
/1l ecture-feedback. cl.cam ac. uk/feedback.

Marcelo Fiore
Mar cel o. Fiore@l . cam ac. uk

1 Introduction

Slide 1 gives a reminder of various approaches to giving &rsemantics for
programming languages. The operational approach wasdinted in the Part IB
course orSemantics of Programming Languagesnd the axiomatic approach is
illustrated in the Part Il course o8pecification and Verification I. This course
gives a brief introduction to some of the techniques of theotltional approach.
One of the aims of Denotational Semantics is to specify @ogning language
constructs in as abstract and implementation-independayias possible: in this
way one may gain insight into the fundamental concepts Uyidgrprogramming
languages, their inter-relationships, and (sometimeg) ways of realising those
concepts in language designs. Of course, it is crucial tdy#drat denotational
specifications of languages are implementable—in othedswarrelate denotational
semantics to operational semantics: we will illustrate hbis is done later in the
course.

Styles of formal semantics

Operational.
Meanings for program phrases defined in terms of the steps
of computation they can take during program execution.

Axiomatic.
Meanings for program phrases defined indirectly via the ax-

ioms and rules of some logic of program properties.

Denotational .
Concerned with giving mathematical models of programming
languages. Meanings for program phrases defined abstractly
as elements of some suitable mathematical structure.

Slide 1

2 1 INTRODUCTION

Characteristic features of a
denotational semantics

e Each phrase (= part of a program), P, is given a denotation,
[[P]] — a mathematical object representing the contribution of
P to the meaning of any complete program in which it occurs.

e The denotation of a phrase is determined just by the
denotations of its subphrases (one says that the semantics is
compositional).

Slide 2

1.1 Basic example of denotational semantics

Consider the basic programming language M&ver arithmetic and boolean ex-
pressions with control structures given by assignmenyeecjng, and conditionals
described on Slide 3.

1.1 Basic example of denotational semantics 3

Basic example of denotational semantics (1)

IMP™ syntax

Arithmetic expressions
AcAexp == n | L | A+ A |
where 1, ranges over integers and
L over a specified set of locations 1L

Boolean expressions

BeBexp 1= true | false | A=A ...
| B ...
Commands
Ce€Comm == skip | L:=4 | C;C
| if Bthen C else C
Slide 3

A denotational semantidsr a programming language is constructed by giving
a domain of interpretation to each of the program-phrasegoaies together with
semantic functions that compositionally describe the rmepof the phrase-forming
constructs. For IMP this is done in Slides 4-10, and is easily implementable in
SML.

1 INTRODUCTION

Basic example of denotational semantics (I1)

Semantic functions

Aexp — (State — Z)
Bexp — (State — B)
Comm — (State — State)

QS >

where

Z = {...,—-1,0,1,...}
B = {true,false}
State = (L — 7Z)

Slide 4

Basic example of denotational semantics (l11)

Semantic function A

A[n] = As € State.n
A[L] = As € State. s(L)

AJA; + Ag] = As € State. A[A1](s) + A[A2](s)

Slide 5

1.1 Basic example of denotational semantics

Basic example of denotational semantics (IV)

Semantic function B

B[true] = M\s € State. true
B[false] = As € State. false

B[A1 = A3] = Xs € State. eq(A[A1](s), A[A2](s))

true ifa=a’'

where eq(a,a’) = { false ita 4 d

Slide 6

Basic example of denotational semantics (V)

Semantic function C

[skip] = As € State.s

NB: From now on the names of semantic functions are omitted!

Slide 7

1 INTRODUCTION

A simple example of compositionality

Given partial functions [C], [C'] : State — State and a
function [B] : State — {true, false}, we can define

[if B then C else C'] =
As € State. if ([B](s), [C](s), [C"](s))

where
x ifb= true

x' iftb = false

Slide 8

Basic example of denotational semantics (V1)

Semantic function C

[L:=A] = Xse State. M € L.if (€ = L,[A](s),s(£))

Slide 9

1.2 Examplewhile-loops as fixed points 7

Denotational semantics of sequential composition

Denotation of sequential composition C'; C’ of two commands
[C;C'] = [C'] o [C] = As € State. [C']([C](s))

given by composition of the partial functions from states to states
[C],[C'] : State — State which are the denotations of the
commands.

Cf. operational semantics of sequential composition:
C,sls C,s]s"
C;C',s|s"

Slide 10

1.2 Example:while-loops as fixed points

The requirement otompositionalitymentioned on Slide 2 is quite a tough one.
It means that the collection of mathematical objects we aggve denotations to
program phases has to be sufficiently rich that it supporesaifns for modelling
all the phrase-forming constructs of the programming lagguin question. Some
phrase-forming constructs are easy to deal with, others $8s For example,
conditional expressions involving state-manipulatingnoosands can be given a
denotational semantics in terms of a corresponding bragchanction applied
to the denotations of the immediate subexpressions: sde 8li Similarly, the
denotational semantics of the sequential composition wieands can be given by
the operation of composition of partial functions from setato states, as shown on
Slide 10.

We now proceed to consider the denotational semantics diakie program-
ming language IMP, obtained by extending IMRith while-loops:

C € Comm := ...|while BdoC

However, this looping construct is not so easy to explainmositionally!
The transition semantics ofwhile-loop

(while B do C, s) — (if B then C;(while B do C) else skip, s)

8 1 INTRODUCTION

suggests that its denotation as a partial function fronestat states should satisfy
(1) [while B do C] = [if B then C; (while B do C) else skip].

Note that this cannot be used directly to defjmeéhile B do C], since the right-
hand side contains as a subphrase the very phrase whosatitemete are trying
to define. Using the denotational semantics of sequentiaposition andf (and
using the fact that the denotation dtip is the identity function\s € State.s),

(1) amounts to saying thgtvhile B do C] should be a solution of thiéxed point
equationgiven on Slide 11.

Fixed point property of
[while B do C]

[while B do C] = fip),1c1([while B do C1)

where, for each b : State — {true, false} and
c : State — State, we define

Jo.c i (State — State) — (State — State)
as

fo.c = dw € (State—State). As € State. if (b(s), w(c(s)), s).

e Why does w = f[p] [c7(w) have a solution?

e What if it has several solutions—which one do we take to be

[while B do C]?

Slide 11

Such fixed point equations arise very often in giving denotatl semantics to
languages with recursive features. Beginning with DanatSqgeioneering work
in the late 60’s, a mathematical theory callmmain theoryjhas been developed to
provide a setting in which not only can we always find solusiéor the fixed point
equations arising from denotational semantics, but alscavepick out solutions
that are minimal in a suitable sense—and this turns out torens good match
between denotational and operational semantics. The keyisdo consider a partial
order between the mathematical objects used as denotatibiss partial order
expresses the fact that one objecapproximated byor carries more information
than or is more well-defined tham@another one below it in the ordering. Then
the minimal solution of a fixpoint equation can be constrdas the limit of an
increasing chain of approximations to the solution. ThesEas will be made

1.2 Examplewhile-loops as fixed points 9

mathematically precise and general in the next sectionfitaitwe illustrate how
they work out concretely for the particular problem on Slide
For definiteness, let us consider the particwarile-loop

) while X > 0do (V=X +Y ;X := X — 1)

where X andY are two distinct integer storage locations (variables)wahdre the
set of locationd. is { X, Y }.

In this case we can just take a state to be an assignpent> z,Y +—]
with z, y € Z, recording the current contents of the locationgndY respectively.
Thus,State = (L — Z).

We are trying to define the denotation of (2) as a partial fimnct

w : State — State
that should be a solution to the fixed-point equation

w = f[[X>O]],[[Y::X*Y;X::X—1](w)

on Slide 11.

For the particular boolean expressiégh = (X > 0) and command” =
(Y:=X*Y ; X :=X —1), the functionfyz) jc] coincides with the functiorf
defined on Slide 12.

[while X >0do (Y =X Y ; X :=X —1)]

Let

def . . .
State = (L — 7) integer assignments to locations

D% (State — State) partial functions on states

For [while X >0doY:=X Y ;X :=X —1] € Dwe
seek a minimal solution to w = f(w), where f : D — D'is
defined by:

f)([X = 2,Y —y])

(X —x,Y —] ifx <0
w([X —z—-1Y —zx*y]) ifz>0.

Slide 12

10 1 INTRODUCTION

DY (State — State)

e Partial order C on D:

wCw' iff foralls € State, if w is defined at s then
so is w’ and moreover w(s) = w'(s).

iff the graph of w is included in the graph of w’.

e Leastelement L € Dwrt. C:
1 = totally undefined partial function

= partial function with empty graph

(satisfies L = w, forallw € D).

Slide 13

Consider the partial order,, between the elements &f = (State — State)
given on Slide 13. Note that does embody the kind of ‘information ordering’
mentioned above: ifv C w’, thenw’ agrees withw wherever the latter is defined,
but it may be defined at some other arguments as well. Notetladsd contains
an element which is least with respect to this partial orétarthe totally undefined
partial function, which we will write ad_, satisfiesl. C w for anyw € D.

Starting with L, we apply the functionf over and over again to build up a
sequence of partial functionsy, wy, ws, . . .:

{wo déf J_
def
Wnpyr = f(wn).

Using the definition off on Slide 12, one finds that

X —z,Y—yl ifz<0

X Y = f(L)|X Y =
X = oY =yl = (DX =2V ey {undefined it > 1
(X —z,Y—y] ifz<0
wX—z,Y—y =fw)|X—2,Y—yl=¢[X—0,Y—y] fz=1
undefined ifr > 2

1.2 Examplewhile-loops as fixed points 11

([X — 2, s y] ifz <0
(X — 0,Y — y] ifx=1
sl X e Vgl = Jw)lX = n Yol =0 0y oy ifa—o
| undefined ifr >3
(X — 2,Y — g if 2 <0
(X —0,Y —vy) ifex=1
wiX —z,Y =yl =fw)X—2,Y —yl=¢[X—0,Y—2xy] ifz=2
X —0,Y —6xy] ifz=3
| undefined ifr >4
and in general
(X —z,Y — y if <0
wp X — 2, Y =y =< [X—0,Y— (lz)xy] fO<z<n
undefined ifrt >n

where as usualy is the factorial ofr.
Thus we get an increasing sequence of partial functions

wogwl Ewgggwng

defined on larger and larger sets of stdteg/) and agreeing where they are defined.
The union of all these partial functions is the element € D given by

(X —2z,Y — y if <0

ooX 7Y = .
Wool X = @, ¥ =] {[XHO,YH(!a:)*y] if > 0.

Note thatw,, is a fixed point of the functiotf, since for all[X — z,Y — y] we
have

(X —z,Y — y] if =
o0) [X Y = _ by definition of
fweo)lX = 2, ¥ =] {woo[XHx—l,YHx*y] if x>0 (by definit f
(X —z,Y — y if 2 <0
= [X—0,Y—1xy] if =1 (by definition ofw..)

(X —0,Y —=l(z—1)xaxxy] fz>1
= W[X — 2, Y —y| .

In fact one can show that., is theleastfixed point of f, in the sense that for all
weD

(3) w=f(w) = w, L w.

12 1 INTRODUCTION

This least fixed pointv., is what we take as the denotation of
while X >0do (Y :=X*xY ;X =X —1).

Its construction is an instance of Tarski's Fixed Point Tieeo to be proved
in the next section. Note also that,, is indeed the function from states to
states that we get from the structural operational semmrmdfcthe command
while X >0do (Y:=X Y ; X := X — 1), as given in the Part IB course on
Semantics of Programming Languages

1.3 Exercises
Exercise 1.3.1.Implement the denotational semantics of IMid SML.
Exercise 1.3.2.Consider the function

fo,c - (State — State) — (State — State)

defined on Slide 11.
(1) Show by induction om that

c*(s) if 0 < k < nissuchthab(c'(s)) = true
FrM(L) = As € State. forall 0 < i < k andb(c(s)) = false

undefined ifb(ci(s)) = true forall0 <i <n
(2) Letwy, . : State — State be the partial function defined as
ck(s) if k& > 0is such thab(c(s)) = true
wy.e & As € State. forall 0 <i < k andb(c¥(s)) = false
undefined ifb(c'(s)) = true forall i > 0
Show thatw;, . satisfies the fixed-point equation
Whe = fo.c(Wpe) -

(3) Describe the functioffi, . for b = [true] = As € State.true andc = [skip] =
As € State.s. Which partial functions from states to states are fixed {soof
this f, .? What is its least fixed point (with respect to theordering defined
above)? Does this least fixed point agree with the partiattfan from states to
states determined by the operational semantisgloifie true do skip?

Exercise 1.3.3.Show that the relation- defined on Slide 13 is a partial order with
least element..

Exercise 1.3.4.Prove the statement (3). More generally, with the defingioh
Slide 13 and Exercise 1.3.2, prove that

w = fyc(w) = wpeEw

for all w € (State — State).

13

2 Least Fixed Points

This section introduces a mathematical thedomain theorywhich amongst other
things provides a general framework for constructing tlastidixed points used in
the denotational semantics of various programming langdegtures. The theory
was introduced by Dana Scott.

2.1 Posets and monotone functions

Thesis

All domains of computation are
partial orders with a least element.

All computable functions are
mononotic.

Slide 14

2.1.1 Posets

Domain theory makes use of partially ordered sets satigfgartain completeness
properties. The definition of partial order is recalled on Slide 15D is called the
underlying sebf the poset D, C). Most of the time we will refer to posets just by
naming their underlying sets and use the same symktoldenote the partial order
in a variety of different posets.

14 2 LEAST FIXED POINTS

Partially ordered sets

A binary relation C on a set D is a partial order iff it is
reflexive : Vd € D. d C d
transitive : Vd,d',d" e D.dCd Cd" = dC d”
anti-symmetric : Vd,d' € D.dCd CTd=d=d.

Such a pair (D, E) is called a partially ordered set, or poset.

Slide 15

Example 2.1.1. The set(X — Y") of all partial functions from a seX to a setY”
can be made into a poset, as indicated on Slide 16. It wasdhisih for the case
X =Y = State (some set of states) that we used for the denotation of comsnan

in Section 1.2.

2.1 Posets and monotone functions

Domain of partial functions, X —Y

Underlying set: all partial functions, f, with domain of definition
dom(f) C X and taking valuesin Y.

Partial order:
fCyg iff dom(f)C dom(g)and
Vo € dom(f). f(x) = g(x)
it graph(f) C graph(g)

Slide 16

15

16 2 LEAST FIXED POINTS

2.1.2 Monotone functions

The notion of mapping between posets is given in Slide 17.

Monotonicity

e Afunction f : D — FE between posets is monotone iff
Vd,d € D.dC d = f(d) C f(d).

Slide 17

Example 2.1.2. Given posetsd) and E, for eache € F it is easy to see that the
constant functiorD — E with valuee, \d € D . e, is monotone.

Example 2.1.3. When D is the domain of partial function$State — State)
(cf. Slide 16), the functioryf; . : D — D defined on Slide 11 in connection with
the denotational semantics efhile-loops is a monotone function. We leave the
verification of this as an exercise.

2.2 Least elements and pre-fixed points

Definition 2.2.1. Suppose thab is a poset and thé&t is a subset oD. An element
d € S'is theleastelement ofS if it satisfies

VreS.dCzx .

Note that becauseg is anti-symmetricS has at most one least element. Note
also that a poset may not have least element. For exa@dpléth its usual partial
order does not have a least element.

2.2 Least elements and pre-fixed points 17

A fixed pointfor a functionf : D — D is by definition an elemeni € D
satisfyingf(d) = d. If D is a poset, we can consider a weaker notiorpreffixed
point, as defined on Slide 18.

Pre-fixed points

Let D be aposetand f : D — D be a function.

An element d € D is a pre-fixed point of f if it satisfies
f(d) Ed.

The least pre-fixed point of f, if it exists, will be written
S (f)
It is thus (uniquely) specified by the two properties:

(Ifp1) f(fix(f)) E fix(f)
(Ifp2) Vde D. f(d)Cd = fiz(f) Cd.

Slide 18

18 2 LEAST FIXED POINTS

Proof principle

Let D be aposetand let f : D — D be a function with a least
pre-fixed point fiz (f) € D.

Forallz € D, to prove that fiz(f) C x itis enough to establish
that f(z) C .

Slide 19

Proposition 2.2.2. Supposd) is a poset and : D — D is a function possessing a
least pre-fixed pointfiz(f), as defined on Slid&S.

Providedf is monotonefiz(f) is in particular a fixed point forf (and hence
is the least element of the set of fixed pointsffpr

Proof. By definition, fiz(f) satisfies property (Ifp1) on Slide 18. ffis monotone
(Slide 17) we can apply to both sides of (Ifpl) to conclude that

f(f(fix(f))) E f(fiz(f))
Then applying property (Ifp2) witld = f(fiz(f)), we get that
fix(f) £ f(fiz(f)).

Combining this with (Ifpl) and the anti-symmetry properfiytioe partial orderC,
we getf(fix(f)) = fix(f), as required. O

2.3 Cpo’s and continuous functions 19

2.3 Cpo’s and continuous functions

Thesis *

All domains of computation are
complete partial orders with a least element.

All computable functions are
continuous.

Slide 20

2.3.1 Domains

Definition 2.3.1. (i) If it exists, we will write the least element of a posbtas
1 p, orjust L when D is understood from the context. Thusis uniquely
determined by the property:

Vde D. 1L Cd.

The least element of a poset is sometimes calleolatiomelement.

(i) A countable, increasinghainin a posetD is a sequence of elements bf
satisfying
dyCdiCdaC ...

An upper boundor the chain is anyl € D satisfyingvn € N. d,, C d. If it
exists, thdeast upper bouncbr lub, of the chain will be written as

| | dn.

n>0

20 2 LEAST FIXED POINTS

Thus by definition:
e YmeN.d,, C Unzo d,.
e Foranyd € D, if Vm € N. d,,, C d, then|_|n20 d, Cd.

Remark 2.3.2. The following points should be noted.

(i) We will not need to consider uncountable, or decreasimgjrts in a poset: so
a ‘chain’ will always mean a countable, increasing chain.

(i) Like the least element of any subset of a poset, the lubafain is unique if it
exists. (It does not have to exist: for examplethe cliain1 <2 < ... inN
has no upper bound, hence no lub.)

(iif) A least upper bound is sometimes calleg@premum Some other common
notations for |, .., d,, are:

an and | |[{d.|n>0} .
n=0

(iv) The elements of a chain do not necessarily have to badistn particular, we
say that a chaidy C d; C d, C ... iseventually constant for some N € N
it is the case thatn > N. d,, = dx. Note that in this caslejnZO dy, =dp.

(v) If we discard any finite number of elements at the begigmha chain, we do
not affect its set of upper bounds and hence do not changsbits |

|_| d, = U dN4n, foranyN e N.

n>0 n>0

2.3 Cpo’s and continuous functions 21

Cpo’s and domains

A chain complete poset, or cpo for short, is a poset (D, E) in
which all countable increasing chains dg C di C do C ... have
least upper bounds, |_|n>0 dp:

(ubl) ¥m >0.dp C | | dn
n>0
(ub2) VdeD.(Vvm>0.dpnCTd) = | |d,Cd.
n>0

A domain is a cpo that possesses a least element, _L_:

Vde D. 1 Cd.

Slide 21

In this course we will be concerned with posets enjoyingaiertompleteness
properties, as defined on Slide 21. It should be noted thaethe‘domain’ is used
rather loosely in the literature on denotational semantiesre are many different
kinds of domain, enjoying various extra order-theoretiogarties over and above
the rather minimal ones of chain-completeness and possesstia least element
that we need for this course.

Example 2.3.3. The set(X — Y') of all partial functions from a seX to a setY”
can be made into a domain, as indicated on Slide 22. It wasldinigin for the case
X =Y = State (some set of states) that we used for the denotation of comsnan
in Section 1.2. Note that théwhichis claimedtobethelubghf C f1 C fo C ...

on Slide 22 is a well-defined partial function because thegree where they are
defined. We leave it as an exercise to check that fhis indeed the least upper
bound offy C f; C fo C ... inthe posefX — Y,).

22 2 LEAST FIXED POINTS

Domain of partial functions, X —Y

Underlying set: all partial functions, f, with domain of definition
dom(f) C X and taking valuesin Y.

Partial order:
fCg iff dom(f)C dom(g)and

Va € dom(f). f(x) = g(x)
iff graph(f) C graph(g)
Lub of chain fy E f1 C fo £ ... isthe partial function f with
dom(f) = UnZO dom(f,) and

fla) = {fn(m) itz € dom(f,), somen

undefined otherwise

Least element _L is the totally undefined partial function.

Slide 22

Example 2.3.4. Any poset(D, C) whose underlying seb is finite is a cpo. For
in such a poset any chain is eventually constant and we notBeiinark 2.3.2(iv)
that such a chain always possesses a lub. Of course, a firsét peed not have
a least element, and hence need not be a domain—for exaropkder the poset

with Hasse diagram
[J
[] / \ [J

(TheHasse diagranof a poset is the directed graph whose vertices are the etemen
of the underlying set of the poset and in which there is an ddie vertexz to
vertexy iff x Zyandvz. (e Cz2 & 2Cy) = (z=axVz=y).)

Figure 1 shows two very simple, but infinite domains. Heretew@ examples
of posets that are not cpos.

Example 2.3.5. The set of natural numbef§ = {0, 1,2, ...} equipped with the
usual partial orderg, is not a cpo. For the increasing ch@ink 1 <2 < ... has
no upper bound imN.

Example 2.3.6. Consider a modified version of the second example in Figure 1
in which we adjoin two different upper bounds; # w-, for N. In other words,

2.3 Cpo’s and continuous functions

23

The ‘flat natural numbers’, N | :

0

%g

The ‘vertical natural numbers’, Q:

3
—_

Figure 1: Two domains

24 2 LEAST FIXED POINTS

considerD % N U {w1, w9} with partial orderC defined by:

d,deN & d<d,

QO d % or deN & d' € {wy,ws},
B or d=d =uw,
or d=d =ws.
Then the increasing chainC 1 C 2 C ... in D has two upper bounds,{ and

we), but no least one (sinee, £ we andws IZ wq). So(D, C) is not a cpo.

Some properties of lubs of chains

Let D be a cpo.
1. Forde D, ||,d=d.

2. Foreverychandg T di1C...Cd,C...inD,
I_Idn = I_IdN+n
n n

for all NV € N.

3. For every pairofchainsdg Cd; C...Cd, C...and
eoCei1C...Ce, C...iInD,

ifd, C ey, foralln € Nthen| | d, T || en.

Slide 23

2.3 Cpo’s and continuous functions 25

Diagonalising a double chain
Lemma. Let D be a cpo. Suppose that the doubly-indexed family
of elements d,, , € D (m,n > 0) satisfies
™) m<m'&n<n' = dyn,Cdp.
Then
UdO,n C Udl,n C Ud2,n C ...
n>0 n>0 n>0
and
I_I dm,O L |_| dm,l L I_I dm’g C ...
m>0 m>0 m>0
Moreover
U I_I dm,n = U dk,k = I_I U dm,n
m>0 \n>0 k>0 n>0 \m>0
Slide 24

Proof of the Lemma on Slid&l. We make use of the defining properties of lubs of
chains—(lubl) and (lub2) on Slide 21. First note thahi< m’ then

A E dim/ by property () of thed,,, .,
E U dm’,n’ by (IUbl)
n'>0

foralln > 0,and hencé |, <, dm.n C |,/ dm ,n DY (IlUub2). Thus we do indeed
get a chain of lubs - -

|_|d0,ng Udl,ng UdQ,nE

n>0 n>0 n>0

and can formiits lub, |, - |l,,> o dm,»- Using property (lubl) twice we have

dk,k E U dk,n E |_| |_| dm,n

n>0 m>0n>0

for eachk > 0, and hence by (lub2)

(4) U dk,kz C |_| |_| dm,n-

k>0 m>0n>0

26 2 LEAST FIXED POINTS

Conversely, for eacin, n > 0, note that

dm,n C dmax{m,n},max{m,n} by property q-)
C dk,k by (|Ub1)

and hence applying (lub2) twice we have

(5) |_| |_| dm,n E I_l dk:,k:-

m>0n>0 k>0

Combining (4) and (5) with the anti-symmetry property ofyields the desired
equality. We obtain the additional equality by the same iaagyt but interchanging
the roles ofm andn. O

2.3.2 Continuous functions

Continuity and strictness

e If D and F are cpo’s, the function f is continuous iff
1. itis monotone, and

2. it preserves lubs of chains, i.e. for all chains
do C dy C ... inD,itis the case that

f(|] dn)=1|] f(dn) nE.

n>0 n>0

e If D and FE have least elements, then the function f is strict
iff f(L)= 1.

Slide 25

Remark 2.3.7. Note that if f : D — F is monotoneandy C d; C dy C ... iS
a chain inD, then applyingf we get a chairf(dy) C f(d1) C f(d2) E ... in E.
Moreover, ifd is an upper bound of the first chain, thé¢f) is an upper bound of
the second and hence is greater than its lub. Hen¢e: ifD — FE is a monotone

2.3 Cpo’s and continuous functions 27

function between cpo’s, we always have

L] fda) S £ dn)

n>0 n>0

Therefore (using the antisymmetry property ©f), to check that a monotone
function f between cpo’s is continuous, it suffices to check for eachncha
do C dq Edgg...inDthat

(L] da) € |] £(d)

n>0 n>0
holds inE.

Example 2.3.8. Given cpo’'sD and E, for eache € FE it is easy to see that the
constant functiorD — E with valuee, \d € D . e, is continuous.

Example 2.3.9. When D is the domain of partial function§State — State)
(cf. Slide 22), the functiorf; . : D — D defined on Slide 11 in connection with
the denotational semantics wthile-loops is a continuous function. We leave the
verification of this as an exercise.

Example 2.3.10.Let Q2 be the domain of vertical natural numbers, as defined in
Figure 1. Then the functiolfi : 2 — 2 defined by

{ﬂmzo (n € N)
f(w)

iS monotone and strict, but it is not continuous because

f]n) =fw=w#o=|]o=|]fn).

n>0 n>0 n>0

w.

28 2 LEAST FIXED POINTS

2.4 Tarski’s fixed point theorem

Tarski's Fixed Point Theorem

Let f : D — D be a continuous function on a domain D). Then

e f possesses a least pre-fixed point, given by

fix(f) = | | ().

n>0

e Moreover, fix(f) is a fixed point of f, i.e. satisfies
f(ﬁx(f)) = fiz(f), and hence is the least fixed point of f.

Slide 26

Slide 26 gives the key result about continuous functions emalns which
permits us to give denotational semantics of programs umglrecursive features.
The notationf™ (L) used on the slide is defined as follows:

{f“(L) =
L) S).

Note that sinc&d € D. | C d,one hag®(L) = L C f!(.L); and by monotonicity
of f
R E L) = L) = (L) BTN = ().

Therefore, by induction on € N, it is the case thatn € N. f*(1) C f*+1(1).
In other words the elemenys’(_L) do form a chain inD. So sinceD is a cpo, the
least upper bound used to defifie(f) on Slide 26 does make sense.

(6)

2.4 Tarski’s fixed point theorem 29

Proof of Tarski’s Fixed Point Theorentirst note that

Ffiz(£) = £(|] (L)

n>0

= || rerm) by continuity of f

n>0

—]) by (6)

n>0
=] by Remark 2.3.2(v)
n>0
= fiz(f).
So fix(f) is indeed a fixed point fof and hence in particular satisfies condition

(Ifp1) on Slide 18. To verify the second condition (Ifp2) ded for a least pre-fixed
point, suppose that € D satisfiesf(d) C d. Then sincel is least inD

ff)y=1cd
and

A) Cd = (L) =f(f"(L))C f(d monotonicity off
Cd by assumption od.

Hence by induction om € N we haveVn € N. f*(L) C d. Therefored is an
upper bound for the chain and hence lies above the leastisech,

fir(f)=|] f(L)Cd

n>0
as required for (Ifp2). O

Example 2.4.1. The functionf(gy, jc] defined on Slide 11 is a continuous function
(Exercise 2.5.3) on the domaiibtate — State) (Slide 22). So we can apply the
Fixed Point Theorem and defifierhile B do C] to befiz(fiz],[c7). In particular,
the method used to construct the partial functieg at the end of Section 1.2 is an
instance of the method used in the proof of the Fixed Poinbfidra to construct
least pre-fixed points.

30 2 LEAST FIXED POINTS

[while B do C]

[while B do C]
= fiz(f1B],107)
= Unzo f151,101" (1)

= As € State.
[C]*(s) ifk > Ois such that [B]([C]"(s)) = false
and [B]([C]¥(s)) = trueforall 0 < i <] k

B

undefined if [B]([C]*(s)) = true foralli > 0

Slide 27

2.5 Exercises

Exercise 2.5.1.Verify the claims implicit on Slide 22: that the relatian defined
there is a partial order; that is indeed the lub of the chaify C f1 C fo C ...;
and that the totally undefined partial function is the leéstnent.

Exercise 2.5.2.Prove the claims in Slides 23 and 24.

Exercise 2.5.3.Verify the claim made in Example 2.3.9 th§ . is continuous.
When is it strict?

31

3 Constructions on Domains

In this section we give various ways of building domains aotimuous functions,
concentrating on the ones that will be needed for a denoi@t®emantics of the
programming language PCF studied in the second half of theseo Note that to
specify a cpo one muslefinea set equipped with a binary relation and tipeave

(i) the relation is a partial order;
(ii) lubs exist for all chains in the partially ordered set.
Furthermore, for the cpo to be a domain, one just has to prove
(i) there is a least element.

Note that since lubs of chains and least elements are unfigoeyi exist, a cpo or
domain is completely determined by its underlying set amtigdeorder. In what
follows we will give various recipes for constructing cpoglalomains and leave as
an exercise the task of checking that properties (i), (iy &ii) do hold.

3.1 Flat domains

In order to model the PCF ground typest andbool, we will use the notion ofiat
domaingiven on Slide 28.

Discrete cpo’s and flat domains

For any set X, the relation of equality
def
rC2 & rz=1 (1,2 €X)

makes (X, E) into a cpo, called the discrete cpo with underlying

set X.

def
Let X, = X U{L}, where L is some element notin X. Then

icd ¥ d=d)vd=1) ddeX))

makes (X |, C) into a domain (with least element L), called the
flat domain determined by X .

Slide 28

32 3 CONSTRUCTIONS ON DOMAINS

The flat domain of natural numbefs, , is pictured in Figure 1; the flat domain
of booleansB | looks like:

true false

N

L

The following instances of continuous functions involviteg domains will also be
needed for the denotational semantics of PCF. We leave titdspas exercises.

Proposition 3.1.1. Let f : X — Y be a partial function between two sets. Then

fr: X, —=Y,

f(d) ifde X andf is defined atl
fi(d) =<1 if d € X and f is not defined atl
1 ifd= 1

defines a continuous function between the correspondinddlagins.

3.2 Products of domains

Binary product of cpo’s and domains

The product of two cpo’s (D1, =1) and (D2, C2) has underlying
set

D1 X D2 = {(dl,dg) | d1 - D1 & d2 € DQ}
and partial order T defined by

(d1,d2) C (d}, d5) & di Ty d) & do Ey df

Lubs of chains are calculated componentwise:
I_I (dl,n7 d2,n) = (U dl,i? U d2,j)'
n>0 120 720

If (D1,CZ1) and (D2, Cy) are domains sois (D1 X Do,)
and Lp, xp, = (J—D17J—D2)'

Slide 29

3.2 Products of domains 33

Proposition 3.2.1 (Projections and pairing)Let D, and D, be cpo’s. The
projections

7T11D1XD2—>D1 7T21D1XD2HD2

mi(di, ds) € dy mo(dy, do) < dy

are continuous functions. ff, : D— D, and f, : D— D, are continuous functions
from a cpoD, then

<f1,f2> : D—>D1 X D2
(fr, f2)(d) < (f1(d), f2(d))

is continuous.

Proof. Continuity of these functions follows immediately from ttigaracterisation
of lubs of chains inD; x Dy given on Slide 29. O

Proposition 3.2.2. For each domainD the function

if 1B, x(DxD)—D

d if x = true
if (v, (d,d) E L@ if = false
J_D ifx =1

IS continuous.
We will need the following generalised version of the pradranstruction.

Definition 3.2.3 (Dependent products)Given a setl, suppose that for eache 1
we are given a cpoD;, C;). Theproductof this whole family of cpo’s has

e underlying set equal to thiefold cartesian product,],.; D;, of the setsD;,—
so it consists of all functions defined on/ and such that the value pfat each
i € I'is an elemenp(i) € D, of the cpoD;;

e partial orderC defined by
pCyp € Vielp(i)Cip/(i).

As for the binary product (which is the particular case wiiesa two-element set),
lubs in(]],.; D;, C) can be calculated componentwisepifC p1 T p T ... is
a chain in the product cpo, its lub is the function mappindheae I to the lub in
D; of the chainpy (i) C p1(i) C pa(i) T Thus

(Upn)(l): Upn(2> (i €1).

n>0 n>0

34 3 CONSTRUCTIONS ON DOMAINS

In particular, for eachi € I theith projection function
T . H Dj — Dz
j€I
def .
mi(p) = p(i)

is continuous. If all the),; are domains, then so is their product—the least element
being the function mapping eacte I to the least element db;.

Continuous functions of two arguments

Proposition. Let D, F/, I’ be cpo’s. A function
f: (D x E) — F is monotone if and only if it is monotone in
each argument separately:

Vd,d € De€ E.dCd = f(d,e)C f(d,e)
Vd € Dye,e’ € E.eCe = f(d,e) C f(d,e€).

Moreover, it is continuous if and only if it preserves lubs of chains
in each argument separately:

f(LJ dﬂlae):: LJ f(dmne)

m>0 m>0
fd, | |en) =] f(d en).
n>0 n>0
Slide 30

Proof of the Proposition on Slid&0. The ‘only if’ direction is straightforward; its
proof rests on the simple observations thatl if= d’ then(d,e) C (d’,e), and
(Um0 dmse) = ,>0(dm , €), as well as the companion facts for the right
argument. For the ‘if’ direction, suppose first thyats monotone in each argument
separately. Then givefl, e) C (d’,¢’) in D x E, by definition of the partial order
on the binary product we havkeC d’ in D ande C ¢’ in E. Hence

f(d,e) C f(d,e) by monotonicity in first argument
C f(d,¢€) by monotonicity in second argument

and therefore by transitivity;(d, e) C f(d’, '), as required for monotonicity of.

3.3 Function domains 35

Now suppos¢ is continuous in each argument separately. Then given achai
(do,e0) C (d1,e1) C (da,e2) C ... inthe binary product, we have

FOL | (dnren)) = £ | dis | | e) (cf. Slide 29)

n>0 1>0 7>0
= |_| f(di, | |ej) by continuity in first argument
i>0 >0

= | {|]fdie) by continuity in second argument

i>0 \j>0

= | | f(dn,en) by lemma on Slide 24

n>0

as required for continuity of. O

3.3 Function domains

The set of continuous functions between two cpo’s/domaars ke made into a
cpo/domain as shown on Slide 31. The terminology ‘expoaérpo/domain’ is
sometimes used instead of ‘function cpo/domain’.

Function cpo’s and domains

Given cpo's (D,Cp) and (E, Cg), the function cpo
(D — E,C) has underlying set

D—p ¥ {f | f: D— FE'is acontinuous function}

and partial order: f C f’ Y vd e D.f(d) Cg f'(d).
Lubs of chains are calculated ‘argumentwise’ (using lubs in E):
| | fn = AdeD. || fud) .
n>0 n>0

If £ is a domain, thensois D — F and Lp_g(d) = Lg,all
de D.

Slide 31

36 3 CONSTRUCTIONS ON DOMAINS

Proof of Slide31. We should show that the lub of a chain of functionk,.., f», is
continuous. The proof uses the ‘interchange law’ of Slidg Bdven a chain inD,

(L] L] dm)) = [(] dm)) definition of | | f,

n>0 m>0 n>0 m>0 n>0
= || (] faldm)) continuity of eachy,,
n>0 m>0
= || (] faldm)) interchange law
m>0 n>0
= || ((|] £2)(dm)) definition of | | f,.
m>0 n>0 n>0

O
Proposition 3.3.1(Evaluation and ‘Currying’) Given cpo’sD and E, the function

ev:(D—FE)xD—FE
def

ev(f,d) = f(d)

is continuous. Given any continuous functipn D’ x D — E (with D’ a cpo), for
eachd’ € D’ the functiond € D — f(d',d) is continuous and hence determines
an element of the function cge — E that we denote byur(f)(d’). Then

cur(f): D' — (D — E)
cur(£)(d) € \d e D. f(d,d)

is a continuous functioh.

This ‘Curried’ version off is named in honour of the logician H. B. Curry, a pioneer of
combinatory logic and lambda calculus.

3.3 Function domains

Proof. For continuity ofev note that

ev(| | (furdn)) = ev(| | fi, | | dy)

n>0 >0 720

= (L])

i>0 §>0

= |5 |4

i>0 j>0

= ||| fi(d)

i>05>0

37

lubs in products are componenwise

by definition ofev

lubs in function cpo’s are argumentwise

by continuity of eacly;

by the Lemma on Slide 24

by definition ofev.

The continuity of eaclkeur(f)(d") and then ofcur(f) follows immediately from
the fact that lubs of chains i, x D, can be calculated componentwise. [

Continuity of composition

is continuous.

For cpo’s D, E, F', the composition function
o: ((E—>F)><(D—>E)) — (D — F)
defined by setting, forall f € (D — E)andg € (F — F),

gof = Xde D.g(f(d))

Slide 32

38 3 CONSTRUCTIONS ON DOMAINS

Continuity of the fixpoint operator

Let D be a domain.

By Tarski’'s Fixed Point Theorem we know that each
continuous function f € (D — D) possesses a least
fixed point, fix(f) € D.

Proposition. The function
fir: (D—D)—D

is continuous.

Slide 33

Proof of the Proposition on Slid&3. We must first prove thagtz : (D — D) — D
is a monotone function. SuppogeC f5 in the function domairD — D. We have

to provefiz(f1) C fix(f2). But:

f1(fiz(f2)) C fa(fiz(f2)) sincef; C fo
C fiz(f2) by (Ifpl) for fiz(f2).

So fiz(f2) is a pre-fixed point forf; and hence by (Ifp2) (fofiz(f1)) we have
fiz(f1) C fix(f2), as required.

Turning now to the preservation of lubs of chains, suppfase f1 C fo C ...
in D — D. Recalling Remark 2.3.7, we just have to prove that

n>0 n>0

and by the property (Ifp2) of least pre-fixed points (see&li8), for this it suffices
to show that |, ., fiz(f,) is a pre-fixed point for the function|,,, f». Thisis the

3.4 Exercises 39

case because:

(|_| Jm)(|_| fix(fn)) = |_| fon(|_| fiz(f,)) function lubs are argumentwise

m>0 n>0 m>0 n>0

= || || fm(fix(f2)) by continuity of eacty,,

m>0n>0

= || fe(fiz(fr)) by the Lemma on Slide 24

k>0

C | | fix(fx) by (Ifpl) for eachf.

k>0

3.4 Exercises

Exercise 3.4.1.Verify that the constructions given on Slide 29, in Definiti®.2.3,

and on Slides 31 and 28 do give cpo’s and domains (i.e. thaepties (i), (i) and

(i) mentioned at the start of this section do hold in eacleta&ive the proofs of
Propositions 3.1.1 and 3.2.2.

Exercise 3.4.2.Let X andY be sets andX, and Y, the corresponding flat
domains, as on Slide 28. Show that a functipn X, — Y is continuous if
and only if one of (a) or (b) holds:

(a) fisstrict,i.e.f(L)= L.

(b) fisconstant,i.evz € X . f(z) = f(L).

Exercise 3.4.3.Let { T} be a one-element set afd }, the corresponding flat

domain. Let2 be the domain of ‘vertical natural numbers’, pictured in e 1.
Show that the function domaiif2 — { T},) is in bijection with(2.

Exercise 3.4.4.Prove the Proposition on Slide 32.

40

3 CONSTRUCTIONS ON DOMAINS

41

4 Scott Induction

4.1 Chain-closed and admissible subsets

In Section 2 we saw that the least fixed point of a continuonstfanf : D—D ona
domainD can be expressed as the lub of the chain obtained by repgaigullying
f starting with the least element of D: fix(f) = ||, f"(L) (cf. Slide 26).
This construction allows one to prove propertiesfiof f) by using Mathematical
Induction forn to show that eaclf” (L) has the propertyprovidedthe property in
guestion satisfies the condition shown on Slide 34. It is eniant to package up
this use of Mathematical Induction in a way that hides thdiexgonstruction of
fiz(f) as the lub of a chain. This is done on Slide 35. To see the talidithe
statement on that slide, note thf&(|) = | € S by theBase casgandf"(L) € S
implies f**1(1) = f(f*(L)) € S by thelnduction step. Hence by induction
onn, we haveVn > 0. f"(L) € S. Therefore by the chain-closedness%f
fix(f) =,>0 [(L) € S, as required.

Chain-closed and admissible subsets

Let D be a cpo. A subset S C D is called chain-closed iff
forallchainsdg T di Cdo C ... inD

(Vn>0.d, €5) = (Udn)es

n>0

If D is adomain, S C D is called admissible iff it is a
chain-closed subset of D and L € S.

A property ®(d) of elements d € D is called chain-closed
(resp. admissible) iff {d € D | ®(d)} is a chain-closed
(resp. admissible) subset of D.

Slide 34

Note. The termsinclusive or inductive are often used as synonyms of ‘chain-
closed'.

Example 4.1.1. Consider the domaif2 of ‘vertical natural numbers’ pictured in
Figure 1. Then

¢ anyfinite subset of is chain-closed;

42 4 SCOTT INDUCTION

e {0,2,4,6,...}isnot a chain-closed subsetQf

e {0,2,4,6,...} U{w} isachain-closed (indeed, is an admissible) subsgt of

Scott’s Fixed Point Induction Principle

Let f : D — D be a continuous function on a domain D.

For any admissible subset S C D, to prove that the least
fixed point of f isin S, i.e. that

fi(f) € s,
it suffices to prove

Vde D (deS = f(d)eSs).

Slide 35

The difficulty with applying Scott’s Fixed Point InductiorriRciple in any
particular case usually lies in identifying an appropriatnissible subset; i.e. in
finding a suitably strong ‘induction hypothesis’.

4.2 Examples

Example 4.2.1. Suppose thab is a domain and that : (D x (D x D)) — D is
a continuous function. Lej : (D x D) — (D x D) be the continuous function
defined by

g(dr,ds) & (f(dy, (dr,ds)), f(dn, (da,do))) (dr,ds € D).

Thenu; = ugy, where(uy, us) def fiz(g). (Note thatg is continuous because we

can express it in terms of composition, projections andipgiand hence apply
Proposition 3.2.1 and Slide 33:= (f o (my, (71, m2)), f o (71, (w2, M2))).)

Proof. We have to show thagiz(g) € A where

A Y {(dy,dy) € Dx D|dy=dy}.

4.2 Examples 43

It is not hard to see thah is an admissible subset of the product domairx D.
So by Scott’s Fixed Point Induction Principle, we just haveheck that

v<d1,d2) eDxD ((dl,dg) SAES g(dl,dg) S A)

or equivalently, that
V(dl,dg) e DxD (dl = d2 = f(dl,dl,dg) = f(dl,dg,dg)),

which is clearly true. O

The next example shows that Scott’s Induction Principle banuseful for
proving (the denotational version gfartial correctnessssertions about programs,
i.e. assertions of the form ‘if the program terminates, teech-and-such a property
holds of the results’. By contrasttatal correctness assertion would be ‘the program
does terminate and such-and-such a property holds of tlhetsesBecause Scott
Induction can only be applied for propertiésfor which ®(_L) holds, it is not so
useful for proving total correctness.

Example 4.2.2. Let f : D — D be the continuous function defined on Slide 12
whose least fixed point is the denotation of the command

while X > 0do (V=X *Y ;X := X —1).

We will use Scott Induction to prove

(7)
Ve,y>0.

fir(HIX =z, Y =yl | = fu(HX—zY —y]=[X=0Y)yl

where forw € D = ((Z x Z) — (Z x Z)) we writew(z, y) | to mean ‘the partial
functionw is defined at the staf&X — z,Y — y]'".

Proof. Let

Ve,y>0.
S={ weD wX —z,Y—uyl |
= wX—z2,Y—y =[X—0Yr—(z)xy
It is not hard to see théf is admissible. Therefore, to prove (7), by Scott Induction
it suffices to check thaty € S implies f(w) € S, for all w € D. So suppose
w € S, thatz,y > 0, and thatf (w)[X — z,Y — y| |. We have to show that
fw)X =z, Y —y]=[X+—0,Y — (lz)xy]. We consider the two cases= 0

andx > 0 separately.
If z = 0, then by definition off (see Slide 12)

fw)X—z,Y—y = [X—zY—y = [X—0,Y —y]
(X —0,Y — 1xy] = [X—0,Y — (10)*y]
= [X—0,Yr— (lz)xy] .

44 4 SCOTT INDUCTION

On the other hand, it > 0, then by definition off
wX—z—-1LY —zxyl=f(w)|[X—2zY—yl| (byassumption)
and then sincev € S andz — 1,z x y > 0, we must have
wXr—zr—-1LY—zxyl=[X—0,Y —=l(zx—1)x(zxy)]
and hence once again

fw)X—z,Y—y = wX—z-1Y - xxy]
(X —0,Y —=!l(z—1)* (zxy)]
= [X—0,Y— (lx)*y] .

4.3 Building chain-closed subsets

The power of Scott induction depends on having a good stockhafn-closed
subsets. Fortunately we are able to ensure that a good mbsgtsiare chain-closed
by virtue of the way in which they are built up.

4.3.1 Basic relations
Let D be a cpo. The subsets
{(z,y) e Dx D |z Cy}and{(z,y) € D x D |z =y}

of D x D are chain-closed (Why?). The properties (or predicates)y andx = y
on D x D determine chain-closed sets.

4.3 Building chain-closed subsets 45

Example (1): Least pre-fixed point property

Let D be a domain and let f : D — D be a continuous function.

Vde D.f(d)Cd = fiz(f)Cd

Proof by Scott induction.

Let d € D be a pre-fixed point of f. Then,

x € [(d) rCd

Hence,

Slide 36

4.3.2 Inverse image and substitution

Let f : D — E be a continuous function between cposand E. Supposes is a
chain-closed subset @&f. Then the inverse image

f1S={zeD| f(x)e S}

is an chain-closed subset bf (Why?).
Suppose the subsétis defined by the properti? on E'i.e.

S={yeE|Py}

Then
f18 ={z e D| P(f(x))}.
So, if a propertyP(y) on E determines a chain-closed subsefbéndf : D — F

is a continuous function, then the propeftyf(z)) on D determines a chain-closed
subset ofD.

46 4 SCOTT INDUCTION

Example (Il)

Let D be a domain andlet f, g : D — D be continuous
functions such that f o g C g o f. Then,

f(L) Eg(L) = fix(f) E fix(g) .

Proof by Scott induction.

Consider the admissible property ®(z) = (f(z) C g(z))
of D.

Since
f(z) E g(z) = g(f(2)) E g(9(z)) = flg9(x)) C g(g(z))

we have that

f(fiz(g)) T g(fiz(g)) -

Slide 37

4.3.3 Logical operations

Let D be acpo. LetS C D andT C D be chain-closed subsets bf Then
SUT and SNT

are chain-closed subsets (Why?). In terms of propertié¥,4f) andQ (=) determine
chain-closed subsets &f, then so do

P(zx)orQ(z), P(x)& Q(z).

If S;, i € I, is afamily of chain-closed subsets bfindexed by a sef, then
(Nic: Si is achain-closed subset 6f (Why?).

Consequently, if a propert®(z, y) determines a chain-closed subsefok E,
then the propertyz € D. P(x,y) determines a chain-closed subsetfbfThis is
because

{y e E|VeeD. P(z,y)} = ({y € E| P(d,y)}
deD

= N fa{(z.y) € Dx E| P(z,y)}
deD

4.4 Exercises 47

wheref; : D x E— D x FE is the continuous function such that(z, y) = (d, y)
for eachd € D.

In fact, any property built-up as a universal quantificatiwer several variables
of conjunctions and disjunctions of basic properties offtren f(x1,--- ,zr) C
g(xy, -+ x) of f(xy, -+ ,2k) = g(x1, - ,x;), Wwheref andg are continuous,
will determine a chain-closed subset of the product cpo @muate to the non-
quantified variables.

Note, however, that infinite unions of chain-closed subsetd not be chain-
closed; finite subsets are always chain complete but anpitnaions of them need
not be. Accordingly, we cannot in general build chain-ctbsebsets with existential
quantifications.

4.4 Exercises

Exercise 4.4.1. Answer all the “Why?”s above in the building of chain-closed
subsets.

Exercise 4.4.2.Give an example of a subsgtC D x D’ of a product cpo that is
not chain-closed, but which satisfies:

(@) foralld € D,{d" | (d,d") € S} is a chain-closed subset 6f; and
(b) foralld’ € D',{d | (d,d") € S} is a chain-closed subset 6f.

[Hint: considerD = D’ = , the cpo in Figure 1.]
(Compare this with the property of continuous functionsegiwn Slide 30.)

48

4 SCOTT INDUCTION

49

5 PCF

The language PCF (‘Programming Computable Functions’)ssmple functional
programming language that has been used extensively asarpéxlanguage in the
development of the theory of both denotational and opearatisemantics (and the
relationship between the two). Its syntax was introduce®aga Scottirca 1969
as part of a ‘Logic of Computable Functiohsind was studied as a programming
language in a highly influential paper by Plotkin (1977).

In this section we describe the syntax and operational secsaf the particular
version of PCF we use in these notes. In Section 6 we will s@ethaive it a
denotational semantics using domains and continuousifumct

5.1 Terms and types
Thetypes expressionsandtermsof the PCF language are defined on Slide 38.

PCF syntax

Types
T u=nat | bool | T — T

Expressions

M == 0| succ(M) | pred(M)
| true | false | zero(M)
| « | if M then M else M
| fnzx:7.M | MM | fix(M)

where x € V, an infinite set of variables.

Technicality : We identify expressions up to «-conversion of
bound variables (created by the fn expression-former): by
definition a PCF term is an cx-equivalence class of expressions.

Slide 38

The intended meaning of the various syntactic forms is devi@l.

e nat is the type of the natural numbefs,1,2, 3,.... In PCF these are gen-
erated from0) by repeated application of the successor operatianc(—),
whose intended meaning is to adldo its argument. The predecessor op-
erationpred(—) subtractsl from strictly positive natural numbers (and is
undefined ao).

This logic was the stimulus for the development of the ML laage and LCF system for
machine-assisted proofs by Milner, Gordeal—see Paulson 1987; Scott’s original work
was eventually published as Scott 1993.

50 5 PCF

e bhool is the type of booleansyue and false. The operatiorzero(—) tests
whether its argument is zero or strictly positive and resuue or false
accordingly. Theconditionalexpressiorif M; then M, else M3 behaves
like eitherM; or M3 depending upon whethér; evaluates térue or false
respectively.

e A PCF variable;x, stands for an unknown expression. PCF is a pure func-
tional language—there is no state that changes during ssiore evaluation
and in particular variables are ‘identifiers’ standing fofixed expression,
rather than ‘program variables’ whose contents may get teadtduring eval-
uation.

e 7 — 7' is the type of (partial) functions taking a single argumeintype =
and (possibly) returning a result of typé. fnx : 7. M is the notation we
will use for function abstraction (i.e. lambda abstracjionPCF; note that
the typer of the abstracted variable is given explicitly. The application
of function M, to argument)M; is indicated byM; M,. As usual, the
scope of a function abstraction extends as far to the righthefdot as
possible and function application associates to the left{i; M, M3 means
(Ml Mg) Mg, not M, (MQ Mg))

e The expressiorfix(M) indicates an element recursively definedby
x = M x. The lambda calculus equivalent¥sM, whereY is a suitable
fixpoint combinator.

5.2 Free variables, bound variables, and substitution

PCF contains one variable-binding form: free occurrendesio M become bound
infnx : 7.M. The finite set offree variablesof an expressionV, fv(M), is
defined by induction on its structure, as follows:

f0(0) = fo(true) = fu(false) < ¢

fo(succ(M)) = fuv(pred(M)) = fuv(zero(M)) = fu(fix(M)) = fo(M)

def

fu(if M then M’ else M") = fo(M) U fo(M') U fo(M")

def

fo(MM') = fo(M) U fo(M')
ful) € {z}
fo(fnz 7. M) % {2 € fo(M) | 2/ # z}.

One says thad/ is closedif fv(M) = () andopenotherwise.

5.3 Typing 51

As indicated on Slide 38, we will identifyv-convertible PCF expressions,
i.e. ones that differ only up to the names of their bound \|&s. Thus by definition,
a PCFtermis an equivalence class of PCF expressions for the equinaleation
of a-conversion. However, we will always refer to a term via samgresentative
expression, usually choosing one whose bound variableslladéestinct from each
other and from any other variables in the context in whichtdren is being used.
The operation o$ubstituting a term\/ for all free occurrences of a variablein a
term M’ will be written
M'[M/z].

The operation is carried out by textual substitution of apregsion representingy/
for free occurrences af in an expression representiidg’ whose binding variables
are distinct from the free variables i (thereby avoiding ‘capture’ of free variables
in M by binders inM").

5.3 Typing

PCF is a typed language: types are assigned to terms via [&teneshown on
Slide 39 whose intended meaning is “if eacte dom(I') has typel'(x), then M
has typer”.

PCF typing relation, I'+ M : 71

e ['is a type environment, i.e. a finite partial function mapping
variables to types (whose domain of definition is denoted
dom(T"))

e Misaterm

e T isatype.
Relation is inductively defined by the axioms and rules in Figure 2.
Notation:
M : 7 means M is closed and () = M : 7 holds.

PCF, ¥ (p | M 7).

Slide 39

52 5 PCF

(:0) I'-0: nat
Cance) I'-M: nat
e 'k succ(M) : nat

I'-M: nat
(:pred)

'+ pred(M) : nat

Core) I'-M: nat
e I' + zero(M) : bool
(:bool) 'k b:bool (b= true, false)
o) I'M;:bool T'H-My:7 T'EMs:T
‘if

I' - if M, then M; else M3 : 1
(:var) F'Fx:7 fzedom()&I(z)="1

Clxa—71]FM:7 _
(:fn) if z ¢ dom(T)
'kfnx:7. M :7— 7'

'-My:7—7 T'FMy:7

(:a)

- T+ M, My: 7'
'-M:7—r7

(:ﬁx)
MFfix(M): 7

In rule (:t,), I'[x — 7] denotes the type environment mapping « to = and
otherwise acting like T'.

Figure 2: Axioms and rules for PCF typing relation

5.3 Typing 53

Proposition 5.3.1.

(i) If T+ M : 7holds, therfu(M) C dom(T"). IfbothT' - M : randl' - M : 7/
hold, thenr = 7/. In particular a closed term has at most one type.

¥ r+=mM™M:7andIl'[z — 7] F M : 7" both hold, then so does
' M[M/x]: 1.

Proof. These properties of the inductively defined typing relaaom easily proved
by rule induction. The fact that a term has at most one typa fgiven assignment
of types to its free variables relies upon the fact that typielsound variables are
given explicitly in function abstractions. 0

Example 5.3.2(Patrtial recursive functions in PCFAIthough the PCF syntax is
rather terse, the combination of increment, decrement, fteszero, condition-

als, function abstraction and application, and fixpointuremn makes it Turing
expressive—in the sense that all partial recursive funstican be coded. For ex-
ample, recall that the partial functidn: N x N — N defined byprimitive recursion

from f : N—Nandg : N x N x N — N satisfies that for alt, y € N

h(z,0) = f(=)
h(z,y+1) =g(z,y, h(z,y)).

Thus if f has been coded in PCF by a tetfh : nat — nat and g by a term
G : nat — (nat — (nat — nat)), thenh can be coded by

oY fix(fn h : nat — (nat — nat) . fnzx: nat .oy : nat.

if zero(y) then Fz else Gzy(hxy)).

Apart from primitive recursion, the other construction ded for defining partial
recursive functions isninimisation For example, the partial function : N — N
defined fromk : N x N — N by minimisation satisfies that for all € N

m(z) = leasty > 0 such that:(z,y) = 0 and
V2.0 <z <y= k(z,z) > 0.

This can also be expressed using fixpoints, although not sdyeas in the
case of primitive recursion. For it has been coded in PCF by a term
K : nat — (nat — nat), then in factm can be coded a$nz : nat.M'z0
where

M fix(fnm' : nat — (nat — nat) .fnz : nat . fny : nat .

if zero(K z y) then y else m' z succ(y)).

!See the Part IB course @omputation Theory.

54 5 PCF

5.4 Evaluation

We give the operational semantics of PCF in terms of an ingelgtdefined relation
of evaluation whose form is shown on Slide 40. As indicateztehthe results of
evaluation are PCF terms of a particular form, caNedues(and sometimes also
called ‘canonical forms’). The only values of typeol aretrue andfalse. The
values of typenat are unary representations of natural numbengc™(0) (n € N),
where

succ’(0) o

succ™1(0) X succ(succ’(0)).

Values at function types, being function abstractidasc : 7.M, are more

‘intensional’ than those at the ground data types, sincbdldg M/ is an unevaluated
PCF term. The axioms and rules for generating the evaluatiation are given in

Figure 3.

PCF evaluation relation

takes the form

M.V

-
where

e T is aPCF type

e M,V € PCEF are closed PCF terms of type T

e Visavalue,
V =0 |succ(V) | true | false | fnz : 7. M.

The evaluation relation is inductively defined by the axioms and
rules in Figure 3.

Slide 40

Proposition 5.4.1. Evaluation in PCF is deterministic: if both/ || .V andM |V’
hold, thenV = V.

Proof. By rule induction: one shows that
{(M, 7, V) [My, VE&EW (M, V' =V=V)}

is closed under the axioms and rules definingVe omit the details. O

5.4 Evaluation

55

(Uval)

(U/SUCC)

(Upred)

(Uzerol)

(UzerOQ)

($if1)

(Vig2)

(Ucbn)

(ax)

VI,V (Vavalue of type 7)
M llnat V

succ(M) |,,,; succ(V)
M}, succ(V)

pred(M) 4, V
M ‘Unat 0

zero(M) |},,,; true

M, succ(V)

zero(M) |},,,; false
My Yy true My ||V

if M, then M else M3 ||V
My Yy, false M3zl V

if M, then M else M3 ||V

My, fnx:7.M{ M{[My/z]|. .V
My Ms |,V
M fix(M) |, V
fix(M) {, V

Figure 3: Axioms and rules for PCF evaluation

56 5 PCF

Example 5.4.2. The proposition shows that every closed typeable term atedito
at most one value. Of course there are some typeable termnddhment evaluate to
anything. We writeM J{_ iff M : 7 and AV. M |} V. Then for example

Q¢ fix(fnz: 7.12)

satisfiex(2. §.. (For if for someV there were a proof ofix(fnz : 7.x) |, V,
choose one of minimal height. This proof, calfAt must look like

(Uval) P’

fmz:7.zfme:7.2 fix(fnz:7.2) | V
(fnz:7.2)(fix(fnz:7.2) |V
fix(fnz:7.2) 4V

(Ucbn)

(Vax)

whereP’ is a strictly shorter proof ofix(fnz : 7.x) |, V, which contradicts the
minimality of P.)

Remark 5.4.3. PCF evaluation can be defined in terms of a ‘one-step’ triansit
relation. Let the relatiol/ — . M’ (for M, M’ € PCF,) be inductively defined
by the axioms and rules in Figure 4. Then one can show that Ifor and
M,V € PCF, with V avalue

M,V & M(—,)V

where(—)* denotes the reflexive-transitive closure of the relation.

5.4 Evaluation 57

M —pae M (where op = succ, pred & T = nat,
op(M) —, op(M’) or op = zero & 7 = bool)

pred(succ(V)) —nqt V' (V avalue of type nat)

zero(0) —pe; true

zero(succ(V)) —400 false (V' avalue of type nat)
My —poot M

if M; then M, else M35 —, if M| then M else Mj3

if true then M, else My —, M;

if false then M; else My —, M>
My —7 . My

My My — 1 M{ My

(fnx : T.Ml) M2 — ! Ml[Mg/ZL‘]

fix(M) —,. M fix(M)

Figure 4: Axioms and rules for PCF transition relation

58 5 PCF

5.5 Contextual equivalence

Contextual equivalence

Two phrases of a programming language are contextually
equivalent if any occurrences of the first phrase in a

complete program can be replaced by the second phrase

without affecting the observable results of executing the

program.

Slide 41

Slide 41 recalls (from the CST Part IB course ®®@mantics of Programming
Languages the general notion of contextual equivalence of phrasasprogram-
ming language. It is really a family of notions, parametedidy the particular
choices one takes for what constitutes a ‘program’ in thguage and what are the
‘observable results’ of executing such programs. For PG§ liéasonable to take
the programs to be closed terms of type or bool and to observe the values that
result from evaluating such terms. This leads to the dedinigiven on Slide 42.

5.5 Contextual equivalence 59

Contextual equivalence of PCF terms

Given PCF terms M, M>, PCF type T, and a type

environment I', the relation | I' = M7 = Mo @ 7
is defined to hold iff

e Both the typingsI' = M7 : 7and I' = M5 : 7 hold.

e For all PCF contexts C for which C[M;] and C[M>] are
closed terms of type 7y, where v = nat or v = bool,
and for all values V' : 7,

C[Ml] U,y V & C[MQ] U’Y V.

Slide 42

Definition 5.5.1 (Contexts) The notationC[M] used on Slide 42 indicates a PCF
term containing occurrences of a teth, and therC[M’] is the term that results
from replacing these occurrences By’. More precisely, thePCF contextsare
generated by the grammar for PCF expressions augmentedebgythbol “’
representing a place, or ‘hole’ that can be filled with a PGkte

C :=—]0|succ(C) | pred(C) | zero(C) | true | false
|if CthenCelseC |z |fnz:7.C|CC|fix(C)

Given such a context,! we write C[M] for the PCF expression that results from
replacing all the occurrences ef in C by M. This form of substitution may well
involve the capture of free variables M by binders inC. For example, ifC is
fnz : 7.—, thenC[z] isfnz : 7.2. Nevertheless it is possible to show that if
M and M’ are a-convertible then so aré[M] andC[M']. Hence the operation
on PCF expressions sendifg to C[M] induces a well-defined operation on PCF
terms(= a-equivalence classes of expressions).

Y1t is common practice to writ€[—] instead ofC to indicate the symbol being used to
mark the *holes’ inC.

60 5 PCF

Notation 5.5.2. For closed PCF terms, we write
Ml gc‘cx M2 T
fOr(ZH_Ml >oix Mo T,

Although =, is a natural notion of semantic equivalence for PCF given its
operational semantics, itis hard to work with, because®tithiversal quantification
over contexts that occurs in the definition.

5.6 Denotational semantics

We aim to give a denotational semantics to PCF that is cortipoal (cf. Slide 2)
and that matches its operational semantics. These regemtsnare made more
precise on Slide 43.

PCF denotational semantics — aims

e PCFtypes 7 +— domains [7].

e Closed PCFterms M : 7 +— elements [M] € [r].

Denotations of open terms will be continuous functions.

e Compositionality .
In particular: [M] = [M'] = [C[M]] = [C[M].

e Soundness.
Foranytype 7, M |}, V = [M] = [V].

e Adequacy.
For 7 = bool or nat, [M] = [V] € [r] = M|, V.

Slide 43

The soundnesandadequacyproperties make precise the connection between
the operational and denotational semantics for which weemnéng. Note that the
adequacy property only involves the ‘ground’ datatypes and bool. One cannot
expect such a property to hold at function types becauseedfritensional’ nature
of values at such types (mentioned above). Indeed such auacke property at
function types would contradict the compositionality andisdness properties we
want for[—], as the following example shows.

5.6 Denotational semantics 61

Example 5.6.1. Consider the following two PCF value terms of typet — nat:

Vg nat.(fny: nat.y)0 and V' “ fnx: nat . 0.

NOWV f, ina V' SINCEDY () Vot nat V' # V' @and by Proposition 5.4.1
evaluation is deterministic. However, the soundness antpositionality proper-
ties of[—] imply that[V] = [V’]. For using () and (}..,,,) we have

(fny: nat.y)04,,,. 0.

So by soundnesffny : nat.y)0] = [0]. Therefore by compositionality for
C[-] © tn 2 : nat. — we have

cbn

[Cl(fny : nat.y) 0]] = [C[0]]
ie.[V]=[V]. O

As the theorem stated on Slide 44 shows, if we have a denoghts@mantics
of PCF satisfying the properties on Slide 43, we can use istal#ish instances
of contextual equivalence by showing that terms have egelabthtion. In many
cases this is an easier task than proving contextual egmegaldirectly from the
definition. The theorem on Slide 44 generalises to open terfike continuous
functions that are the denotations of two open terms (of &ineestype for some type
environment) are equal, then the terms are contextuallivakgnt.

Theorem. For all types 7 and closed terms M, My € PCF,
if [M1] and [Mz] are equal elements of the domain [7], then
M1 gctx M2 LT,

Proof.

CIMi] U0t V = [C[Mi]] = [V] (soundness)

= [C[M2]] = [V] (compositionality
on [M1] = [Ms])

= C[Ma] U0t V' (adequacy)

and symmetrically. O

Slide 44

62 5 PCF

Proof principle

To prove
M1 gctx MQ . T

it suffices to establish

[Mi] = [Mz]in 7]

The proof principle is sound, but is it complete? That is,
is equality in the denotational model also a necessary
condition for contextual equivalence?

Slide 45

5.7 Exercises
Exercise 5.7.1.Carry out the suggested proof of Proposition 5.4.1.

Exercise 5.7.2.Recall that Church’s fixpoint combinator in the untyped laiab

calculus isY & A .(Ax. f(xx)) (A\z. f(zx)). Show that there are no PCF
typesri, 72, 73 SO that the typing relation

PEfnf:m.(nx:m. f(xzx))(nx: . f(xx)): 73

is provable from the axioms and rules in Figure 2.

5.7 Exercises 63

Exercise 5.7.3.Define the following PCF terms:

plus & fix(fnp : nat — (nat — nat) .fnx : nat . fny : nat.

if zero(y) then z else succ(p z pred(y)))

times % fix(fnt : nat — (nat — nat) .fnzx : nat . fny : nat .

if zero(y) then 0 else plus (t z pred(y)) x)

fact def fix(fn f : nat — nat . fnx : nat .

if zero(z) then succ(0) else times z(f pred(zx))).
Show by induction om € N that for allm € N

plus succ™(0) succ™(0) |,,,; succ™"(0)

times succ™(0) succ™(0) |,,,, succ™"(0)

fact succ™(0) |,,,; succ™(0).

64

5 PCF

65

6 Denotational Semantics of PCF

We turn now to the task of showing that PCF has a denotati@mahatics with the
properties of compositionality, soundness, and adequacy.

Denotational semantics of PCF

To every typing judgement
'-M:rt
we associate a continuous function
[T+ M] - [T] — [r]

between domains.

Slide 46

6.1 Denotation of types

For each PCF type, we define a domaifir] by induction on the structure of as
on Slide 47.

66 6 DENOTATIONAL SEMANTICS OF PCF

Denotational semantics of PCF types

def

[nat] = N (flat domain)
[bool] B, (flat domain)
[t — 7"]]d§f [7] — [] (function domain).

where N = {0,1,2,... } and B = {true, false}.

Slide 47

6.2 Denotation of terms

For each PCF termd/ and type environmerit, recall from Proposition 5.3.1 that
there is at most one type for which the typing relatioi” - M : 7 is derivable
from the axioms and rules in Figure 2. We only give a denotaiGgemantics to
such typeable terms. Specifically, given sudhandI’, we will define a continuous
function between domains

(8) [T M]: [T —[7]

wherer is the type for whichl' = M : 7 holds, and wheréI'] is the following
dependent product domain (see Definition 3.2.3):

9) e I @l

xe€dom(T")

The elements of the domain (9) will be callédenvironments they are func-
tions p mapping each variable in the domain of definition of® to an element
p(x) € [I'(z)] in the domain which is the denotation of the typer) assigned ta:
by the type environmerit.

6.2 Denotation of terms

Denotational semantics of PCF type environments

] def [Licaomr [T'(z)] (T-environments)

= the domain of partial functions p from variables
to domains such that dom(p) = dom(I") and
p(x) € [T'(x)] forall 2z € dom(T")

Example:

1. For the empty type environment (),
[Pl ={L}

where _L denotes the unique partial function with
dom(L) = 1.

Slide 48

2. [(a—1n] = ({z} = [7]) = [7]
3.
[[<g;'1|—>T1,...,JIn'—>Tn>]]
~ ({z1}—=[n]) x ... x {zn} — [m])

> [r] x ... x [m]

67

Slide 49

68 6 DENOTATIONAL SEMANTICS OF PCF

The continuous function (8) is defined by induction on thedtire of M, or
equivalently, by induction on the derivation of the typirgdationI" - M : 7. The
definition is given on Slides 50-54, where we show the efféetagh function on a
I'-environmentp.

Denotational semantics of PCF terms, |

[T+ 0](p) & 0 € [nat]

[T - true](p) © true € [bool]

[T + false](p) def false € [bool]

[P+ 2](p)= p(z) € [P@] (v € dom(D))

Slide 50

6.2 Denotation of terms

Denotational semantics of PCF terms, Il

[[' = suce(M)](p)

aot [[TFM](p)+1 [T+ M](p) # L
L it [T - M](p) = L
[T pred(M)](p)

det) [I'EM](p) =1 i [I' M](p)
L it [[' = M](p)

v

0
0

F

true it [I' = M](p)

[T F zero(M)](p) % { false i [T - M](p)

0
0
1 if [M](p) =L

v

Slide 51

Denotational semantics of PCF terms, Ill

[T+ if M7 then M, else Ms](p)

f [T+ Ms](p) if [T+ Mi](p) = true
= [T+ Ms](p) [T+ Mi](p) = false

1 if [[' = Mi](p) = L

[T+ My Ma](p) = ([T F Mi](p)) (IT - Ma](p))

Slide 52

69

70

6 DENOTATIONAL SEMANTICS OF PCF

Denotational semantics of PCF terms, IV

[T'Ffnx:7.M](p)

def

(z ¢ dom(T")
= M € [7].[T[z — 7] F M](plx — d])

NB: p[z +— d] € [I'[x > 7]] is the function mapping z to d € 7]
and otherwise acting like p.

Slide 53

Denotational semantics of PCF terms, V

[T+ fix(M)](p) & fiz([T + M](p))

Recall that fiz is the function assigning least fixed points to continuous
functions.

Slide 54

6.2 Denotation of terms 71

Denotational semantics of PCF

Proposition. For all typing judgements I' = M : 7, the
denotation

[C'FM]:[T] — [7]

is a well-defined continous function.

Slide 55

[T' = M] : [T] — [r] is a well-defined continuous function because the base
cases of the definition (on Slide 50) are continuous funstemmd at each induction
step, in giving the denotation of a compound phrase in terintiseodenotations of
its immediate subphrases, we make use of constructionsmpieg continuity—as
we now indicate.

0, true, and false: The denotation of these terms (Slide 50) are all functions
that are constantly equal to a particular value. We notedkamfiple 2.3.8 that such
functions are continuous.

variables: The denotation of a variable (Slide 50) is a projection fiorct We
noted in Definition 3.2.3 that such functions are continydaecause of the way
lubs are computed componentwise in dependent product dsmai

succ, pred, and zero: We need to make use of the fact that composition of
functions preserves continuity—see the Proposition oeS32. We leave its proof
as a simple exercise. In particular, the denotatioswdc(M/) (Slide 51) is the
composition

S| © [[F H M]]

where by induction hypothesf§ - M] : [I'] — N is a continuous function, and
wheres | : N; — N is the continuous function on the flat dom&in induced, as

72 6 DENOTATIONAL SEMANTICS OF PCF

in Proposition 3.1.1, by the function: N — N mapping each. ton + 1.
Similarly

[T+ pred(M)] =py oI+ M]and[l' - zero(M)] =z, o [I' - M],

for suitable function® : N —~ N andz : N—B. (Only p is a properly partial
function, undefined ai; s andz are totally defined functions.)

conditional: By induction hypothesis we have continuous functifpfis- M;] :

[T] = B,, [& M] : [I] — [7], and [I" = Ms] : [I'] — [r]. Then
[T+ if M; then M; else M3] is continuous because we can express the defini-
tion on Slide 52 in terms of composition, the pairing openatf Proposition 3.2.1,
and the continuous functiarB, x ([r] x [r]) — [r] of Proposition 3.2.2:

[T if M; then M, else Ms] = if o ([I' = M;], ([T’ F Ms], [T+ Ms])).

application: By induction hypothesis we have continuous functifpfis- M;] :
IT] — ([r] = [7']) and[I" F Ms] : [I'] — [7]. Then[I' = M; Ms] is continuous
because we can express the definition on Slide 52 in termswbasition, pairing,
and the evaluation functiotv : ([7]—[7']) x [7] —[7'] that we proved continuous
in Proposition 3.3.1:

[[F H M1 MQ]] = €ev o <[[F F Ml]], [[F F MQ]])

function abstraction: By induction hypothesis we have a continuous function
[Cx +— 7] = M] : [[[z — 7]] — [7'] with ¢ dom(T"). Note that eacl’[z — 7]-
environmentp’ € [I'[x — 7]], can be uniquely expressed@s — d|, wherep is

the restriction of the functiop’ to dom(T") and wherel = p’(x); furthermore the
partial order respects this decompositiphfz — di] C pa[z — da]in [I'[z — 7]

iff p1 C poin [I'] andd; T ds in [7]. Thus we can identif{I"[z — 7]] with
the binary product domaifT’] x [7]. So we can apply the ‘Currying’ operation of
Proposition 3.3.1 to obtain a continuous function

cur([Tle — 7] = M]) : [IT — ([r] = ['D=[r — 7.

But this is precisely the function used to defifie- fnz : 7. M] on Slide 53.

fixpoints: By induction hypothesis we have a continuous funcfjion- M| :
[T']—[r—7]. Now [r—7] is the function domaiifir] — 7] and from the definition
on Slide 53 we have thdl" - fix(M)] = fiz o [I' = M] is the composition with
the functionfiz : ([r] — [r]) — [r] assigning least fixpoints, which we proved
continuous in the Proposition on Slide 33.

6.3 Compositionality 73

Denotations of closed terms

If M € PCF,, then by definition) = M : 7 holds, so we get
[0+ M] - [0] — [7].

When I" = (), the only I"-environment is the totally undefined
partial function—call it L.

So in this case [I'] is a one-element domain, { L }. Continuous
functions f : { L} — D are in bijection with elements f(L) € D, and
in particular we can identify the denotation of closed PCF terms with
elements of the domain denoting their type:

[M] € [0 M)(L) e [r] (M € PCF,)

Slide 56

6.3 Compositionality

The fact that the denotational semantics of PCF ternt®mpositionati.e. that
the denotation of a compound term is a function of the deimstaibf its immediate
subterms—is part and parcel of the definition[®f - A/] by induction on the
structure of M. So in particular, each of the ways of constructing terms @GP
respects equality of denotations: this is summarised inr€i§. Then the property
of closed terms stated on Slide 44&z.

[M] = [M] = [C[M]] = [C[M"]]

follows from this by induction on the structure of the corté€k-|. More generally,
for open terms we have

Proposition 6.3.1. Suppose
[TEM]=[CFMT:[T]—][]

and thatC[—] is a PCF context such that - C[M] : 7" andI” + C[M'] : 7/ hold
for some some typ€ and some type environmdnt Then

[T+ C[M]] = [T FC[MT] : [T] — [7']-

74 6 DENOTATIONAL SEMANTICS OF PCF

o If [T+ M] =[T+ M]:[I] — [nat], then
[['Fop(M)] =[I'Fop(M)]: [I]— [7]

(where op = succ, pred and T = nat, or op = zero and 7 = bool).

o If [= Mi] = [T F M{] : [T] — [bool], [T + My] = [T + Mj] :
[T] — [7], and [T - Ms] = [T+ M3] : [T'] — [7], then

[T+ if M; then M; else M3] = [F if M| then M) else Mj] : [T].

e f[CHM]=[CFM]:[I]—[r—7]and [['+ My] =T+ Mj] :
[T] — [7], then

[T'F My Mo = [I'F My Ms] : [T] — [7].
o If [Tz — 7|k M] =[x~ 7] M : [z~ 7]] — ['], then
[CEz:7. M]=[Tkfx:7.M]:[T]—[r—7].
o If[TFM]=["FMY]:[I]— [r—] then

[T+ fix(M)] = [T + fix(M')] : [T] — [7]-

Figure 5: Compositionality properties of [—]

6.4 Soundness 75

Substitution property of [[—]]

Proposition. Suppose

I'=M:T1
[lz— 7M1

(so that by Proposition 5.3.1(ii) we also have
I'F M'[M/x]: 7). Thenforall p € [I']

[T FM'[M/x]](p) =
[C[x — 7] = M'](plx — [T+ M]]).

In particularwhen I' = (), [x — 7 M'] : [r] — [7'] and

[M'[M/]] =[x — 7= M]([M])

Slide 57

The substitution property stated on Slide 57 gives anotseeet of the compo-
sitional nature of the denotational semantics of PCF. Itlmaproved by induction
on the structure of the terd/’.

6.4 Soundness

The second of the aims mentioned on Slide 43 is to show thatldssed PCF term
M evaluates to a valug in the operational semantics, th&handl” have the same
denotation.

Theorem 6.4.1. For all PCF typesr and all closed termd/, V € PCF, withV a
value, ifM |}, V is derivable from the axioms and rules in Figu8¢hen[M] and
[V] are equal elements of the domdit].

Proof. One uses Rule Induction for the inductively defined relatjo®pecifically,
defining

o(M,7,V) € [M] =[V] €[]
one shows that the property(M, 7,V) is closed under the axioms and rules in
Figure 3. We give the argument for ruleig{,) and (}5,), and leave the others as
easy exercises.

76 6 DENOTATIONAL SEMANTICS OF PCF

Case (J.,,)- Suppose

(10) [Mi] = [fnzx: 7. Mj] € [t — 7]
(11) [M{[M/2]] = [V] € [7'].

We have to prove thdtM; Ms] = [V] € [7]. But

[M; Mz]] My ([M2]) by Slide 52

fmx:7. Ml]]([[Mg]]) by (10)
M e [r]. [[:(: — 7 F MI](d)([M2]) by Slide 53

M [Ms/2]] by Slide 57
V]] by (11).

Case (l4,). Suppose
(12) [M fix(M)] = [V] € [7].

We have to prove thdffix(M)] = [V] € [r]. But

[fix(M)] = fiz([M]) by Slide 53
= [M](fix([M])) by fixed point property ofix
= [M] [fix(M)] by Slide 53
= [M fix(M)] by Slide 52
= [V] by (12).

O

We have now established two of the three properties of theotdéonal
semantics of PCF stated on Slide 43 (and which in particulamaeded to use
denotational equality to prove PCF contextual equivalencé&he third property,
adequacyis not so easy to prove as are the first two. We postpone thad pril
we have introduced a useful principle of induction tailotedeasoning about least
fixed points. This is the subject of the next section.

6.5 Exercises
Exercise 6.5.1.Prove the Proposition on Slide 57.

Exercise 6.5.2.Defining 2, ﬁx(fnx : 7.x), show that]Q2,] is the least
elementL of the domain[r]. Deduce thaffnz : 7. Q] = [Q,—.].

77

7 Relating Denotational and Operational Semantics

We have already seen (in Section 6.4) that the denotatienastics of PCF given
in Section 6 issoundfor the operational semantics, in the sense defined on Slide 4
Here we prove the property addequacydefined on that slide. So we have to prove
for any closed PCF term&/ andV of typer = nat or bool with V' a value, that

M]=[V] = M, V.

Perhaps surprisingly, this is not easy to prove. We will g method due to
Plotkin (although not quite the one used in his original papwePCF, Plotkin 1977)
and Mulmuley (1987) making use of the following notion ofrifilal approximation’
relations.

Adequacy

For any closed PCF terms M and V' of ground type
v € {nat, bool} with V" a value

Ml =[VIel] = MU, V.

NB. Adequacy does not hold at function types:
fnz:7.(fny:7.y)z] = [x:7.2] :[r] — [7]

but
fmr:7.(fny:ry)z f,, 72

Slide 58

7.1 Formal approximation relations
We define a certain family of binary relations
<4, C [r] x PCF,

indexed by the PCF types, Thus each«, relates elements of the domdin] to
closed PCF terms of type. We use infix notation and writé <, M instead of
(d, M) € <.. The definition of these relations, proceedsy induction on the

78 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

structure of the type and is given on Slide 59. (Read the definition in conjunction
with the definition of|r] given on Slide 47.)

The key property of the relations.- is that they are respected by the various
syntax-forming operations of the PCF language. This is sachmp by the
Proposition on Slide 60 which makes use of the following teotogy.

Definition 7.1.1. For each typing environmetit (= a finite partial function from
variables to PCF types), B-substitutiono is a function mapping each variable
x € dom(T") to a closed PCF term(x) of typeI'(z). Recall from Section 6.2 that
al-environment is a function mapping each variabtec dom(T") to an element
p(z) of the domainI'(x)]. We define

p<r o Y vy e dom(T') . p(z) <r(z) o(7).

Definiionof d <1 M (d € [r], M € PCF;)

d<pa M ¥ (deN = M, succ?(0))

d <ot M & (d = true = M |, true)

& (d = false = M |4, false)

—h

d<r_; M gVe,N(e <dr N = d(e) < M N)

Slide 59

7.1 Formal approximation relations 79

Fundamental property of the relations <,

Proposition. IfI' = M : 7 is a valid PCF typing, then for all
I'-environments p and all I'-substitutions o

p<ro = [['F M](p) <, M[o]

e p <Ir 0 means that p(z) <Ip() o(x) holds for each
x € dom(I).

e Mo]is the PCF term resulting from the simultaneous substitution
of o(z) for z in M, each z € dom(T).

Slide 60

Note that the Fundamental Property<of given on Slide 60 specialises in case
I' = () to give
M) < M

for all typest and all closed PCF term¥ : 7. (Here we are using the notation for
denotations of closed terms introduced on Slide 56.) Udimg tve can complete
the proof of the adequacy property, as shown on Slide 61.

80 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

Proofof [M] =[V] = M|,V (7= nat, bool)

Case 7 = nat.
V' = succ™(0) for some n € N and hence
[M] = [succ™(0)]
= n = [[M]] <r M by Fundamental Property (Slide 60)
= M |} succ™(0) by definition of <J,,q¢

Case 7 = bool is similar.

Slide 61

7.2 Proof of the Fundamental Property of<

To prove the Proposition on Slide 60 we need the followingprtes of the formal
approximation relations.

Lemma 7.2.1.

(i) L <, M holds forallM € PCF...

(i) ForeachM € PCF,, {d | d <, M} is a chain-closed subset of the domain
[7]. Hence by (i), it is also an admissible subset (cf. Side

(lll) If dg C dl, d1 <1, Ml, andvV (Ml UT V = M2 UT V), thendg < Mg.

Proof. Each of these properties follows easily by induction on tinecsure ofr,
using the definitions of1, and of the evaluation relatial. .]

Proof of the Proposition on Slidg0 [NON-EXAMINABLE] . We use Rule In-
duction for the inductively defined typing relatidn M : 7. Define

ST, M,7) L THM: 7 & V0 (p<ro = [T+ M](p) <» M[o])

Then it suffices to show thak is closed under the axioms and rules in Figure 2
inductively defining the typing relation.

7.2 Proof of the Fundamental Property<of 81

Case (y). @(I',0, nat) holds because <,,,; 0.

Case (succ)- We have to prove thad(I', M, nat) implies (', succ(M), nat).
But this follows from the easily verified fact that

d <pat M = s1(d) <pat succ(M)

wheres | : N; — N, is the continuous function used in Section 6.2 to describe th
denotation of successor termssicc(M).

Cases {yrea) and (:,ero) are similar to the previous case.

Case (hoo1). P(T, true, bool) holds becauseérue <., true. Similarly for
o (T, false, bool).

Case (ir). It suffices to show that itly <1p00; M1, do < My, andds <1, Ms,
then

(13) Zf(dl, (dg, dg)) <, if M; then M5 else M3

whereif is the continuous functionB | x ([7] x [r]) — [r] of Proposition 3.2.2
that was used in Section 6.2 to describe the denotation dittonal terms. If
dy = 1L € By, thenif(dy, (d2,d3)) = L and (13) holds by Lemma 7.2.1(i). So we
may assume; # L, in which case eithed, = true ord; = false. We consider
the casel; = true; the argument for the other case is similar.

Sincetrue = di <poo; M1, by the definition of<,,,; (Slide 59) we have
My p,0; true. It follows from rule (i) in Figure 3 that

YV (M3, V = if M; then M, else M3 | V).
So Lemma 7.2.1(iii) applied td, <1, M- yields that
do <, if M7 then M; else M3

and then sincésy = if (true, (ds, d3)) = if (d1, (dz, d3)), we get (13), as required.

Case {yar). @(I',z,I'(z)) holds because i <ir o, then for allz € dom(I") we

have[l' t 2](p) = p(z) <) o(z) < @lo].

Case (). Supposeb(I'[x — 7|, M, ') andp <r o hold. We have to show that
[TFfx:7.M](p) <rer (fnz:7.M)[o],i.e. thatd <, N implies

(14) [TFfz:7.M](p)(d) < (fnzx:7.M)[o])N.

82 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

From Slide 53 we have
(15) [CFfz: 7. M](p)(d) = [Tz — 7] - M](p[x — d]).

Since(fnz : 7. M)[o]| = fnz : 7. M|[o] and(M|o])[N/z] = M[o[x — N]], by
rule (.,,,) in Figure 3 we have

(16) YV (Mlojz— N4,V = ((fnz:7.M)[o])N . V).

Sincep <r o andd <, N, we haveplr — d| <rjg, o[z — NJ]; so by
O([[x +— 7], M, ") we have

[C[z — 7] = M](plz = d]) 9w Mlofz — NJ|.

Then (14) follows from this by applying Lemma 7.2.1(iii) thS) and (16).

Case (.pp). It suffices to show that itl; <, M; anddy <, Ms, then
dy(ds) <7+ My M. But this follows immediately from the definition &, /.

Case (sx). Supposed(I', M, — 7) holds. For any <ir o, we have to prove
that
(17) [T - fix(M)](p) < fix(M)[o].

def

Referring to Slide 53, we havg@® + fix(M)](p) = fiz(f), wheref = [I'
M](p). By Lemma 7.2.1(ii)

S € {d|d <, fix(M)[o]}

is an admissible subset of the domdir]. So by Scott's Fixed Point Induction
Principle (Slide 35) to prove (17) it suffices to prove

Vde[r] (de S = f(d)eS).

Now sincep <ir o, by ®(I', M, — 7) and by definition off we havef <._..
Mlo]. Soifd € S,i.e.d <, fix(M)|o], then by definition oki,_, ., it is the case
that

(18) f(d) - (M[o])(fix(M)][o]).
Rule () in Figure 3 implies

(19) W (M[o))(Bx(M)[o]) I, V = fix(M)[o] 4, V).

T

Then applying Lemma 7.2.1(jii) to (18) and (19) yield$d) <, fix(M)[o],
i.e. f(d) € S, as required. O

7.3 Extensionality 83

7.3 Extensionality

Recall the notion of contextual equivalence of PCF termsnfislide 42. The
contextual preorders the one-sided version of this relation defined on Slide 62.
Clearly

F"MlgctnglT = (F"MlgctnglT & F"MQSCtXMllT).

As usual we writeM; <.y Mo : 7for) = My <. Mo : 7 in caseM; and M,

are closed terms.
The formal approximation relations. actually characterise the PCF contextual

preorder between closed terms, in the sense shown on Slide 63

Contextual preorder between PCF terms

Given PCF terms M, M>, PCF type 7, and a type environment
I', the relation | I' = M7 <.ix M5 : 7 |is defined to hold iff

e Both the typingsI' = M7 : 7and I' = M5 : 7 hold.

e For all PCF contexts C for which C[M;] and C[M3] are
closed terms of type 7y, where v = nat or v = bool,
and for all values V' : v,

CIMi) I,V = C[Ms] |, V.

Slide 62

84 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

Contextual preorder from formal approximation

Proposition. For all PCF types 7 and all closed terms

Ml,MQ € PCFT
My <¢ix Mo : 7 & [Mi] < Mo.

Slide 63

Proof of the Proposition on Slid&3. It is not hard to prove that for closed terms
My, My € PCF,, My <.x M : 7 holds if and only if for allM € PCF,_ po0;

M My oo, true = M My), true.

Now if [M;] < Ms, then for anyM € PCF._ ., Since by the Fundamental
Property of< we have[M| <1, 001 M, the definition of<i;_, ;,,; implies that

(20) [M M,] = [M]([Mi]) <ot M Mo,

So if M My {4,,; true, then[M M;] = true (by the Soundness property) and
hence by definition okiy,,; from (20) we getM Ms |,,,; true. Thus using the
characterisation o£ .., mentioned above, we hawd; <. My : T.

This establishes the right-to-left implication on Slide &8r the converse, it is
enough to prove

(21) (d <, My & My <.ix Mo : 7‘) = d <, M.

For then if M, <. M, : 7, since[M;] <, M; (by the Fundamental Property),
(21) implies[M;] <, M,. Property (21) follows by induction on the structure of
the typer, using the following easily verified properties 6f.:

7.3 Extensionality 85

e If 7 = nat or bool, thenM; <. My : 7 implies
YWoer (M, V = My, V).
o If My <i.ix My:7— 7', thenM; M < x Mo M : 7/, forall M : .

O

The bi-implication on Slide 63 allows us to transfer the esienality properties
enjoyed by the domain partial orders to the contextual preorder, as shown on
Slide 64. (These kind of properties of PCF were first provediyner 1977, First
Context Lemma, page 6.)

Extensionality properties of < ¢x

For 7 = bool or nat, My <.ix Mo : 7 holds if and only if
VV:T(MllLTV = leLTV).
At a function type 7 — 7/, M1 <¢ix Mo : T — 7' holds if and

only if
VM 7 (My M < Mo M 2 7).

Slide 64

Proof of the properties on Slid&. The ‘only if’ directions are easy consequences
of the definition of< .
For the ‘if’ direction in caser = bool or nat, we have

[Mi]=[V]= M|,V by the adequacy property
=M.V by assumption

and hencdM;] <1, M by definition of< at these ground types. Now apply the
Proposition on Slide 63.

86 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

For the ‘if’ direction in case of a function type— 7', we have

d <. M = [Mi](d) <. My M since[M;] <. M,
= [[Ml]](d) <l M2 M by (21), SinCEZWl M <ctx M2 M : T,
by assumption

and hencdM;] <._.. M, by definition of< at typer — 7’. So once again we
can apply the Proposition on Slide 63 to get the desired cgrarh.]

7.4 EXxercises

Exercise 7.4.1.For any PCF type and any closed term&l,, My € PCF,, show
that

(22) VVIT(M1U7V<:>M2UTV) = M; Zex My T
[Hint: combine the Proposition on Slide 63 with Lemma 7.Ri)I|

Exercise 7.4.2.Use (22) to show thati-conversion is valid up to contextual
equivalence in PCF, in the sense that forfallz : r.M; € PCF,._, and
Ms € PCF -

(fnz:7.M) My Zx Mi[My/x]: 7"

Exercise 7.4.3.Is the converse of (22) valid at all types? [Hint: recall the
extensionality property of., at function types (Slide 64) and consider the terms
fix(fn f : (nat—nat) . f)andfnx : nat . fix(fnz’ : nat . 2") of typenat — nat.]

87

8 Full Abstraction

8.1 Failure of full abstraction

As we saw on Slide 44, the adequacy property implies thatestmdl equivalence
of two PCF terms can be proved by showing that they have equabtdtions:
[M] = [M2] € [r] = M; =ux My : 7. Unfortunately the converse is
false:there are contextually equivalence PCF terms with uneqaabthations.

Proof principle

For all types 7 and closed terms M7, My € PCF .,

[[Ml]] = IIMQ]] in [[T]] — M Zex Mo 7.

Hence, to prove
M1 gctx MQ . T

it suffices to establish

[M] = [M2] in 7] .

Slide 65

88

8 FULL ABSTRACTION

Full abstraction

A denotational model is said to be fully abstract whenever denota-
tional equality characterises contextual equivalence.

» The domain model of PCF is not fully abstract.

In other words, there are contextually equivalent PCF terms

with different denotations.

Slide 66

In general one says that a denotational semantitglysabstractif contextual
equivalence coincides with equality of denotation. Thusdbnotational semantics
of PCF using domains and continuous functions fails to dg &ldstract. The classic
example demonstrating this failure is due to Plotkin (1%#¥) involves th@arallel-

or function shown on Slide 67.

8.1 Failure of full abstraction 89

Parallel-or function

is the continuous function por : B, — (B, — B) defined by

por | true false L

true | true true true
false | true false L
1 true 1 1

Slide 67

Contrast por with the ‘sequential-or’ function shown on Slide 68. Both
functions give the usual boolean ‘or’ function when redéit to {¢rue, false},
but differ in their behaviour at arguments involving therent | denoting ‘non-
termination’. Note thapor(d;, ds) = true if eitherof dy or ds is true, even if the
other argument id_; whereasorelse(dy, d2) = true impliesd; # L.

90 8 FULL ABSTRACTION

Left sequential-or function

The function orelse : B; — (B, — B) defined by

orelse | true false L

true | true true true
false | true false L
1 1 1 1

is the denotation of the PCF term
fnx : bool.fn ' : bool .if = then true else =’

of type bool — (bool — bool).

Slide 68

As noted on Slide 689relse can be defined in PCF, in the sense that there is
a closed PCF termd/ : bool — (bool — bool) with [M] = orelse. This term
M tests whether its first argument isue or false (and so diverges if that first
argument diverges), in the first case returntrgie (leaving the second argument
untouched) and in the second case returning the second enguBy contrast, for
por we have the Proposition stated on Slide 69. We will not giwegioof of this
proposition here. Plotkin (1977) proves it via an ‘Activigmma’, but there are
alternative approaches using ‘stable’ continuous fumsti@unter 1992, p 181), or
using ‘sequential logical relations’ (Sieber 1992). Thg liea is that evaluation in
PCF proceedsequentially So whatever is, evaluation ofP M, M, must at some
point involve full evaluation of eithen/; or M, (P cannot ignore its arguments
if it is to returntrue in some cases anfilse in others); whereas an algorithm to
computepor at a pair of arguments must compute the values of those argsrie
parallel’ in case one diverges whilst the other yields tHe@#r ue.

One can exploit the undefinability gfor in PCF to manufacture a pair of
contextually equivalent closed terms in PCF with unequabdigtions. Such a pair
is given on Slide 70.

8.1 Failure of full abstraction

Undefinability of parallel-or

Proposition. There is no closed PCF term
P : bool — (bool — bool)

satisfying
[P] =por:B, — (B, —B,) .

Slide 69

Parallel-or test functions

Fori = 1, 2 define

T, < fn f : bool — (bool — bool) .

if (f true 2) then
if (f Q true) then
if (f false false) then () else B;
else ()
else ()

where B; def true, By def false,
and Q% fix(fnx : bool . x).

Slide 70

92 8 FULL ABSTRACTION

Failure of full abstraction

Proposition.

T} Zeix 1o : (bool — (bool — bool)) — bool

[T1] # [T e BL— (BL—B1)) =By

Slide 71

Proof of the Proposition on slidél. From the definition opor on Slide 67 and the
definition of [—] in Section 6.2, it is not hard to see that
true ifi=1

[Tl (por) = {false if i =2.

Thus[T:1](por) # [T2](por) and therefordT;] # [T5].

To see thal’} =.x Ts : (bool— (bool— bool))— bool we use the extensionality
results on Slide 64. Thus we have to show forMll: bool — (bool — bool) and
V € {true, false} that

(23) LM yoo Vo= To My, V.
But the definition off; is such thatl; M J},,,; V only holds if
M trueQ |;,,; true, M Qtrue |,,,; true, M falsefalse |},,,; false.
By the soundness property of Slide 43 this means that
[M](true)(L) = true, [M](L)(true) = true, [M](false)(false) = false.

(Recall from Exercise 6.5.2 thdf2] = L1.) It follows in that case that the
continuous functiofiM] : (B, xB,)—B, coincides withpor (see Exercise 8.4.1).
But this is impossible, by the Proposition on Slide 69. Thenee (23) is trivially
satisfied for allM/, and thusl; andT5 are indeed contextually equivalent. [

8.2 PCF+por 93

8.2 PCF+por

The failure of full abstraction for the denotational senesbf PCF can be repaired
by extending PCF with extra terms for those elements of timeadio-theoretic model
that are not definable in the language as originally given.h@ie seen thator is
one such element ‘missing’ from PCF, and one of the remaekagslults in (Plotkin
1977) is that this is the only thing we need add to PCF to oltdirabstraction.
This is stated without proof on Slides 72 and 73.

PCF+por
Expressions M = ... | por(M, M)
. I'= My : bool T My : bool
Typing
I' - por(M;y, Ms) : bool
Evaluation

My oo true Mo o0 true
por (M, Mz) Yy true por(My, Mz) 4y, true
My o false My |4, false
por (M, Ms) |y, false

Slide 72

94 8 FULL ABSTRACTION

Plotkin’s full abstraction result

The denotational semantics of PCF+por terms is given by
extending the definition on Slides 50-54 with the clause

[T+ por(M;, Ma)](p) ©

por([I' = M1](p))([I" - M2](p))
where por : B, — (B, — B) is as on Slide 67.

This denotational semantics is fully abstract for contextual
equivalence of PCF+por terms:

I'EM Zqx My : 7 < IIFI_Ml]]:[[F'_MQ]]

Slide 73

8.3 Fully abstract semantics for PCF

The evaluation of PCF terms involves a form of ‘sequentiahithich is not reflected
in the denotational semantics of PCF using domains andraamis functions: the
continuous functiorpor does not denote any PCF term and this results in a mis-
match between denotational equality and contextual ebpriea. But what precisely
does ‘sequentiality’ mean in general? Can we characterisedn abstract way,
independent of the particular syntax of PCF terms, and hgiveea more refined
form of denotational semantics thatfully abstract for contextual equivalence for
PCF (and for other types of language besides the simple,fpootional language
PCF)? These questions have motivated the development nauncaid theory and
denotational semantics since the appearance of (Plotkiii)1%ee the survey by
Ong (1995), for example.

It is only recently that definitive answers have emerged efegnsuch an
apparently simple language as PCF. O’Hearn and Riecke JX@®tstruct a fully
abstract model of PCF by using certain kinds of ‘logical tiela to repair the
deficiencies of the standard model we have described herthodgh this does
provide a solution, it does not seem to give much insighttimmature of sequential
computation. By contrast, Abramsky, Jagadeesan, and Ei@a@000) and Hyland
and Ong (2000) solve the problem by introducing what apptatse a radically
different approach to giving semantics to programming leagges (not just PCF),

8.4 Exercises 95

based upon certain kinds of two-player game: see (Abram8Ry)Yland (Hyland
1997) for introductions to this ‘game semantics’.

Finally, a negative result by Loader should be mentionedehtwat the material
in Section 8.1 does not depend upon the presence of numberarginmetic in
PCF. Let PCE denote the fragment of PCF only involvirigol and the function
types formed from ittrue, false, conditionals, variables, function abstraction and
application, and a divergent terfd,,,; : bool. SinceB, is a finite domain and
since the function domain formed from finite domains is adaiite, the domain
associated to each PEEype is finitel The domain model is adequate for PCF
and hence there are only finitely many different BGérms of each type, up to
contextual equivalence. Given these finiteness propewdies the terribly simple
nature of the language, one might hope that the followingstjoes are decidable
(uniformly in the PCE typer):

e Which elements ofr] are definable by PGRerms?
e When are two PCFof typer contextually equivalent?

Quite remarkably Loader (2001) shows that these are ramlysundecidable
questions.

8.4 Exercises
Exercise 8.4.1.Suppose that a monotonic functipn (B, x B,) — B, satisfies
p(true, L) = true, p(L,true) = true, and p(false, false) = false.

Show thatp coincides with the parallel-or function on Slide 67 in thexse that
p(dl, dg) = pOT’(dl)(dg), for all dl, do€B;.

Exercise 8.4.2.Show that even though there are two evaluation rules on 3kde
with conclusionpor (M, Ms) |},,,; true, nevertheless the evaluation relation for
PCF+por is still deterministic (in the sense of Propositofhl).

Exercise 8.4.3.Give the axioms and rules for an inductively defined traaaiti
relation for PCF+por. This should take the form of a binaratien M/ — M’
between closed PCF+por terms. It should satisfy

MUV & M—*V

(where—* is the reflexive-transitive closure ef).

LA further simplification arises from the fact that if the doimaD and D’ are finite, then
they contain no non-trivial chains and hence the contindonstionsD — D’ are just the
monotone functions.

96 REFERENCES

References

Abramsky, S. (1997). Semantics of interaction: An intrattutto game seman-
tics. In A. M. Pitts and P. Dybjer (Eds.$emantics and Logics of Computa-
tion, Publications of the Newton Institute, pp. 1-31. Cambritigéversity
Press.

Abramsky, S., R. Jagadeesan, and P. Malacaria (2000). bsileation for PCF.
Information and Computation 16309-470.

Fiore, M., A. Jung, E. Moggi, P. O'Hearn, J. Riecke, G. Rasoliand
l. Stark (1996). Domains and denotational semantics: Hise@wcomplish-
ments and open problenBulletin of EATC$S59, 227-256.

Gunter, C. A. (1992)Semantics of Programming Languages: Structures and
TechniquesFoundations of Computing. MIT Press.

Hyland, J. M. E. (1997). Game semantics. In A. M. Pitts and ybjér (Eds.),
Semantics and Logics of Computatiétublications of the Newton Institute,
pp. 131-184. Cambridge University Press.

Hyland, J. M. E. and C.-H. L. Ong (2000). On full abstracticr PCF.
Information and Computation 16285-408.

Loader, R. (2001). Finitary PCF is not decidabléneoretical Computer Sci-
ence 266341-364.

Milner, R. (1977). Fully abstract models of typed lambdé&gh Theoretical
Computer Science, 4-22.

Mulmuley, K. (1987) Full Abstraction and Semantic Equivalen®&l T Press.

O’Hearn, P. W. and J. G. Riecke (1995). Kripke logical relat and PCF.
Information and Computation 12007-116.

Ong, C.-H. L. (1995). Correspondence between operationdldenotational
semantics. In S. Abramsky, D. Gabbay, and T. S. E. Maibauns.JEd
Handbook of Logic in Computer Science, Vgl gp. 269-356. Oxford
University Press.

Paulson, L. C. (1987).ogic and ComputationrCambridge University Press.

Pitts, A. M. (1996). Relational properties of domailrformation and Compu-
tation 127 66-90.

Plotkin, G. D. (1977). LCF considered as a programming |laggur heoretical
Computer Science, 223—-255.

Scott, D. S. (1993). A type-theoretical alternative to ISX¥YICUCH, OWHY.
Theoretical Computer Science 12111-440.

Sieber, K. (1992). Reasoning about sequential functioasogical relations. In
M. P. Fourman, P. T. Johnstone, and A. M. Pitts (Edspplications of Cat-
egories in Computer Science, Proceedings LMS Symposiurhabuy UK,

REFERENCES 97

1991, Volume 177 ofLMS Lecture Note Seriepp. 258—-269. Cambridge
University Press.

Tennent, R. D. (1991)Semantics of Programming Languag&sentice Hall
International (UK) Ltd.

Winskel, G. (1993)The Formal Semantics of Programming Languadesun-
dations of Computing. Cambridge, Massachusetts: The MEESr

98

REFERENCES

