Lecture 7

Relating Denotational and Operational Semantics

Adequacy

 $\gamma \in \{nat, bool\}$ with V a value For any closed PCF terms M and V of ground type

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \downarrow_{\gamma} V.$$

NB. Adequacy does not hold at function types:

$$\llbracket \mathbf{fn} \ x : \tau. \left(\mathbf{fn} \ y : \tau. \ y \right) x \rrbracket \quad = \quad \llbracket \mathbf{fn} \ x : \tau. \ x \rrbracket \quad : \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket$$

but

fin
$$x : \tau$$
. (fin $y : \tau$. y) $x \not \downarrow_{\tau \to \tau}$ fin $x : \tau$. x

Adequacy proof idea

- We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.
- lacksquare Consider M to be $M_1\,M_2$, $\mathbf{fix}(M')$, $\mathbf{fn}\,x:\tau.M'$.
- 2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

$$[\![M]\!] \lhd_{\tau} M$$
 for all types au and all $M \in \mathrm{PCF}_{ au}$

where the formal approximation relations

$$\lhd_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}$$

are logically chosen to allow a proof by induction.

Requirements on the formal approximation relations, I

We want that, for $\gamma \in \{nat, bool\}$, $[\![M]\!] \lhd_{\gamma} M \text{ implies } \forall V ([\![M]\!] = [\![V]\!] \implies M \Downarrow_{\gamma} V)$

adequacy

Definition of $d \lhd_{\gamma} M$ $(d \in [\![\gamma]\!], M \in \mathrm{PCF}_{\gamma})$ for $\gamma \in \{nat, bool\}$

$$n \lhd_{nat} M \stackrel{\mathrm{def}}{\Leftrightarrow} (n \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \mathbf{succ}^n(\mathbf{0}))$$
 $b \lhd_{bool} M \stackrel{\mathrm{def}}{\Leftrightarrow} (b = true \Rightarrow M \Downarrow_{bool} \mathbf{true})$
 $\& (b = false \Rightarrow M \Downarrow_{bool} \mathbf{false})$

Proof of: $\llbracket M rbracket < < > > M rbracket$ implies adequacy

Case $\gamma = nat$.

$$[\![M]\!]=[\![V]\!]$$

$$\Longrightarrow \llbracket M
rbracket = \llbracket \mathbf{succ}^n(\mathbf{0})
rbracket$$

for some $n\in\mathbb{N}$

$$\implies n = [\![M]\!] \lhd_{\gamma} M$$
$$\implies M \Downarrow \mathbf{succ}^n(\mathbf{0})$$

by definition of \triangleleft_{nat}

Case $\gamma = bool$ is similar.

Requirements on the formal approximation relations, II

We want to be able to proceed by induction.

- Consider the case $M=M_1\,M_2$.

→ logical definition

Definition of

$$f \lhd_{\tau \to \tau'} M \ \left(f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in \mathrm{PCF}_{\tau \to \tau'} \right)$$

$$f \vartriangleleft_{\tau \to \tau'} M$$

$$\stackrel{\text{def}}{\Leftrightarrow} \forall x \in \llbracket \tau \rrbracket, N \in \operatorname{PCF}_{\tau}$$

$$(x \vartriangleleft_{\tau} N \Rightarrow f(x) \vartriangleleft_{\tau'} M N)$$

Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

ullet Consider the case $M=\mathbf{fix}(M')$.

~ admissibility property

Admissibility property

Lemma. For all types τ and $M \in \mathrm{PCF}_{\tau}$, the set

$$\{\,d\in \llbracket\tau\rrbracket\mid d\vartriangleleft_\tau M\,\}$$

is an admissible subset of $[\![\tau]\!]$.

Further properties

Lemma. For all types au, elements $d,d' \in \llbracket au
rbracket$, and terms $M, N, V \in \mathrm{PCF}_{\tau}$,

- 1. If $d \sqsubseteq d'$ and $d' \lhd_{\tau} M$ then $d \lhd_{\tau} M$.
- 2. If $d \lhd_{\tau} M$ and $\forall V (M \Downarrow_{\tau} V \implies N \Downarrow_{\tau} V)$ then $d \lhd_{\tau} N$.

Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.

- Consider the case $M = \operatorname{fn} x : \tau \cdot M'$.

~> substitutivity property for open terms

Fundamental property

Theorem. For all
$$\Gamma = \langle x_1 \mapsto \tau_1, \ldots, x_n \mapsto \tau_n \rangle$$
 and all $\Gamma \vdash M : \tau$, if $d_1 \lhd_{\tau_1} M_1, \ldots, d_n \lhd_{\tau_n} M_n$ then
$$[\Gamma \vdash M][x_1 \mapsto d_1, \ldots, x_n \mapsto d_n] \lhd_{\tau} M[M_1/x_1, \ldots, M_n/x_n] \, .$$

IB. The case $\Gamma = \emptyset$ reduces to

$$\llbracket M \rrbracket \lhd_{\tau} M$$

for all $M \in \mathrm{PCF}_{\tau}$.

Fundamental property of the relations <17

Proposition. If $\Gamma \vdash M : \tau$ is a valid PCF typing, then for all $oldsymbol{\Gamma}$ -environments ho and all $oldsymbol{\Gamma}$ -substitutions σ

$$\rho \lhd_{\Gamma} \sigma \Rightarrow \llbracket \Gamma \vdash M \rrbracket (\rho) \lhd_{\tau} M [\sigma]$$

- $x \in dom(\Gamma)$ $ho \lhd_{\Gamma} \sigma$ means that $ho(x) \lhd_{\Gamma(x)} \sigma(x)$ holds for each
- $M\left|\sigma\right|$ is the PCF term resulting from the simultaneous substitution of $\sigma(x)$ for x in M, each $x \in dom(\Gamma)$.

Contextual preorder between PCF terms

Given PCF terms M_1, M_2 , PCF type τ , and a type environment Γ , the relation $|\Gamma dash M_1 \le_{ ext{ctx}} M_2 : au|$ is defined to hold iff

- Both the typings $\Gamma dash M_1 : au$ and $\Gamma dash M_2 : au$ hold.
- and for all values $V \in \mathrm{PCF}_{\gamma}$, For all PCF contexts ${\mathcal C}$ for which ${\mathcal C}[M_1]$ and ${\mathcal C}[M_2]$ are closed terms of type γ , where $\gamma = nat$ or $\gamma = bool$,

$$C[M_1] \Downarrow_{\gamma} V \implies C[M_2] \Downarrow_{\gamma} V$$
.

Extensionality properties of ≤_{ctx}

At a ground type $\gamma \in \{bool, nat\}$,

 $M_1 \leq_{ ext{ctx}} M_2 : \gamma$ holds if and only if

$$\forall V \in \mathrm{PCF}_{\gamma} (M_1 \downarrow_{\gamma} V \implies M_2 \downarrow_{\gamma} V)$$
.

At a function type $\tau \to \tau'$,

 $M_1 \leq_{
m ctx} M_2 : au
ightarrow au'$ holds if and only if

$$\forall M \in PCF_{\tau} (M_1 M \leq_{ctx} M_2 M : \tau')$$
.