
� Topic II �
FORTRAN : A simple procedural language

References:

� Chapter 10(§1) of Programming Languages: Design and

implementation (3RD EDITION) by T.W. Pratt and

M.V. Zelkowitz. Prentice Hall, 1999.

� The History of FORTRAN I, II, and III by J. Backus. In

History of Programming Languages by R. L.Wexelblat.

Academic Press, 1981.

� 29



FORTRAN = FORmula TRANslator
(1957)

� Developed in the 1950s by an IBM team led by John

Backus.

� The first high-level programming language to become

widely used.

� At the time the utility of any high-level language was open

to question!

The main complain was the efficiency of compiled code.

This heavily influenced the designed, orienting it towards

providing execution efficiency.

� Standards:
1966, 1977 (FORTRAN 77), 1990 (FORTRAN 90).

� 30



John Backus

As far as we were aware, we simply made up the

language as we went along. We did not regard

language design as a difficult problem, merely a

simple prelude to the real problem: designing a

compiler which could produce efficient programs.�

�In R. L.Wexelblat, History of Programming Languages, Academic Press,

1981, page 30.

� 31



Overview
Execution model

� FORTRAN program = main program + subprograms

� Each is compiled separate from all others.

� Translated programs are linked into final executable

form during loading.

� All storage is allocated statically before program execution

begins; no run-time storage management is provided.

� Flat register machine. No stacks, no recursion. Memory

arranged as linear array.

� 32



Overview
Compilation

FORTRAN program

��

Compiler

��

Incomplete machine language

���������������

Library routines

����
�
�
�
�
�

Linker

��

Machine language program

� 33



Overview
Data types

� Numeric data: Integer, real, complex, double-precision

real.

� Boolean data. called logical

� Arrays. of fixed declared length

� Character strings. of fixed declared length

� Files.

� 34



Overview
Control structures

� FORTRAN 66

Relied heavily on statement labels and GOTO

statements.

� FORTRAN 77

Added some modern control structures

(e.g., conditionals).

� 35



Example

PROGRAM MAIN

PARAMETER (MaXsIz=99)

REAL A(mAxSiZ)

10 READ (5,100,END=999) K

100 FORMAT(I5)

IF (K.LE.0 .OR. K.GT.MAXSIZ) STOP

READ *,(A(I),I=1,K)

PRINT *,(A(I),I=1,K)

PRINT *,’SUM=’,SUM(A,K)

GO TO 10

999 PRINT *, "All Done"

STOP

END

� 36



C SUMMATION SUBPROGRAM

FUNCTION SUM(V,N)

REAL V(N)

SUM = 0.0

DO 20 I = 1,N

SUM = SUM + V(I)

20 CONTINUE

RETURN

END

� 37



Example
Commentary

� Columns and lines are relevant.

� Blanks are ignored (by early FORTRANs).

� Variable names are from 1 to 6 characters long, begin with

a letter, and contain letters and digits.

� Programmer-defined constants.

� Arrays: when sizes are given, lower bounds are assumed

to be 1; otherwise subscript ranges must be explicitly

declared.

� Variable types may not be declared: implicit naming

convention.

� 38



� Data formats.

� FORTRAN 77 has no while statement.

� Functions are compiled separately from the main program.

Information from the main program is not used to pass

information to the compiler. Failure may arise when the

loader tries to merge subprograms with main program.

� Function parameters are uniformly transmitted by

reference (or value-result).

Recall that allocation is done statically.

� DO loops by increment.

� A value is returned in a FORTRAN function by assigning a

value to the name of a function.

� 39



On syntax

A misspelling bug . . .

do 10 i = 1,100 vs. do 10 i = 1.100

. . . that is reported to have caused a rocket to explode

upon launch into space!

� 40



Types

� FORTRAN has no mechanism for creating user types.

� Static type checking is used in FORTRAN, but the

checking is incomplete.

Many language features, including arguments in

subprogram calls and the use of COMMON blocks,

cannot be statically checked (in part because

subprograms are compiled independently).

Constructs that cannot be statically checked are

ordinarily left unchecked at run time in FORTRAN

implementations.

� 41



Storage
Representation and Management

� Storage representation in FORTRAN is sequential.

� Only two levels of referencing environment are provided,

global and local.

The global environment may be partitioned into separate

common environments that are shared amongst sets of

subprograms, but only data objects may be shared in this

way.

� 42



The sequential storage representation is critical in the

definition of the EQUIVALENCE and COMMON declarations.

� EQUIVALENCE

This declaration allows more than one simple or

subscripted variable to refer to the same storage

location.

? Is this a good idea?

Consider the following:

REAL X

INTEGER Y

EQUIVALENCE (X,Y)

� 43



� COMMON

The global environment is set up in terms of sets of

variables and arrays, which are termed COMMON blocks.

A COMMON block is a named block of storage and may

contain the values of any number of simple variables and

arrays.

COMMON blocks may be used to isolate global data to only

a few subprograms needing that data.

? Is the COMMON block a good idea?

Consider the following:

COMMON/BLK/X,Y,K(25) in MAIN

COMMON/BLK/U,V,I(5),M(4,5) in SUB

� 44



�� ��
�� ��Aliasing

Aliasing occurs when two names or expressions

refer to the same object or location.

� Aliasing raises serious problems for both the user

and implementor of a language.

� Because of the problems caused by aliasing, new

language designs sometimes attempt to restrict or

eliminate altogether features that allow aliases to

be constructed.

� 45



�� ��
�� ��Parameters

There are two concepts that must be clearly distinguished.

� The parameter names used in a function declaration are

called formal parameters.

� When a function is called, expressions called actual

parameters are used to compute the parameter values

for that call.

� 46



FORTRAN subroutines and functions

� Actual parameters may be simple variables, literals,

array names, subscripted variables, subprogram

names, or arithmetic or logical expressions.

The interpretation of a formal parameter as an array

is done by the called subroutine.

� Each subroutine is compiled independently and no

checking is done for compatibility between the

subroutine declaration and its call.

� 47



� The language specifies that if a formal parameter is

assigned to, the actual parameter must be a variable, but

because of independent compilation this rule cannot be

checked by the compiler.

Example:

SUBROUTINE SUB(X,Y)

X = Y

END

CALL SUB(-1.0,1.0)

� Parameter passing is uniformly by reference.

� 48


