
� Topic IV �

Block-structured procedural languages

Algol and Pascal

References:

� Chapters 5 and 7, of Concepts in programming

languages by J. C. Mitchell. CUP, 2003.

� Chapters 10(§2) and 11(§1) of Programming languages:

Design and implementation (3RD EDITION) by T. W. Pratt

and M. V. Zelkowitz. Prentice Hall, 1999.

� 74

� Chapter 5 of Programming languages: Concepts &

constructs by R. Sethi (2ND EDITION). Addison-Wesley,

1996.

� Chapter 7 of Understanding programming languages by

MBen-Ari. Wiley, 1996.

� 75

�� ��
�� ��Parameters

There are two concepts that must be clearly distinguished:

� A formal parameter is a declaration that appears in the

declaration of the subprogram. (The computation in the

body of the subprogram is written in terms of formal

parameters.)

� An actual parameter is a value that the calling program

sends to the subprogram.

Example: Named parameter associations.

Normally the actual parameters in a subprogram call are just

listed and the matching with the formal parameters is done by

� 76

position:

procedure Proc(First: Integer; Second: Character);

Proc(24,’h’);

In Ada it is possible to use named association in the call:

Proc(Second => ’h’, First => 24);

? What about in ML? Can it be simulated?

This is commonly used together with default parameters:

procedure Proc(First: Integer := 0; Second: Character := ’*’);

Proc(Second => ’o’);

� 77

�� ��
�� ��Parameter passing

The way that actual parameters are evaluated and passed to

procedures depends on the programming language and the

kind of parameter-passing mechanisms it uses.

The main distinction between different parameter-passing

mechanisms are:

� the time that the actual parameter is evaluated, and

� the location used to store the parameter value.

NB: The location of a variable (or expression) is called its

L-value, and the value stored in this location is called the

R-value of the variable (or expression).

� 78

�� ��
�� ��Parameter passing

Pass/Call-by-value

� In pass-by-value, the actual parameter is evaluated. The

value of the actual parameter is then stored in a new

location allocated for the function parameter.

� Under call-by-value, a formal parameter corresponds to

the value of an actual parameter. That is, the formal x of a

procedure P takes on the value of the actual parameter.

The idea is to evaluate a call P(E) as follows:

x := E;

execute the body of procedure P;

if P is a function, return a result.

� 79

�� ��
�� ��Parameter passing

Pass/Call-by-reference

� In pass-by-reference, the actual parameter must have an

L-value. The L-value of the actual parameter is then

bound to the formal parameter.

� Under call-by-reference, a formal parameter becomes a

synonym for the location of an actual parameter. An actual

reference parameter must have a location.

� 80

Example:

program main;

begin

function f(var x: integer; y: integer): integer;

begin

x := 2;

y := 1;

if x = 1 then f := 1 else f:= 2

end;

var z: integer;

z := 0;

writeln(f(z,z))

end

� 81

The difference between call-by-value and call-by-reference is

important to the programmer in several ways:

� Side effects. Assignments inside the function body may

have different effects under pass-by-value and

pass-by-reference.

� Aliasing. Aliasing occurs when two names refer to the

same object or location.

Aliasing may occur when two parameters are passed by

reference or one parameter passed by reference has the

same location as the global variable of the procedure.

� 82

� Efficiency. Pass-by-value may be inefficient for large

structures if the value of the large structure must be

copied. Pass-by-reference maybe less efficient than

pass-by-value for small structures that would fit directly on

stack, because when parameters are passed by reference

we must dereference a pointer to get their value.

� 83

�� ��
�� ��Parameter passing
Pass/Call-by-value/result

Call-by-value/result is also known as copy-in/copy-out

because the actuals are initially copied into the formals and

the formals are eventually copied back out to the actuals.

Actuals that do not have locations are passed by value.

Actuals with locations are treated as follows:

1. Copy-in phase. Both the values and the locations of the

actual parameters are computed. The values are

assigned to the corresponding formals, as in call-by-value,

and the locations are saved for the copy-out phase.

2. Copy-out phase. After the procedure body is executed,

the final values of the formals are copied back out to the

locations computed in the copy-in phase.

� 84

Examples:

� A parameter in Pascal is normally passed by value. It is

passed by reference, however, if the keyword var appears

before the declaration of the formal parameter.

procedure proc(in: Integer; var out: Real);

� The only parameter-passing method in C is call-by-value;

however, the effect of call-by-reference can be achieved

using pointers. In C++ true call-by-reference is available

using reference parameters.

� 85

� Ada supports three kinds of parameters:

1. in parameters, corresponding to value parameters;

2. out parameters, corresponding to just the copy-out phase

of call-by-value/result; and

3. in out parameters, corresponding to either reference

parameters or value/result parameters, at the discretion of

the implementation.

� 86

�� ��
�� ��Parameter passing

Pass/Call-by-name

The Algol 60 report describes call-by-name as follows:

1. Actual parameters are textually substituted for the formals.

Possible conflicts between names in the actuals and local

names in the procedure body are avoided by renaming the

locals in the body.

2. The resulting procedure body is substituted for the call.

Possible conflicts between nonlocals in the procedure

body and locals at the point of call are avoided by

renaming the locals at the point of call.

� 87

Block structure

� In a block-structured language, each program or

subprogram is organised as a set of nested blocks.

A block is a region of program text, identified by begin and

end markers, that may contain declarations local to this

region.

� In-line (or unnamed) blocks are useful for restricting the

scope of variables by declaring them only when needed,

instead of at the beginning of a subprogram. The trend in

programming is to reduce the size of subprograms, so the

use of unnamed blocks is less useful than it used to be.

� 88

Nested procedures can be used to group statements that

are executed at more than one location within a

subprogram, but refer to local variables and so cannot be

external to the subprogram. Before modules and

object-oriented programming were introduced, nested

procedures were used to structure large programs.

� Block structure was first defined in Algol. Pascal contains

nested procedures but not in-line blocks; C contains in-line

blocks but not nested procedures; Ada supports both.

� Block-structured languages are characterised by the

following properties:

� New variables may be declared at various points in a

program.

� 89

� Each declaration is visible within a certain region of

program text, called a block.

� When a program begins executing the instructions

contained in a block at run time, memory is allocated for

the variables declared in that block.

� When a program exits a block, some or all of the memory

allocated to variables declared in that block will be

deallocated.

� An identifier that is not delcared in the current block is

considered global to the block and refers to the entity with

this name that is declared in the closest enclosing block.

� 90

Algol

had a major effect on language design

� The Algol-like programming languages evolved in parallel

with the LISP family of languages, beginning with Algol 58

and Algol 60 in the late 1950s.

� The most prominent Algol-like programming languages

are Pascal and C, although C differs from most of the

Algol-like languages in some significant ways. Further

Algol-like languages are: Algol 58, Algol W, Euclid, etc.

� 91

� The main characteristics of the Algol family are:

� the familiar semicolon-separated sequence of statements,

� block structure,

� functions and procedures, and

� static typing.

� 92

Algol 60

� Designed by a committee (including Backus, McCarthy,

Perlis) between 1958 and 1963.

� Intended to be a general purpose programming language,

with emphasis on scientific and numerical applications.

� Compared with FORTRAN, Algol 60 provided better ways

to represent data structures and, like LISP, allowed

functions to be called recursively.

Eclipsed by FORTRAN because of the lack of I/O

statements, separate compilation, and library; and

because it was not supported by IBM.

� 93

Algol 60
Features

� Simple statement-oriented syntax.

� Block structure.

� Recursive functions and stack storage allocation.

� Fewer ad hoc restrictions than previous languages

(e.g., general expressions inside array indices,

procedures that could be called with procedure

parameters).

� A primitive static type system, later improved in

Algol 68 and Pascal.

� 94

Algol 60
Some trouble spots

� The Algol 60 type discipline had some shortcomings.

For instance:

� Automatic type conversions were not fully specified

(e.g., x := x/y was not properly defined when x and y

were integers—is it allowed, and if so was the value

rounded or truncated?).

� The type of a procedure parameter to a procedure

does not include the types of parameters.

� An array parameter to a procedure is given type array,

without array bounds.

� 95

� Algol 60 was designed around two parameter-passing

mechanisms, call-by-name and call-by-value.

Call-by-name interacts badly with side effects;

call-by-value is expensive for arrays.

� There are some awkward issues related to control flow,

such as memory management, when a program jumps

out of a nested block.

� 96

Algol 60 procedure types�

In Algol 60, the type of each formal parameter of a procedure must be

given. However, proc is considered a type (the type of procedures). This is

much simpler than the ML types of function arguments. However, this is

really a type loophole; because calls to procedure parameters are not fully

type checked, Algol 60 programs may produce run-time errors.

Write a procedure declaration for Q that causes the following program

fragment to produce a run-time type error:

proc P (proc Q)

begin Q(true) end;

P(Q);

where true is a Boolean value. Explain why the procedure is statically type

correct, but produces a run-time type error. (You may assume that adding

a Boolean to an integer is a run-time error.)

�Exercise 5.1 of Concepts in programming languages by J. Mitchell, CUP,

2003.

� 97

Algol 60 pass-by-name

Copy rule

real procedure sum(E,i,low,high); value low, high;

real E; integer i, low, high;

begin

sum:=0.0; for i := low step 1 until high do sum := sum+E;

end

integer j; real array A[1:10]; real result;

for j:= 1 step 1 until 10 do A[j] := j;

result := sum(A[j],j,1,10)

By the Algol 60 copy rule, the function call to sum above is equivalent to:

begin

sum:=0.0; for j := 1 step 1 until 10 do sum := sum+A[j];

end

� 98

Algol 60 pass-by-name�

The following Algol 60 code declares a procedure P with one pass-by-name

integer parameter. Explain how the procedure call P(A[i]) changes the

values of i and A by substituting the actual parameters for the formal

parameters, according to the Algol 60 copy rule. What integer values are

printed by the program? And, by using pass-by-value parameter passing?

begin

integer i; i:=1;

integer array A[1:2]; A[1]:=2; A[2]:=3;

procedure P(x); integer x;

begin i:=x; x:=1 end

P(A[i]); print(i,A[1],A[2])

end

�Exercise 5.2 of Concepts in programming languages by J. Mitchell, CUP,

2003.

� 99

Algol 68
� Intended to remove some of the difficulties found in

Algol 60 and to improve the expressiveness of the

language.

It did not entirely succeed however, with one main

problem being the difficulty of efficient compilation

(e.g., the implementation consequences of higher-order

procedures where not well understood at the time).

� One contribution of Algol 68 was its regular, systematic

type system.

The types (referred to as modes in Algol 68) are either

primitive (int, real, complex, bool, char, string, bits,

bytes, semaphore, format, file) or compound (array,

structure, procedure, set, pointer).

� 100

Type constructions could be combined without restriction.

This made the type system seem more systematic than

previous languages.

� Algol 68 memory management involves a stack for local

variables and heap storage. Algol 68 data on the heap are

explicitly allocated, and are reclaimed by garbage

collection.

� Algol 68 parameter passing is by value, with

pass-by-reference accomplished by pointer types. (This

is essentially the same design as that adopted in C.)

� The decision to allow independent constructs to be

combined without restriction also led to some complex

features, such as assignable pointers.

� 101

Algol innovations

� Use of BNF syntax description.

� Block structure.

� Scope rules for local variables.

� Dynamic lifetimes for variables.

� Nested if-then-else expressions and statements.

� Recursive subroutines.

� Call-by-value and call-by-name arguments.

� Explicit type declarations for variables.

� Static typing.

� Arrays with dynamic bounds.

� 102

Pascal

� Designed in the 1970s by Niklaus Wirth, after the design

and implementation of Algol W.

� Very successful programming language for teaching, in

part because it was designed explicitly for that purpose.

Also designed to be compiled in one pass. This hindered

language design; e.g., it forced the problematic forward

declaration.

� Pascal is a block-structured language in which static

scope rules are used to determine the meaning of

nonlocal references to names.

� 103

� A Pascal program is always formed from a single main

program block, which contains within it definitions of the

subprograms used.

Each block has a characteristic structure: a header giving

the specification of parameters and results, followed by

constant definitions, type definitions, local variable

declarations, other nested subprogram definitions, and the

statements that make up the executable part.

� Pascal is a quasi-strong, statically typed programming

language.

An important contribution of the Pascal type system is the

rich set of data-structuring concepts: e.g. enumerations,

subranges, records, variant records, sets, sequential files.

� 104

� The Pascal type system is more expressive than the

Algol 60 one (repairing some of its loopholes), and simpler

and more limited than the Algol 68 one (eliminating some

of the compilation difficulties).

A restriction that made Pascal simpler than Algol 68:

procedure Allowed(j,k: integer);

procedure AlsoAllowed(procedure P(i:integer);

j,k: integer);

procedure

NotAllowed(procedure MyProc(procedure P(i:integer)));

� 105

� Pascal was the first language to propose index checking.

� Problematically, in Pascal, the index type of an array is

part of its type. The Pascal standard defines conformant

array parameters whose bounds are implicitly passed to a

procedure. The Ada programmig language uses so-called

unconstrained array types to solve this problem.

The subscript range must be fixed at compile time

permitting the compiler to perform all address calculations

during compilation.

procedure

Allowed(a: array [1..10] of integer) ;

procedure

NotAllowed(n: integer; a: array [1..n] of integer) ;

� 106

� Pascal uses a mixture of name and structural equivalence

for determining if two variables have the same type.

Name equivalence is used in most cases for determining

if formal and actual parameters in subprogram calls have

the same type; structural equivalence is used in most

other situations.

� Parameters are passed by value or reference.

Complete static type checking is possible for

correspondence of actual and formal parameter types in

each subprogram call.

� 107

Pascal variant records
Variant records have a part common to all records of that type,

and a variable part, specific to some subset of the records.
type

kind = (unary, binary) ;

type { datatype }

UBtree = record { ’a UBtree = record of }

value: integer ; { ’a * ’a UBkind }

case k: kind of { and ’a UBkind = }

unary: ^UBtree ; { unary of ’a UBtree }

binary: record { | binary of }

left: ^UBtree ; { ’a UBtree * }

right: ^UBtree { ’a UBtree ; }

end

end ;

� 108

Variant records introduce weaknesses into the type system for

a language.

1. Compilers do not usually check that the value in the tag

field is consistent with the state of the record.

2. Tag fields are optional. If omitted, no checking is possible

at run time to determine which variant is present when a

selection is made of a field in a variant.

� 109

Summary

� The Algol family of languages established the

command-oriented syntax, with blocks, local declarations,

and recursive functions, that are used in most current

programming languages.

� The Algol family of languages is statically typed, as each

expression has a type that is determined by its syntactic

form and the compiler checks before running the program

to make sure that the types of operations and operands

agree.

� 110

