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Inclusions

We have the following inclusions:

L C NL C P C NP C PSPACE C NPSPACE C EXP

where EXP = J;2, TIME(2"")

Moreover,
University of Cambridge Computer Laboratory L C NL N co-NL
Easter Term 2010
P C NP Nco-NP
http://wuw.cl.cam.ac.uk/teaching/0910/Complexity/ PSPACE < NPSPACE M co-NPSPACE
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Establishing Inclusions

To establish the known inclusions between the main complexity
classes, we prove the following.

SPACE(f(n)) € NSPACE(f(n));
TIME(f(n)) € NTIME(f(n));
NTIME(f(n)) € SPACE(f(n));

NSPACE(f(n)) € TIME(K'& "/ (m);

The first two are straightforward from definitions.
The third is an easy simulation.

The last requires some more work.

Anuj Dawar May 17, 2010

Reachability

Recall the Reachability problem: given a directed graph G = (V, E)
and two nodes a,b € V, determine whether there is a path from a
to bin G.

A simple search algorithm solves it:

1. mark node a, leaving other nodes unmarked, and initialise set

S to {a};

2. while S is not empty, choose node i in S: remove i from S and
for all j such that there is an edge (7, j) and j is unmarked,
mark j and add j to S;

3. if b is marked, accept else reject.
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NL Reachability

We can construct an algorithm to show that the Reachability
problem is in NL:

1. write the index of node a in the work space;

2. if ¢ is the index currently written on the work space:
(a) if ¢ = b then accept, else
guess an index j (logn bits) and write it on the work space.

(b) if (4,7) is not an edge, reject, else replace i by j and return
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We can use the O(n?) algorithm for Reachability to show that:
NSPACE(f(n)) C TIME(klesn+/(n))

for some constant k.

Let M be a nondeterministic machine working in space bounds
f(n).
For any input z of length n, there is a constant ¢ (depending on the

number of states and alphabet of M) such that the total number of
possible configurations of M within space bounds f(n) is bounded

by n - ef(m).
to (2). y
Here, ¢/(") represents the number of different possible
contents of the work space, and n different head positions
on the input.
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Configuration Graph

Define the configuration graph of M,z to be the graph whose nodes
are the possible configurations, and there is an edge from 4 to j if,

and only if, ¢ —s 7.

Then, M accepts z if, and only if, some accepting configuration is
reachable from the starting configuration (s,>,z,>,¢) in the
configuration graph of M, x.
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Using the O(n?) algorithm for Reachability, we get that M can be
simulated by a deterministic machine operating in time

¢ (nef M2 o f 0orn+F () (logntf(n)

In particular, this establishes that NL C P and NPSPACE C EXP.
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Savitch’s Theorem

Further simulation results for nondeterministic space are obtained
by other algorithms for Reachability.

We can show that Reachability can be solved by a deterministic
algorithm in O((logn)?) space.

Consider the following recursive algorithm for determining whether
there is a path from a to b of length at most n (for n a power of 2):
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O((logn)?) space Reachability algorithm:

Path(a, b, 1)
ifi =1 and a # b and (a, b) is not an edge reject

else if (a,b) is an edge or a = b accept
else, for each node x, check:

1. is there a path a — z of length i/2; and
2. is there a path x — b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is logn, and the number of bits

of information kept at each stage is 3logn.
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Savitch’s Theorem - 2

The space efficient algorithm for reachability used on the
configuration graph of a nondeterministic machine shows:

NSPACE(f(n)) € SPACE(f(n)?)

for f(n) > logn.

This yields

PSPACE = NPSPACE = co-NPSPACE.
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Complementation

A still more clever algorithm for Reachability has been used to show
that nondeterministic space classes are closed under

complementation:

If f(n) > logn, then

NSPACE(f(n)) = co-NSPACE(f(n))

In particular
NL = co-NL.
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Complexity Classes

We have established the following inclusions among complexity
classes:

LC NLC P C NP CPSPACE C EXP

Showing that a problem is NP-complete or PSPACE-complete, we
often say that we have proved it intractable.

While this is not strictly correct, a proof of completeness for these

classes does tell us that the problem is structurally difficult.

Similarly, we say that PSPACE-complete problems are harder than
NP-complete ones, even if the running time is not higher.
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Logarithmic Space Reductions

We write
A<, B

if there is a reduction f of A to B that is computable by a
deterministic Turing machine using O(logn) workspace (with a

read-only input tape and write-only output tape).

Note: We can compose <, reductions. So,

if A<y, Band B <j C then A< C
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NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of
NP-completeness, we can see that SAT and the various other

NP-complete problems are actually complete under <; reductions.

Thus, if SAT <y A for some problem in L then not only P = NP
but also L = NP.
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P-complete Problems

It makes little sense to talk of complete problems for the class P
with respect to polynomial time reducibility <p.

There are problems that are complete for P with respect to

logarithmic space reductions <j.

One example is CVP—the circuit value problem.

o If CVP €L thenL=P.
e If CVP € NL then NL = P.
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