Recall:

Definition. f € IN”"~IN is (register machine)
computable if there is a register machine M with at least
n + 1 registers Ro, Ry, ..., R, (and maybe more)

such that for all (x,...,x,) € N" and all y € IN,

the computation of M starting with Rg = 0,
R1 = x1, ..., Ry = x,, and all other registers

set to 0, halts with Ry =y

if and only if f(xq,...,x,) = v.

Multiplication f(x,y) £ xy
is computable

R/R\W
N

HALT Rs — Ry

START

Ry

Computation Theory , L 3 34/171

Multiplication f(x,y) £ xy
is computable

START Ry <%’2153):22 &)
2> O,KiR3
Ry CF / \Rg
\ LV

HALT Rs — Ry

Computation Theory , L 3 35/171

Multiplication f(x,y) £ xy
is computable

)R 3 =
START Ry (ko.R;,%2)
/ \(Ro-th » 0, R1Ry)
Ry Ry

Computation Theory , L 3 35/171

Multiplication f(x,y) £ xy
is computable

{aSsum\vng Rg :O}
(RO)Rz)Rg) = (Ro"’ez)eg > 0)

Computation Theory , L 3 35/171

Multiplication f(x,y) £ xy
is computable

R/R\W
Ay

HALT Rs — Ry

START

Ry

If the machine is started with (Rg,R1,R2,R3) = (0,x,y,0), it halts
with (Ro,Rl,Rz, R3) = (xy, 0, Y, 0).

Computation Theory , L 3 35/171

Further examples

The following arithmetic functions are all computable.
(Proof—left as an exercise!)
projection: p(x,y) = x

constant: c(x) = n

— ify <
truncated subtraction: x ~ y = r—Yy ' y>~x
0 ify >«x

Computation Theory , L 3 36/171

Further examples

The following arithmetic functions are all computable.
(Proof—left as an exercise!)

integer division:

rdivy 2 {;nteger part of xly ::z z g
integer remainder: x mody = x ~ y(x divy)
exponentiation base 2: e(x) = 2*

logarithm base 2:
greatest y such that 2V < x ifx >0

1 2
°82(%) {0 if x =0

Computation Theory , L 3 37/171

Coding Programs as Numbers

Computation Theory , L 3 38/171

Turing/Church solution of the Etscheidungsproblem uses
the idea that (formal descriptions of) algorithms can be
the data on which algorithms act.

To realize this idea with Register Machines we have to
be able to code RM programs as numbers. (In general,
such codings are often called Godel numberings.)

To do that, first we have to code pairs of numbers and
lists of numbers as numbers. There are many ways to do
that. We fix upon one. ..

Computation Theory , L 3 39/171

For x,y € IN, define {

So /&C/Q,S
05(x,y) | = [0y [1]0--0]
— [ooy[0/1---1]
(Notation: Obx = x in binary.) t—;’c\?,s

E.g. 27 = 0b11011 = (0,13) = (2,3)

Computation Theory , L 3 40/171

For x,y € IN, define { (-

So
Ob{x,y) | = |Oby |1/0---0]

— [0by[0]1---1]

(—, —) gives a bijection (one-one correspondence)
between IN X IN and IN.

{—, —) gives a bijection between IN X IN and
{n € N | n #0}.

Computation Theory , L 3 41/171

Numerical coding of lists

listIN £ set of all finite lists of natural numbers, using
ML notation for lists:

» empty list: []
» list-cons: x:: £ € listIN (given x € IN and £ € listIN)

> [x1,x2,...,xn] £ xlz:(xzz;(...xn;; []...))

Computation Theory , L 3 42/171

listIN £ set of all finite lists of natural numbers, using

ML notation for lists.
For £ € listIN, define " £ ' &€ IN by induction on the

length of the list £:

{ R
Txul7 & (x, 7€) =2¥%(2-T£74+1)

Thus I—[xlr X2, -rxn]—l — <<x1/ <<x2/ e <<xn10>> e >> >>

listIN £ set of all finite lists of natural numbers, using
ML notation for lists.

For £ € listIN, define " £ ' &€ IN by induction on the
length of the list £:

{ [i 0

Tx

{x,7€7) =27(2-7£7+1)

listIN £ set of all finite lists of natural numbers, using

ML notation for lists.
For £ € listIN, define " £ ' &€ IN by induction on the

length of the list £:

{ R
Txul7 & (x, 7€) =2¥%(2-T£74+1)

(06 [xe, 22, 2] 1| = [1]0---0][1]0---0 |- {1]0--0]

Hence £ +— " £ gives a bijection from list IN to IN.

listIN £ set of all finite lists of natural numbers, using

ML notation for lists.
For £ € listIN, define " £ ' &€ IN by induction on the
length of the list £:

Txul7 & (x, 7€) =2¥%(2-T£74+1)

{ l—[]“l 2 0

For example:
T3] ="3:[]7" = (3,0) =23(2-0+1) = 8 = 061000

[1,3]7 = (1,7[3]") = (1,8) = 34 = 0b100010
"[2,1,3]7 = (2,7[1,3]") = (2,34) = 276 = 06100010100

listIN £ set of all finite lists of natural numbers, using

ML notation for lists.
For £ € listIN, define " £ ' &€ IN by induction on the
length of the list £:

Txul7 & (x, 7€) =2¥%(2-T£74+1)

{ l—[]“l 2 0

For example: 2
"[B]7'="3:[]"= (3,0) = 23(2 -0+1) :38 — 061000
|

"[1,3)7 = (1,7[3]7) = (1,8) =34 = 06100010 _ , ,
"2,1,3]7 = (2,7[1,3]7) = (2,34) = 276 = 0b100010100

Numerical coding of programs

If P is the RM program

Lo :body,
L1 :body,

L,:body,

then its numerical code is

P12 "["body,,..., "body, "

where the numerical code "body ' of an instruction body

F'I{;F N Iaj_j
is defined by: "R; - Lj,Lg'
THALT '

Computation Theory , L 3

> {1 (1>

(24, 7)
(2i +1, (j, k)
0

46/170

Any x € IN decodes to a unique instruction body(x):

if x = 0 then body(x) is HALT,
else (x > 0 and) let x = (y,z) in
if y = 2i is even, then
body(x) is R - L.,
else y = 2i + 1is odd, let z = (j, k) in
body(x) is R; — Lj, L

So any e € IN decodes to a unique program prog(e),
called the register machine program with index e:

Lo: bOdy(X())

L,: body(xn)

Example of prog(e)
> 786432 = 219 + 218 — 0b110...0 = "[18,0]"
N——"
18 ”70”s
> 18 = 0b10010 = (1,4) = (1,(0,2)) = "Ry — Lo, Ly

» 0 = "HALT'

Lo: R’E — Lo, Lo

So prog(786432) = L HALT
1-

Computation Theory , L 3 48/171

Example of prog(e)
> 786432 = 219 + 218 — 0b110...0 = "[18,0]"
N——"
18 ”70”s
> 18 = 0610010 = (1,4) = (1,(0,2)) = "Ry — Lo, Ly"

» 0 = "HALT'

L;:HALT

So prog(786432) = L“’R0‘9LWIQ“7

N.B. jump to label with no
body (erroneous halt)

Computation Theory , L 3 48/171

Example of prog(e)

» 786432 = 219 + 218 — 0b110...0 = "[18,0]"
N——"

18 ”0”5

> 18 = 010010 = (1,4) = (1,(0,2)) = "Ry Lo, Ly"

» 0 = "HALT'

So prog(786432) =

Lo: R’E — Lo, La
Ly :HALT

N.B. In case e = 0 we have 0 = "[] 7, so prog(0) is the program
with an empty list of instructions, which by convention we regard as
a RM that does nothing (i.e. that halts immediately).

Computation Theory , L 3

48/171

