
Primitive recursion
Theorem. Given f ∈ N

n
⇀N and g ∈ N

n+2
⇀N,

there is a unique h ∈ N
n+1

⇀N satisfying

{

h(~x, 0) ≡ f (~x)

h(~x, x + 1) ≡ g(~x, x, h(~x, x))

for all ~x ∈ N
n and x ∈ N.

We write ρn(f , g) for h and call it the partial function
defined by primitive recursion from f and g.

Computation Theory , L 12 155/171

Representing primitive recursion

If f ∈ N
n
�N is represented by a λ-term F and

g ∈ N
n+2

�N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ N

n+1
�N satisfying

{

h(~a, 0) = f (~a)

h(~a, a + 1) = g(~a, a, h(~a, a))

Computation Theory , L 12 156/171

Representing primitive recursion

If f ∈ N
n
�N is represented by a λ-term F and

g ∈ N
n+2

�N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ N

n+1
�N satisfying

h(~a, a) = if a = 0 then f (~a)
else g(~a, a− 1, h(~a, a− 1))

Computation Theory , L 12 157/171

Representing primitive recursion

If f ∈ N
n
�N is represented by a λ-term F and

g ∈ N
n+2

�N is represented by a λ-term G,

we want to show λ-definability of the unique

h ∈ N
n+1

�N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (N
n+1

�N)�(N
n+1

�N) is given by

Φ f ,g(h)(~a, a) , if a = 0 then f (~a)
else g(~a, a− 1, h(~a, a− 1))

Computation Theory , L 12 157/171

Representing primitive recursion

If f ∈ N
n
�N is represented by a λ-term F and

g ∈ N
n+2

�N is represented by a λ-term G,

we want to show λ-definability of the unique

h ∈ N
n+1

�N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (N
n+1

�N)�(N
n+1

�N) is given by. . .

Strategy:

I show that Φ f ,g is λ-definable;

I show that we can solve fixed point equations
X = M X up to β-conversion in the λ-calculus.

Computation Theory , L 12 158/171

Representing booleans

True , λx y. x

False , λx y. y

If , λ f x y. f x y

satisfy

I If True M N =β True M N =β M

I If False M N =β False M N =β N

Computation Theory , L 12 159/171

Representing test-for-zero

Eq0 , λx. x(λy. False) True

satisfies

I Eq0 0 =β 0 (λy. False) True
=β True

I Eq0 n + 1 =β n + 1 (λy. False) True
=β (λy. False)n+1 True
=β (λy. False)((λy. False)n True)
=β False

Computation Theory , L 12 160/171

Representing ordered pairs

Pair , λx y f . f x y

Fst , λ f . f True

Snd , λ f . f False

satisfy

I Fst(Pair M N) =β Fst(λ f . f M N)
=β (λ f . f M N) True
=β True M N
=β M

I Snd(Pair M N) =β · · · =β N

Computation Theory , L 12 161/171

Representing predecessor

Want λ-term Pred satisfying

Pred n + 1 =β n
Pred 0 =β 0

Have to show how to reduce the “n + 1-iterator” n + 1 to the
“n-iterator” n.

Idea: given f , iterating the function g f : (x, y) 7→ (f (x), x)

n + 1 times starting from (x, x) gives the pair (f n+1(x), f n(x)).
So we can get f n(x) from f n+1(x) parametrically in f and x, by
building g f from f , iterating n + 1 times from (x, x) and then
taking the second component.

Hence. . .

Computation Theory , L 12 162/170

Representing predecessor

Want λ-term Pred satisfying

Pred n + 1 =β n
Pred 0 =β 0

Pred , λy f x. Snd(y (G f)(Pair x x))
where

G , λ f p. Pair(f (Fst p))(Fst p)

has the required β-reduction properties. [Exercise]

Computation Theory , L 12 163/171

Curry’s fixed point combinator Y

Y , λ f . (λx. f (x x))(λx. f (x x))

satisfies Y M → (λx. M(x x))(λx. M(x x))
→ M((λx. M(x x))(λx. M(x x)))

hence Y M � M((λx. M(x x))(λx. M(x x)))� M(Y M).

So for all λ-terms M we have

Y M =β M(Y M)

Computation Theory , L 12 164/171

Representing primitive recursion

If f ∈ N
n
�N is represented by a λ-term F and

g ∈ N
n+2

�N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ N

n+1
�N satisfying

{

h(~a, 0) = f (~a)

h(~a, a + 1) = g(~a, a, h(~a, a))

Computation Theory , L 12 165/171

Representing primitive recursion

If f ∈ N
n
�N is represented by a λ-term F and

g ∈ N
n+2

�N is represented by a λ-term G,

we want to show λ-definability of the unique

h ∈ N
n+1

�N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (N
n+1

�N)�(N
n+1

�N) is given by

Φ f ,g(h)(~a, a) , if a = 0 then f (~a)
else g(~a, a− 1, h(~a, a− 1))

We now know that h can be represented by

Y(λz~xx. If(Eq0 x)(F~x)(G~x (Pred x)(z~x (Pred x)))).

Computation Theory , L 12 165/170

Representing primitive recursion

Recall that the class PRIM of primitive recursive
functions is the smallest collection of (total) functions
containing the basic functions and closed under the
operations of composition and primitive recursion.

Combining the results about λ-definability so far, we
have: every f ∈ PRIM is λ-definable.

So for λ-definability of all recursive functions, we just
have to consider how to represent minimization.
Recall. . .

Computation Theory , L 12 166/171

Minimization
Given a partial function f ∈ N

n+1
⇀N, define

µn f ∈ N
n
⇀N by

µn f (~x) , least x such that f (~x, x) = 0
and for each i = 0, . . . , x− 1,
f (~x, i) is defined and > 0
(undefined if there is no such x)

Can express µn f in terms of a fixed point equation:

µn f (~x) ≡ g(~x, 0) where g satisfies g = Ψ f(g)

with Ψ f ∈ (N
n+1

⇀N)�(N
n+1

⇀N) defined by

Ψ f(g)(~x, x) ≡ if f (~x, x) = 0 then x else g(~x, x + 1)

Computation Theory , L 12 167/171

Representing minimization

Suppose f ∈ N
n+1

�N (totally defined function)
satisfies ∀~a∃a (f (~a, a) = 0), so that µn f ∈ N

n
�N

is totally defined.

Thus for all ~a ∈ N
n, µn f (~a) = g(~a, 0) with

g = Ψ f(g) and Ψ f(g)(~a, a) given by
if (f (~a, a) = 0) then a else g(~a, a + 1).

So if f is represented by a λ-term F, then µn f is
represented by

λ~x.Y(λz~x x. If(Eq0(F~x x)) x (z~x (Succ x)))~x 0

Computation Theory , L 12 168/171

Recursive implies λ-definable

Fact: every partial recursive f ∈ N
n
⇀N can be

expressed in a standard form as f = g ◦ (µnh) for some
g, h ∈ PRIM. (Follows from the proof that computable =

partial-recursive.)

Hence every (total) recursive function is λ-definable.

More generally, every partial recursive function is
λ-definable, but matching up ↑ with 6 ∃β−nf makes the
representations more complicated than for total
functions: see [Hindley, J.R. & Seldin, J.P. (CUP, 2008),
chapter 4.]

Computation Theory , L 12 169/170

Computable = λ-definable

Theorem. A partial function is computable if and only if
it is λ-definable.

We already know that computable = partial recursive⇒
λ-definable. So it just remains to see that λ-definable functions
are RM computable. To show this one can

I code λ-terms as numbers (ensuring that operations for
constructing and deconstructing terms are given by RM
computable functions on codes)

I write a RM interpreter for (normal order) β-reduction.

The details are straightforward, if tedious.

Computation Theory , L 12 170/171

