

Theorem. Given \(f \in \mathbb{N}^n \rightarrow \mathbb{N} \) and \(g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N} \), there is a unique \(h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N} \) satisfying

\[
\begin{align*}
 h(\vec{x}, 0) &= f(\vec{x}) \\
 h(\vec{x}, x + 1) &= g(\vec{x}, x, h(\vec{x}, x))
\end{align*}
\]

for all \(\vec{x} \in \mathbb{N}^n \) and \(x \in \mathbb{N} \).

We write \(\rho^n(f, g) \) for \(h \) and call it the partial function defined by primitive recursion from \(f \) and \(g \).
Representing primitive recursion

If $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ-term G, we want to show λ-definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying

\[
\begin{align*}
 h(\vec{a},0) &= f(\vec{a}) \\
 h(\vec{a},a+1) &= g(\vec{a},a,h(\vec{a},a))
\end{align*}
\]
Representing primitive recursion

If $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ-term G, we want to show λ-definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying

$$h(\bar{a}, a) = \text{if } a = 0 \text{ then } f(\bar{a})$$
$$\text{else } g(\bar{a}, a - 1, h(\bar{a}, a - 1))$$
Representing primitive recursion

If $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ-term G, we want to show λ-definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$

where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N}^{n+1} \rightarrow \mathbb{N})$ is given by

$$\Phi_{f,g}(h)(\vec{a}, a) \triangleq \begin{cases} f(\vec{a}) & \text{if } a = 0 \\ g(\vec{a}, a - 1, h(\vec{a}, a - 1)) & \text{else} \end{cases}$$
Representing primitive recursion

If $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ is represented by a λ-term F and $g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ is represented by a λ-term G, we want to show λ-definability of the unique $h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ satisfying $h = \Phi_{f,g}(h)$

where $\Phi_{f,g} \in (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N}^{n+1} \rightarrow \mathbb{N})$ is given by...

Strategy:

- show that $\Phi_{f,g}$ is λ-definable;
- show that we can solve fixed point equations $X = M X$ up to β-conversion in the λ-calculus.
Representing booleans

\[
\begin{align*}
\text{True} & \triangleq \lambda x y. x \\
\text{False} & \triangleq \lambda x y. y \\
\text{If} & \triangleq \lambda f x y. f x y
\end{align*}
\]

satisfy

\[
\begin{align*}
\text{If True } M N & \equiv_{\beta} \text{True } M N \equiv_{\beta} M \\
\text{If False } M N & \equiv_{\beta} \text{False } M N \equiv_{\beta} N
\end{align*}
\]
Representing test-for-zero

\[\text{Eq}_0 \triangleq \lambda x. x(\lambda y. \text{False}) \text{ True} \]

satisfies

- \[\text{Eq}_0 0 =_\beta 0 (\lambda y. \text{False}) \text{ True} \]
 \[=_\beta \text{ True} \]

- \[\text{Eq}_0 n + 1 =_\beta n + 1 (\lambda y. \text{False}) \text{ True} \]
 \[=_\beta (\lambda y. \text{False})^{n+1} \text{ True} \]
 \[=_\beta (\lambda y. \text{False})(((\lambda y. \text{False})^n \text{ True})) \]
 \[=_\beta \text{ False} \]
Representing ordered pairs

\[\text{Pair} \triangleq \lambda x y f. f x y \]
\[\text{Fst} \triangleq \lambda f. f \text{True} \]
\[\text{Snd} \triangleq \lambda f. f \text{False} \]

satisfy

\[\text{Fst}(\text{Pair } M N) =_\beta \text{Fst}(\lambda f. f M N) \]
\[=_\beta (\lambda f. f M N) \text{True} \]
\[=_\beta \text{True } M N \]
\[=_\beta M \]

\[\text{Snd}(\text{Pair } M N) =_\beta \cdots =_\beta N \]
Representing predecessor

Want \(\lambda \)-term \(\text{Pred} \) satisfying

\[
\begin{align*}
\text{Pred} \ n + 1 & \ \beta \ \ n \\
\text{Pred} \ 0 & \ \beta \ \ 0
\end{align*}
\]

Have to show how to reduce the “\(n + 1 \)-iterator” \(n + 1 \) to the “\(n \)-iterator” \(n \).

Idea: given \(f \), iterating the function \(g_f : (x, y) \mapsto (f(x), x) \) \(n + 1 \) times starting from \((x, x) \) gives the pair \((f^{n+1}(x), f^n(x)) \). So we can get \(f^n(x) \) from \(f^{n+1}(x) \) *parametrically in \(f \) and \(x \),* by building \(g_f \) from \(f \), iterating \(n + 1 \) times from \((x, x) \) and then taking the second component.

Hence...
Representing predecessor

Want λ-term Pred satisfying

\[
\begin{align*}
\text{Pred} n + 1 & \equiv_{\beta} n \\
\text{Pred} 0 & \equiv_{\beta} 0
\end{align*}
\]

$\text{Pred} \triangleq \lambda y f x. \text{Snd}(y (G f)(\text{Pair} x x))$

where

$G \triangleq \lambda f p. \text{Pair}(f(\text{Fst} p))(\text{Fst} p)$

has the required β-reduction properties. [Exercise]
Curry’s fixed point combinator Y

\[Y \triangleq \lambda f. (\lambda x. f(x \, x)) (\lambda x. f(x \, x)) \]

satisfies \[Y \, M \rightarrow (\lambda x. M(x \, x)) (\lambda x. M(x \, x)) \]
\[\rightarrow M((\lambda x. M(x \, x)) (\lambda x. M(x \, x))) \]

hence \[Y \, M \rightarrow M((\lambda x. M(x \, x)) (\lambda x. M(x \, x))) \leftrightarrow M(Y \, M). \]

So for all \(\lambda \)-terms \(M \) we have

\[Y \, M =_{\beta} M(Y \, M) \]
Representing primitive recursion

If \(f \in \mathbb{N}^n \rightarrow \mathbb{N} \) is represented by a \(\lambda \)-term \(F \) and \(g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N} \) is represented by a \(\lambda \)-term \(G \), we want to show \(\lambda \)-definability of the unique \(h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N} \) satisfying

\[
\begin{aligned}
 h(\vec{a}, 0) &= f(\vec{a}) \\
 h(\vec{a}, a + 1) &= g(\vec{a}, a, h(\vec{a}, a))
\end{aligned}
\]
Representing primitive recursion

If \(f \in \mathbb{N}^n \rightarrow \mathbb{N} \) is represented by a \(\lambda \)-term \(F \) and \(g \in \mathbb{N}^{n+2} \rightarrow \mathbb{N} \) is represented by a \(\lambda \)-term \(G \), we want to show \(\lambda \)-definability of the unique \(h \in \mathbb{N}^{n+1} \rightarrow \mathbb{N} \) satisfying \(h = \Phi_{f,g}(h) \)

where \(\Phi_{f,g} \in (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N}^{n+1} \rightarrow \mathbb{N}) \) is given by

\[
\Phi_{f,g}(h)(\vec{a}, a) \triangleq \text{if } a = 0 \text{ then } f(\vec{a}) \text{ else } g(\vec{a}, a - 1, h(\vec{a}, a - 1))
\]

We now know that \(h \) can be represented by

\[
Y(\lambda z \vec{x}. \text{If}(\text{Eq}_0 x)(F \vec{x})(G \vec{x}(\text{Pred} x)(z \vec{x}(\text{Pred} x)))) \]

Computation Theory, L 12
165/170
Representing primitive recursion

Recall that the class \(\text{PRIM} \) of primitive recursive functions is the smallest collection of (total) functions containing the basic functions and closed under the operations of composition and primitive recursion.

Combining the results about \(\lambda \)-definability so far, we have: every \(f \in \text{PRIM} \) is \(\lambda \)-definable.

So for \(\lambda \)-definability of all recursive functions, we just have to consider how to represent minimization. Recall...
Minimization

Given a partial function \(f \in \mathbb{N}^{n+1} \to \mathbb{N} \), define \(\mu^n f \in \mathbb{N}^n \to \mathbb{N} \) by

\[
\mu^n f(\vec{x}) \triangleq \text{least } x \text{ such that } f(\vec{x}, x) = 0 \text{ and for each } i = 0, \ldots, x - 1, f(\vec{x}, i) \text{ is defined and } > 0
\]

(undefined if there is no such \(x \))

Can express \(\mu^n f \) in terms of a fixed point equation:

\[
\mu^n f(\vec{x}) \equiv g(\vec{x}, 0) \text{ where } g \text{ satisfies } g = \Psi_f(g)
\]

with \(\Psi_f \in (\mathbb{N}^{n+1} \to \mathbb{N}) \to (\mathbb{N}^{n+1} \to \mathbb{N}) \) defined by

\[
\Psi_f(g)(\vec{x}, x) \equiv \text{if } f(\vec{x}, x) = 0 \text{ then } x \text{ else } g(\vec{x}, x + 1)
\]
Suppose $f \in \mathbb{N}^{n+1} \to \mathbb{N}$ (totally defined function) satisfies $\forall \vec{a} \exists a \ (f(\vec{a}, a) = 0)$, so that $\mu^n f \in \mathbb{N}^n \to \mathbb{N}$ is totally defined.

Thus for all $\vec{a} \in \mathbb{N}^n$, $\mu^n f(\vec{a}) = g(\vec{a}, 0)$ with $g = \Psi_f(g)$ and $\Psi_f(g)(\vec{a}, a)$ given by

if $(f(\vec{a}, a) = 0)$ then a else $g(\vec{a}, a + 1)$.

So if f is represented by a λ-term F, then $\mu^n f$ is represented by

$$\lambda \vec{x}.Y(\lambda z \vec{x}x. \text{If}(\text{Eq}_0(F \vec{x}x)) x (z \vec{x}(\text{Succ} x))) \vec{x}0$$
Recursive implies λ-definable

Fact: every partial recursive $f \in \mathbb{N}^n \rightarrow \mathbb{N}$ can be expressed in a standard form as $f = g \circ (\mu^n h)$ for some $g, h \in \text{PRIM}$. (Follows from the proof that computable $=$ partial-recursive.)

Hence every (total) recursive function is λ-definable.

More generally, every partial recursive function is λ-definable, but matching up \uparrow with $\forall \beta - \text{nf}$ makes the representations more complicated than for total functions: see [Hindley, J.R. & Seldin, J.P. (CUP, 2008), chapter 4.]
Computable = λ-definable

Theorem. A partial function is computable if and only if it is λ-definable.

We already know that computable $= \text{partial recursive} \Rightarrow \lambda$-definable. So it just remains to see that λ-definable functions are RM computable. To show this one can

- code λ-terms as numbers (ensuring that operations for constructing and deconstructing terms are given by RM computable functions on codes)
- write a RM interpreter for (normal order) β-reduction.

The details are straightforward, if tedious.