Lambda-Definable Functions

Computation Theory , L 11 139/171

p-Conversion M =g N

Informally: M =g N holds if N can be obtained from
M by performing zero or more steps of a-equivalence,
B-reduction, or B-expansion (= inverse of a reduction).

Eg u((Axy.vx)y) =g (Ax.ux)(Ax.vy)
because (Ax.ux)(Ax.vy) — u(Ax.vy)

and so we have

u((Axy.vx)y) =o u((Axy’.vx)y)
— u(Ay'.vy) reduction
=, u(Ax.vy)
«— (Ax.ux)(Ax.vy) expansion

Computation Theory , L 11 140/171

M=z N

is the binary relation inductively generated by the rules:

Theorem. — is confluent, that is, if My «— M — M,,

then there exists M’ such that M; — M’ « M,.

[Proof omitted.]

Theorem. — is confluent, that is, if My «— M — M,,

then there exists M’ such that M; — M’ « M,.

Corollary. Two show that two terms are B-convertible, it
suffices to show that they both reduce to the same term.
More precisely: My =g M, iff IM (My — M « M,).

Computation Theory , L 11 142/171

Theorem. — is confluent, that is, if M; «~ M — M,,

then there exists M’ such that M; — M’ « M,.

Corollary. M; =g M, iff IM (M; - M « M>).

Proof. =g satisfies the rules generating —; so M — M’ implies
M =g M’. Thus if My — M « M,, then My =g M =g M and
SO M1 :ﬁ Mz.

Conversely, the relation {(My, M) | M (M7 - M « M3)}
satisfies the rules generating =pg: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem: My M M, M’ M3

Computation Theory , L 11 142/171

Theorem. — is confluent, that is, if M; «~ M — M,,

then there exists M’ such that M; — M’ « M,.

Corollary. M; =g M, iff IM (M; - M « M>).

Proof. =g satisfies the rules generating —; so M — M’ implies
M =g M’. Thus if My — M « M,, then My =g M =g M and
SO M1 :ﬁ Mz.

Conversely, the relation {(My, M) | M (M7 - M « M3)}
satisfies the rules generating =pg: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser

theorem: My M M, M’ M3
\C-R /
M,

Computation Theory , L 11 142/171

Theorem. — is confluent, that is, if M; «~ M — M,,

then there exists M’ such that M; — M’ « M,.

Corollary. M; =g M, iff IM (M; - M « M>).

Proof. =g satisfies the rules generating —; so M — M’ implies
M =g M’. Thus if My — M « M,, then My =g M =g M and
SO M1 :ﬁ Mz.

Conversely, the relation {(My, M) | M (M7 - M « M3)}
satisfies the rules generating =pg: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem. Hence M =g M, implies IM (M7 — M’ « M,).

Computation Theory , L 11 142/171

Definition. A A-term N is in B-normal form (nf) if it

contains no B-redexes (no sub-terms of the form
(Ax.M)M"). M has B-nf N if M =g N with N a B-nf.

Definition. A A-term N is in B-normal form (nf) if it

contains no B-redexes (no sub-terms of the form
(Ax.M)M"). M has B-nf N if M =g N with N a B-nf.

Note that if N is a B-nf and N — N’, then it must be that

N =, N’ (why?).

Hence if N7 =p N2 with N1 and N both B-nfs, then N3 =, N».
(For if Ny =g Ny, then Ny «— M — N, for some M; hence by
Church-Rosser, Ny — M’ « N, for some M’, so

Ny =, M' =, N;.)

So the B-nf of M is unique up to a-equivalence if
it exists.

Computation Theory , L 11 143/171

Non-termination

Some A terms have no B-nf.
Eg Q= (Ax.xx)(Ax.xx) satisfies

» O — (xx)[(Axxx)/x] = Q,

») —» M implies) =, M.
So there is no B-nf N such that) =g N.

Computation Theory , L 11 144/171

Non-termination

Some A terms have no B-nf.
Eg Q= (Ax.xx)(Ax.xx) satisfies

» O — (xx)[(Axxx)/x] = Q,

») —» M implies) =, M.
So there is no B-nf N such that) =g N.

A term can possess both a B-nf and infinite chains

of reduction from it.

Eg. (Axy)Q2 — y, but also (Ax.y)Q — (Axy)QQ — - --

Computation Theory , L 11 144/171

Non-termination

Normal-order reduction is a deterministic strategy for
reducing A-terms: reduce the “left-most, outer-most”
redex first.

» left-most: reduce M before N in M N, and then

> outer-most: reduce (Ax.M)N rather than either of
M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the
B-nf of M if it possesses one.

Computation Theory , L 11 145/171

Encoding data in A-calculus

Computation in A-calculus is given by B-reduction. To
relate this to register/Turing-machine computation, or to
partial recursive functions, we first have to see how to
encode numbers, pairs, lists, ...as A-terms.

We will use the original encoding of numbers due to
Church. ..

Computation Theory , L 11 146/171

Af xx
Afx.fx
Afx.f(fx)

0 &
1 2
b &

||[>

Afxui&;;&ix)'“)

n times

M°N 2N
Notation:{ M'N £ MN
M"tIN £ M(M"N)

so we can write 1 as A f x.f"x and we have [n M N =g M" N |.

Definition. f € IN” ~IN is A-definable if there is a
closed A-term F that represents it: for all
(x1,...,%,) EN"andy € N

if f(x1,---,%:) =y, then Fxy---x, =py
if f(x1,...,%,)7, then Fxq---x, has no B-nf.

For example, addition is A-definable because it is represented by
P2 Ax x2. A fx.x1 f(x2 f x):

Pmn =g Af x.m f(n f x)
=p Afx.m f(f"x)
=p Afx. f"(f"x)
= Afx.f"tix
=m+tn

Theorem. A partial function is computable if and only if

it is A-definable.

We already know that

Register Machine computable
= Turing computable
= partial recursive.

Using this, we break the theorem into two parts:

» every partial recursive function is A-definable
» A-definable functions are RM computable

Computation Theory , L 11 149/171

Definition. f € IN” ~IN is A-definable if there is a
closed A-term F that represents it: for all
(x1,...,%,) EN"andy € N

if f(x1,---,%:) =y, then Fxy---x, =py
if f(x1,...,%x4)T, then Fxq -+ -x, has no B-nf.

This condition can make it quite tricky to find a A-term
representing a non-total function.

For now, we concentrate on total functions. First, let us
see why the elements of PRIM (primitive recursive
functions) are A-definable.

Basic functions

» Projection functions, proj? € IN"—IN:

proj?(x1, ..., x,) = x;

» Constant functions with value 0, zero” € IN"—IN:

zero™ (X1, ..., X,) 20

» Successor function, succ € IN—IN:

succ(x) 2 x+1

Computation Theory , L 11 151/171

Basic functions are representable

» proj? € IN"=IN is represented by Axq ...x,.x;
» zero” € IN"—IN is represented by Axy ...x,.0
» succ € IN—=IN is represented by

Succ 2 Axy fx.f(x1 f x)

Succn =g Afx. f(n f x)
=5 Af . f(f")
=Afx f"tlx
=n+1

Computation Theory , L 11 152/171

Representing composition

If total function f € IN"—IN is represented by F and
total functions g1,...,g, € IN"—IN are represented by
G1,..., Gy, then their composition

fo(g1,---,81) € N"=IN is represented simply by

Ax1.o X F(G1x1.o. %) oo o (GuX1e oo X))

because F(Giay...am)...(Gpay...am)
=g Fgi(ay,.. ,am) gn(a1,..., am)
=p f(g1(ar,..,am), -, 8u(a1,- -, m))
= fo(gl,...,g,,)(al,...,am)

Computation Theory , L 11 153/171

Representing composition

If total function f € IN"—IN is represented by F and
total functions g1,...,g, € IN"=IN are represented by
G1,..., Gy, then their composition

fo (gl, .,8n) € IN"=IN is represented simply by

Ax1.o X F(G1x1.o. %) oo o (GuX1e oo X))

This does not necessarily work for partial functions. E.g. totally
undefined function # € IN—IN is represented by U £ Ax;.Q
(why?) and zero! € IN—IN is represented by Z = Ax1.0; but
zerol o u is not represented by Axq. Z(U x1), because

(zero! o u)(n)1 whereas (Ax1. Z(Ux1))n =g ZQ =4 0.
(What is zero! o u represented by?)

Computation Theory , L 11 154/170

