Lambda-Calculus
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» Church (1936): A-calculus
» Turing (1936): Turing machines.

Turing showed that the two very different approaches
determine the same class of computable functions.
Hence:

Church-Turing Thesis. Every algorithm [in intuitive

sense of Lect. 1] can be realized as a Turing machine.
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A-Terms, M

are built up from a given, countable collection of
» variables x,y,z,...
by two operations for forming A-terms:

» A-abstraction: (Ax.M)
(where x is a variable and M is a A-term)

» application: (M M")
(where M and M’ are A-terms).
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A-Terms, M

are built up from a given, countable collection of
» variables x,y,z,...
by two operations for forming A-terms:

» A-abstraction: (Ax.M)
(where x is a variable and M is a A-term)

» application: (M M")
(where M and M’ are A-terms).

Some random examples of A-terms:
x (Axx) ((Ay.(xy))x) (Ay.((Ay.(xy))x))
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A-Terms, M

Notational conventions:

» (Ax1x2...x,.M) means
(Ax1.(Axy...(Ax,.M) ...))

» (MiM;...M,) means (... (M; M,)...M,)
(i.e. application is left-associative)

» drop outermost parentheses and those enclosing the
body of a A-abstraction. E.g. write

(Ax.(x(Ay.(yx)))) as Ax.x(Ay.y x).
» x # M means that the variable x does not occur
anywhere in the A-term M.
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Free and bound variables

In Ax.M, we call x the bound variable and M the body
of the A-abstraction.

An occurrence of x in a A-term M is called

» binding if in between A and .
(e.g. (Axyx)x)

» bound if in the body of a binding occurrence of x
(e.g. (Axyx)x)

» free if neither binding nor bound

(e.g. (Ax.yx)x).
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Free and bound variables

Sets of free and bound variables:

FV(x) = {x}
FV(Ax.M) = FV(M) — {x}
FV(MN) = FV(M)UFV(N)
BV(x) = @
BV(Ax.M) = BV(M)U {x}
BV(MN) = BV(M)UBV(N)

If FV(M) = @, M is called a closed term, or
combinator.
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w-Equivalence M =, M’
Ax.M is intended to represent the function f such that

f(x) = M for all x.

So the name of the bound variable is immaterial: if

M’ = M{x'/x} is the result of taking M and changing
all occurrences of x to some variable x’ # M, then Ax.M
and Ax’.M’ both represent the same function.

For example, Ax.x and Ay.y represent the same function
(the identity function).
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M=, M

is the binary relation inductively generated by the rules:

z#(MN) M{z/x} =, N{zly}
Ax.M =, Ay.N

M=, M N=,N
MN =, M'N’

where M{z/x} is M with all occurrences of x replaced
by z.



w-Equivalence M =, M’

For example:

Ax.(Axx'.x) x' =, Ay.(Axx'.x)x’

because (Azx'.2)x" =, (Axx'.x)x’
because Azx'.z =, Axx’.x and ¥’ =, x’
because Ax' e =, Ax".u and x’ =, x’

because u—=,uandx’ =, x'.
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Fact: =, is an equivalence relation (reflexive, symmetric
and transitive).

We do not care about the particular names of bound variables, just
about the distinctions between them. So a-equivalence classes of
A-terms are more important than A-terms themselves.

» Textbooks (and these lectures) suppress any notation for
x-equivalence classes and refer to an equivalence class via a
representative A-term (look for phrases like “we identify terms
up to a-equivalence” or “we work up to a-equivalence").

» For implementations and computer-assisted reasoning, there
are various devices for picking canonical representatives of
a-equivalence classes (e.g. de Bruijn indexes, graphical
representations, .. .).
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N|[M/x]

M
y ify#x
Ay.N[M/x] if y # (M x)




N|[M/x]

M
y ify#x
Ay.N[M/x] if y# (M x)

Side-condition y # (M x) (y does not occur in M and
Yy # x) makes substitution “capture-avoiding”.

Eg ifx #y
(Ay.x)[y/x] # Ay.y



N|[M/x]

M
y ify#x
Ay.N[M/x] if y # (M x)

Side-condition y # (M x) (y does not occur in M and
Yy # x) makes substitution “capture-avoiding”.

Eg ifx#y#z#«x
(Ay.x) [y/x] =4 (Az.x)[y/x] = Az.y

N +— N[M/x] induces a total operation on
x-equivalence classes.



pB-Reduction

Recall that Ax.M is intended to represent the function f
such that f(x) = M for all x. We can regard Ax.M as

a function on A-terms via substitution: map each N to
M|[N/x].

So the natural notion of computation for A-terms is
given by stepping from a

B-redex (Ax.M)N
to the corresponding
B-reduct M|[N/x]
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One-step B-reduction, M — M’:

M— M
(Ax.M)N — M|[N/x] Ax.M — Ax.M'

M — M’ M — M’
MN — M'N NM— NM

N=M M-—-M M= N
N — N’




pB-Reduction

Eg.
- ((Ay.Az.z)u)y
(Axxy)((Ay.Az.z)u) j (Az.z)y—VY
- (Axxy)(Az.2)
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pB-Reduction

Eg.
- ((Ay.Az.z)u)y
(Axxy)((Ay.Az.z)u) j (Az.z)y—V
- (Axxy)(Az.2)
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B-Reduction

Eg.
- ((Ay.Az.z)u)y
(Axxy)((Ay.Az.z)u) j (Az.z)y—VY
- (Axxy)(Az.2)

E.g. of “up to a-equivalence” aspect of reduction:

(AxAyx)y =, (AxAzx)y — Azy
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Many-step B-reduction, M — M’:

M=, M M — M’ M —» M’ M — M"

M — M’ M — M’ M — M"”
(no steps) (1 step) (1 more step)

Eg.

(Axxy)((Ayz.2)u) -y
(Ax.Ayx)y — Azy





