
CST Part IB

Computation Theory

Andrew Pitts

Corrections to the notes and extra material available from the course web page:
www.cl.cam.ac.uk/teaching/0910/CompTheory/

Computation Theory , L 1 1/171

www.cl.cam.ac.uk/teaching/0910/CompTheory/


Introduction

Computation Theory , L 1 2/171



Algorithmically undecidable
problems

Computers cannot solve all mathematical problems, even
if they are given unlimited time and working space.

Three famous examples of computationally unsolvable
problems are sketched in this lecture.

I Hilbert’s Entscheidungsproblem

I The Halting Problem

I Hilbert’s 10th Problem.

Computation Theory , L 1 3/171



Hilbert’s Entscheidungsproblem

Is there an algorithm which when fed any statement in
the formal language of first-order arithmetic, determines
in a finite number of steps whether or not the statement
is provable from Peano’s axioms for arithmetic, using the
usual rules of first-order logic?

Such an algorithm would be useful! For example, by running it on

∀k > 1∃p, q (2k = p + q∧ prime(p)∧ prime(q))

(where prime(p) is a suitable arithmetic statement that p is a
prime number) we could solve Goldbach’s Conjecture (“every strictly
positive even number is the sum of two primes”), a famous open
problem in number theory.

Computation Theory , L 1 4/171



Hilbert’s Entscheidungsproblem

Is there an algorithm which when fed any statement in
the formal language of first-order arithmetic, determines
in a finite number of steps whether or not the statement
is provable from Peano’s axioms for arithmetic, using the
usual rules of first-order logic?

Posed by Hilbert at the 1928 International Congress of
Mathematicians. The problem was actually stated in a more
ambitious form, with a more powerful formal system in place of
first-order logic.

In 1928, Hilbert believed that such an algorithm could be found.
A few years later he was proved wrong by the work of Church and
Turing in 1935/36, as we will see.

Computation Theory , L 1 5/171



Decision problems

Entscheidungsproblem means “decision problem”. Given

I a set S whose elements are finite data structures of
some kind
(e.g. formulas of first-order arithmetic)

I a property P of elements of S
(e.g. property of a formula that it has a proof)

the associated decision problem is:

find an algorithm which
terminates with result 0 or 1 when fed an element s ∈ S
and
yields result 1 when fed s if and only if s has property P.

Computation Theory , L 1 6/171



Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples, such as:

I Procedure for multiplying numbers in decimal place
notation.

I Procedure for extracting square roots to any desired
accuracy.

I Euclid’s algorithm for finding highest common
factors.

Computation Theory , L 1 7/171



Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

Common features of the examples:

I finite description of the procedure in terms of
elementary operations

I deterministic (next step uniquely determined if there
is one)

I procedure may not terminate on some input data,
but we can recognize when it does terminate and
what the result is.

Computation Theory , L 1 8/171



Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

Common features of the examples:

I finite description of the procedure in terms of
elementary operations

e.g. multiply two decimal digits by
looking up their product in a table

I deterministic (next step uniquely determined if there
is one)

I procedure may not terminate on some input data,
but we can recognize when it does terminate and
what the result is.

Computation Theory , L 1 8/171



Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

In 1935/36 Turing in Cambridge and Church in
Princeton independently gave negative solutions to
Hilbert’s Entscheidungsproblem.

I First step: give a precise, mathematical definition of
“algorithm”.
(Turing: Turing Machines; Church: lambda-calculus.)

I Then one can regard algorithms as data on which
algorithms can act and reduce the problem to. . .

Computation Theory , L 1 9/171



The Halting Problem

is the decision problem with

I set S consists of all pairs (A, D), where A is an algorithm and
D is a datum on which it is designed to operate;

I property P holds for (A, D) if algorithm A when applied to
datum D eventually produces a result (that is, eventually
halts—we write A(D)↓ to indicate this).

Computation Theory , L 1 10/171



The Halting Problem

is the decision problem with

I set S consists of all pairs (A, D), where A is an algorithm and
D is a datum on which it is designed to operate;

I property P holds for (A, D) if algorithm A when applied to
datum D eventually produces a result (that is, eventually
halts—we write A(D)↓ to indicate this).

Turing and Church’s work shows that the Halting
Problem is undecidable, that is, there is no algorithm H
such that for all (A, D) ∈ S

H(A, D) =

{

1 if A(D)↓

0 otherwise.
Computation Theory , L 1 10/171



There’s no H such that H(A, D) =

{

1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an
H, let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

Computation Theory , L 1 11/171



There’s no H such that H(A, D) =

{

1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an
H, let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

So ∀A (C(A)↓ ↔ H(A, A) = 0) (since H is total)

and ∀A (H(A, A) = 0↔ ¬A(A)↓) (definition of H).

Computation Theory , L 1 11/171



There’s no H such that H(A, D) =

{

1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an
H, let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

So ∀A (C(A)↓ ↔ H(A, A) = 0) (since H is total)

and ∀A (H(A, A) = 0↔ ¬A(A)↓) (definition of H).

So ∀A (C(A)↓ ↔ ¬A(A)↓).

Computation Theory , L 1 11/171



There’s no H such that H(A, D) =

{

1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an
H, let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

So ∀A (C(A)↓ ↔ H(A, A) = 0) (since H is total)

and ∀A (H(A, A) = 0↔ ¬A(A)↓) (definition of H).

So ∀A (C(A)↓ ↔ ¬A(A)↓).

Taking A to be C, we get C(C)↓ ↔ ¬C(C)↓,
contradiction!

Computation Theory , L 1 11/171



There’s no H such that H(A, D) =

{

1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an
H, let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

So ∀A (C(A)↓ ↔ H(A, A) = 0) (since H is total)

and ∀A (H(A, A) = 0↔ ¬A(A)↓) (definition of H).

So ∀A (C(A)↓ ↔ ¬A(A)↓).

Taking A to be C, we get C(C)↓ ↔ ¬C(C)↓,
contradiction! p↔ ¬p = (p∧¬p)∨ (¬p∧¬¬p) = F ∨ F = F

Computation Theory , L 1 11/171



There’s no H such that H(A, D) =

{

1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an
H, let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

So ∀A (C(A)↓ ↔ H(A, A) = 0) (since H is total)

and ∀A (H(A, A) = 0↔ ¬A(A)↓) (definition of H).

So ∀A (C(A)↓ ↔ ¬A(A)↓).

Taking A to be C, we get C(C)↓ ↔ ¬C(C)↓,
contradiction!

why is A “a datum on which
A is designed to operate”?

Computation Theory , L 1 11/171



From HP to Entscheidungsproblem

Final step in Turing/Church proof of undecidability of the
Entscheidungsproblem: they constructed an algorithm
encoding instances (A, D) of the Halting Problem as
arithmetic statements ΦA,D with the property

ΦA,D is provable ↔ A(D)↓

Thus any algorithm deciding provability of arithmetic
statements could be used to decide the Halting
Problem—so no such exists.

Computation Theory , L 1 12/171



Hilbert’s Entscheidungsproblem

Is there an algorithm which when fed any statement in
the formal language of first-order arithmetic, determines
in a finite number of steps whether or not the statement
is provable from Peano’s axioms for arithmetic, using the
usual rules of first-order logic?

With hindsight, a positive solution to the Entscheidungsproblem

would be too good to be true. However, the algorithmic
unsolvability of some decision problems is much more surprising. A
famous example of this is. . .

Computation Theory , L 1 13/171



Hilbert’s 10th Problem

Give an algorithm which, when started with any
Diophantine equation, determines in a finite number of
operations whether or not there are natural numbers
satisfying the equation.

One of a number of important open problems listed by Hilbert at
the International Congress of Mathematicians in 1900.

Computation Theory , L 1 14/171



Diophantine equations

p(x1, . . . , xn) = q(x1, . . . , xn)

where p and q are polynomials in unknowns x1,. . . ,xn

with coefficients from N = {0, 1, 2, . . .}.

Named after Diophantus of Alexandria (c. 250AD).

Example: “find three whole numbers x1, x2 and x3 such that the
product of any two added to the third is a square”
[Diophantus’ Arithmetica, Book III, Problem 7].

In modern notation: find x1, x2, x3 ∈ N for which there exists
x, y, z ∈ N with

(x1x2 + x3− x2)2 +(x2x3 + x1− y2)2 +(x3x1 + x2− z2)2 = 0

Computation Theory , L 1 15/170



Diophantine equations

p(x1, . . . , xn) = q(x1, . . . , xn)

where p and q are polynomials in unknowns x1,. . . ,xn

with coefficients from N = {0, 1, 2, . . .}.

Named after Diophantus of Alexandria (c. 250AD).

Example: “find three whole numbers x1, x2 and x3 such that the
product of any two added to the third is a square”
[Diophantus’ Arithmetica, Book III, Problem 7].

In modern notation: find x1, x2, x3 ∈ N for which there exists
x, y, z ∈ N with

x2
1x2

2 + x2
2x2

3 + x2
3x2

1 + · · · = x2x1x2 + y2x2x3 + z2x3x1 + · · ·

[One solution: (x1, x2, x3) = (1, 4, 12), with (x, y, z) = (4, 7, 4).]

Computation Theory , L 1 15/170



Hilbert’s 10th Problem

Give an algorithm which, when started with any
Diophantine equation, determines in a finite number of
operations whether or not there are natural numbers
satisfying the equation.

I Posed in 1900, but only solved in 1970: Y Matijasevič,
J Robinson, M Davis and H Putnam show it undecidable by
reduction to the Halting Problem.

Computation Theory , L 1 16/170



Hilbert’s 10th Problem

Give an algorithm which, when started with any
Diophantine equation, determines in a finite number of
operations whether or not there are natural numbers
satisfying the equation.

I Posed in 1900, but only solved in 1970: Y Matijasevič,
J Robinson, M Davis and H Putnam show it undecidable by
reduction to the Halting Problem.

I Original proof used Turing machines. Later, simpler proof
[JP Jones & Y Matijasevič, J. Symb. Logic 49(1984)] used
Minsky and Lambek’s register machines

Computation Theory , L 1 16/170



Hilbert’s 10th Problem

Give an algorithm which, when started with any
Diophantine equation, determines in a finite number of
operations whether or not there are natural numbers
satisfying the equation.

I Posed in 1900, but only solved in 1970: Y Matijasevič,
J Robinson, M Davis and H Putnam show it undecidable by
reduction to the Halting Problem.

I Original proof used Turing machines. Later, simpler proof
[JP Jones & Y Matijasevič, J. Symb. Logic 49(1984)] used
Minsky and Lambek’s register machines—we will use them in
this course to begin with and return to Turing and Church’s
formulations of the notion of “algorithm” later.

Computation Theory , L 1 16/170




