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Learning Guide

These notes are designed to accompany 12 lectures on computation theory for Part IB of the
Computer Science Tripos. The aim of this course is to introduce several apparently different
formalisations of the informal notion of algorithm; to show that they are equivalent; and
to use them to demonstrate that there are uncomputable functions and algorithmically
undecidable problems. At the end of the course you should:

• be familiar with the register machine, Turing machine and λ-calculus models of com-
putability;

• understand the notion of coding programs as data, and of a universal machine;

• be able to use diagonalisation to prove the undecidability of the Halting Problem;

• understand the mathematical notion of partial recursive function and its relationship
to computability.

The prerequisites for taking this course are the Part IA courses Discrete Mathematics and
Regular Languages and Finite Automata.

This Computation Theory course contains some material that everyone who calls them-

selves a computer scientist should know. It is also a prerequisite for the Part IB course on
Complexity Theory.

Recommended books

• Hopcroft, J.E., Motwani, R. & Ullman, J.D. (2001). Introduction to Automata Theory,
Languages and Computation, Second Edition. Addison-Wesley.

• Hindley, J.R. & Seldin, J.P. (2008). Lambda-Calculus and Combinators, an Introduction.
Cambridge University Press (2nd ed.).

• Cutland, N.J. (1980) Computability. An introduction to recursive function theory. Cam-
bridge University Press.

• Davis, M.D., Sigal, R. & Wyuker E.J. (1994). Computability, Complexity and Languages,
2nd edition. Academic Press.

• Sudkamp, T.A. (1995). Languages and Machines, 2nd edition. Addison-Wesley.
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Exercises and Tripos Questions

A course on Computation Theory has been offered for many years. Since 2009 the course has
incorporated some material from a Part IB course on Foundations of Functional Programming
that is no longer offered. A guide to which Tripos questions from the last five years are
relevant to the current course can be found on the course web page (follow links from
www.cl.cam.ac.uk/teaching/). Here are suggestions for which of the older ones to try,
together with some other exercises.

1. Exercises in register machine programming:

(a) Produce register machine programs for the functions mentioned on slides 36 and
37.

(b) Try Tripos question 1999.3.9.

2. Undecidability of the halting problem:

(a) Try Tripos question 1995.3.9.

(b) Try Tripos question 2000.3.9.

(c) Learn by heart the poem about the undecidability of the halting problem to be
found at the course web page and recite it to your non-compsci friends.

3. Let φe denote the unary partial function from numbers to numbers (i.e. an element
of N⇀N—cf. slide 30) computed by the register machine with code e (cf. slide 63).
Show that for any given register machine computable unary partial function f , there
are infinitely many numbers e such that φe = f . (Equality of partial functions means
that they are equal as sets of ordered pairs; which is equivalent to saying that for all
numbers x, φe(x) is defined if and only if f (x) is, and in that case they are equal
numbers.)

4. Suppose S1 and S2 are subsets of the set N = {0, 1, 2, 3, . . .} of natural numbers.
Suppose f ∈ N�N is register machine computable and satisfies: for all x in N, x
is an element of S1 if and only if f (x) is an element of S2. Show that S1 is register
machine decidable (cf. slide 66) if S2 is.

5. Show that the set of codes 〈e, e′〉 of pairs of numbers e and e′ satisfying φe = φe′ is
undecidable.

6. For the example Turing machine given on slide 75, give the register machine program
implementing

(S, T, D) := δ(S, T)

as described on slide 83. [Tedious!—maybe just do a bit.]

7. Try Tripos question 2001.3.9. [This is the Turing machine version of 2000.3.9.]

8. Try Tripos question 1996.3.9.

9. Show that the following functions are all primitive recursive.

(a) Exponentiation, exp(x, y) , xy.
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(b) Truncated subtraction, minus(x, y) ,

{
x − y if x ≥ y

0 if x < y

(c) Conditional branch on zero, ifzero(x, y, z) ,

{
y if x = 0

z if x > 0

(d) Bounded summation: if f ∈ N
n+1

�N is primitive recursive, then so is g ∈
N

n+1
�N where

g(~x, x) ,




0 if x = 0

f (~x, 0) if x = 1

f (~x, 0) + · · · + f (~x, x − 1) if x > 1.

10. Recall the definition of Ackermann’s function ack from slide 122. Sketch how to
build a register machine M that computes ack(x1, x2) in R0 when started with x1

in R1 and x2 in R2 and all other registers zero. [Hint: here’s one way; the next
question steers you another way to the computability of ack. Call a finite list L =
[(x1, y1, z1), (x2, y2, z2), . . .] of triples of numbers suitable if it satisfies

(i) if (0, y, z) ∈ L, then z = y + 1

(ii) if (x + 1, 0, z) ∈ L, then (x, 1, z) ∈ L

(iii) if (x + 1, y + 1, z) ∈ L, then there is some u with (x + 1, y, u) ∈ L and (x, u, z) ∈ L.

The idea is that if (x, y, z) ∈ L and L is suitable then z = ack(x, y) and L contains all
the triples (x′, y′, ack(x, , y′)) needed to calculate ack(x, y). Show how to code lists of
triples of numbers as numbers in such a way that we can (in principle, no need to do
it explicitly!) build a register machine that recognizes whether or not a number is the
code for a suitable list of triples. Show how to use that machine to build a machine
computing ack(x, y) by searching for the code of a suitable list containing a triple with
x and y in it’s first two components.]

11. If you are not already fed up with Ackermann’s function, try Tripos question 2001.4.8.

12. If you are still not fed up with Ackermann’s function ack ∈ N
2
�N, show that the

λ-term ack , λx. x (λ f y. y f ( f 1)) Succ represents ack (where Succ is as on slide 152).

13. Let I be the λ-term λx. x. Show that nI =β I holds for every Church numeral n. Now
consider

B , λ f g x. g x I ( f (g x))

Assuming the fact about normal order reduction mentioned on slide 145, show that if
partial functions f , g ∈ N⇀N are represented by closed λ-terms F and G respectively,
then their composition ( f ◦ g)(x) ≡ f (g(x)) is represented by B F G. Now try Tripos
question 2005.5.12.



Introduction

Computation Theory , L 1 2/171

Algorithmically undecidable
problems

Computers cannot solve all mathematical problems, even
if they are given unlimited time and working space.

Three famous examples of computationally unsolvable
problems are sketched in this lecture.

� Hilbert’s Entscheidungsproblem

� The Halting Problem

� Hilbert’s 10th Problem.

Computation Theory , L 1 3/171



Hilbert’s Entscheidungsproblem
Is there an algorithm which when fed any statement in
the formal language of first-order arithmetic, determines
in a finite number of steps whether or not the statement
is provable from Peano’s axioms for arithmetic, using the
usual rules of first-order logic?

Such an algorithm would be useful! For example, by running it on

∀k > 1∃p, q (2k = p + q∧ prime(p)∧ prime(q))

(where prime(p) is a suitable arithmetic statement that p is a
prime number) we could solve Goldbach’s Conjecture (“every strictly
positive even number is the sum of two primes”), a famous open
problem in number theory.

Computation Theory , L 1 4/171

Hilbert’s Entscheidungsproblem

Is there an algorithm which when fed any statement in
the formal language of first-order arithmetic, determines
in a finite number of steps whether or not the statement
is provable from Peano’s axioms for arithmetic, using the
usual rules of first-order logic?

Posed by Hilbert at the 1928 International Congress of
Mathematicians. The problem was actually stated in a more
ambitious form, with a more powerful formal system in place of
first-order logic.

In 1928, Hilbert believed that such an algorithm could be found.
A few years later he was proved wrong by the work of Church and
Turing in 1935/36, as we will see.

Computation Theory , L 1 5/171



Decision problems

Entscheidungsproblem means “decision problem”. Given

� a set S whose elements are finite data structures of
some kind
(e.g. formulas of first-order arithmetic)

� a property P of elements of S
(e.g. property of a formula that it has a proof)

the associated decision problem is:

find an algorithm which
terminates with result 0 or 1 when fed an element s ∈ S
and
yields result 1 when fed s if and only if s has property P.

Computation Theory , L 1 6/171

Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples, such as:

� Procedure for multiplying numbers in decimal place
notation.

� Procedure for extracting square roots to any desired
accuracy.

� Euclid’s algorithm for finding highest common
factors.

Computation Theory , L 1 7/171



Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

Common features of the examples:

� finite description of the procedure in terms of
elementary operations

� deterministic (next step uniquely determined if there
is one)

� procedure may not terminate on some input data,
but we can recognize when it does terminate and
what the result is.

Computation Theory , L 1 8/171

Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

In 1935/36 Turing in Cambridge and Church in
Princeton independently gave negative solutions to
Hilbert’s Entscheidungsproblem.

� First step: give a precise, mathematical definition of
“algorithm”.
(Turing: Turing Machines; Church: lambda-calculus.)

� Then one can regard algorithms as data on which
algorithms can act and reduce the problem to. . .

Computation Theory , L 1 9/171



The Halting Problem

is the decision problem with

� set S consists of all pairs (A, D), where A is an algorithm and
D is a datum on which it is designed to operate;

� property P holds for (A, D) if algorithm A when applied to
datum D eventually produces a result (that is, eventually
halts—we write A(D)↓ to indicate this).

Turing and Church’s work shows that the Halting
Problem is undecidable, that is, there is no algorithm H
such that for all (A, D) ∈ S

H(A, D) =

{
1 if A(D)↓

0 otherwise.
Computation Theory , L 1 10/171

There’s no H such that H(A, D) =

{
1 if A(D)↓

0 otherwise.
for all (A, D).

Informal proof, by contradiction. If there were such an
H, let C be the algorithm:

“input A; compute H(A, A); if H(A, A) = 0
then return 1, else loop forever.”

So ∀A (C(A)↓ ↔ H(A, A) = 0) (since H is total)

and ∀A (H(A, A) = 0↔ ¬A(A)↓) (definition of H).

So ∀A (C(A)↓ ↔ ¬A(A)↓).

Taking A to be C, we get C(C)↓ ↔ ¬C(C)↓,
contradiction!

Computation Theory , L 1 11/171



From HP to Entscheidungsproblem

Final step in Turing/Church proof of undecidability of the
Entscheidungsproblem: they constructed an algorithm
encoding instances (A, D) of the Halting Problem as
arithmetic statements ΦA,D with the property

ΦA,D is provable ↔ A(D)↓

Thus any algorithm deciding provability of arithmetic
statements could be used to decide the Halting
Problem—so no such exists.

Computation Theory , L 1 12/171

Hilbert’s Entscheidungsproblem

Is there an algorithm which when fed any statement in
the formal language of first-order arithmetic, determines
in a finite number of steps whether or not the statement
is provable from Peano’s axioms for arithmetic, using the
usual rules of first-order logic?

With hindsight, a positive solution to the Entscheidungsproblem

would be too good to be true. However, the algorithmic
unsolvability of some decision problems is much more surprising. A
famous example of this is. . .

Computation Theory , L 1 13/171



Hilbert’s 10th Problem
Give an algorithm which, when started with any
Diophantine equation, determines in a finite number of
operations whether or not there are natural numbers
satisfying the equation.

One of a number of important open problems listed by Hilbert at
the International Congress of Mathematicians in 1900.

Computation Theory , L 1 14/171

Diophantine equations

p(x1, . . . , xn) = q(x1, . . . , xn)

where p and q are polynomials in unknowns x1,. . . ,xn
with coefficients from N = {0, 1, 2, . . .}.

Named after Diophantus of Alexandria (c. 250AD).

Example: “find three whole numbers x1, x2 and x3 such that the
product of any two added to the third is a square”
[Diophantus’ Arithmetica, Book III, Problem 7].

In modern notation: find x1, x2, x2 ∈ N for which there exists
x, y, z ∈ N with

x2
1x2

2 + x2
2x2

3 + x2
3x2

1 + · · · = x2x1x2 + y2x2x3 + z2x3x1 + · · ·

[One solution: (x1, x2, x3) = (1, 4, 12), with (x, y, z) = (4, 7, 4).]

Computation Theory , L 1 15/171



Hilbert’s 10th Problem
Give an algorithm which, when started with any
Diophantine equation, determines in a finite number of
operations whether or not there are natural numbers
satisfying the equation.

� Posed in 1900, but only solved in 1990: Y Matijasevič,
J Robinson, M Davis and H Putnam show it undecidable by
reduction to the Halting Problem.

� Original proof used Turing machines. Later, simpler proof
[JP Jones & Y Matijasevič, J. Symb. Logic 49(1984)] used
Minsky and Lambek’s register machines—we will use them in
this course to begin with and return to Turing and Church’s
formulations of the notion of “algorithm” later.

Computation Theory , L 1 16/171



Register Machines

Computation Theory , L 2 17/171

Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

Common features of the examples:

� finite description of the procedure in terms of
elementary operations

� deterministic (next step uniquely determined if there
is one)

� procedure may not terminate on some input data,
but we can recognize when it does terminate and
what the result is.

Computation Theory , L 2 18/171



Register Machines, informally

They operate on natural numbers N = {0, 1, 2, . . .}
stored in (idealized) registers using the following
“elementary operations”:

� add 1 to the contents of a register

� test whether the contents of a register is 0
� subtract 1 from the contents of a register if it is
non-zero

� jumps (“goto”)

� conditionals (“if_then_else_”)

Computation Theory , L 2 19/171

Definition. A register machine is specified by:

� finitely many registers R0, R1, . . . , Rn
(each capable of storing a natural number);

� a program consisting of a finite list of instructions of
the form label : body, where for i = 0, 1, 2, . . ., the
(i + 1)th instruction has label Li.

Instruction body takes one of three forms:

R+
� L′ add 1 to contents of register R and

jump to instruction labelled L′

R−
� L′, L′′

if contents of R is > 0, then subtract
1 from it and jump to L′, else jump
to L′′

HALT stop executing instructions

Computation Theory , L 2 20/171



Example
registers:
R0 R1 R2
program:
L0 : R

−
1 � L1, L2

L1 : R
+
0 � L0

L2 : R
−
2 � L3, L4

L3 : R
+
0 � L2

L4 : HALT

example computation:
Li R0 R1 R2

0 0 1 2
1 0 0 2
0 1 0 2
2 1 0 2
3 1 0 1
2 2 0 1
3 2 0 0
2 3 0 0
4 3 0 0

Computation Theory , L 2 21/171

Register machine computation

Register machine configuration:

c = (�, r0, . . . , rn)

where � = current label and ri = current contents of Ri.

Notation: “Ri = x [in configuration c]” means
c = (�, r0, . . . , rn) with ri = x.

Initial configurations:

c0 = (0, r0, . . . , rn)

where ri = initial contents of register Ri.
Computation Theory , L 2 22/171



Register machine computation

A computation of a RM is a (finite or infinite) sequence
of configurations

c0, c1, c2, . . .

where

� c0 = (0, r0, . . . , rn) is an initial configuration

� each c = (�, r0, . . . , rn) in the sequence determines
the next configuration in the sequence (if any) by
carrying out the program instruction labelled L�

with registers containing r0,. . . ,rn.

Computation Theory , L 2 23/171

Halting

For a finite computation c0, c1, . . . , cm, the last
configuration cm = (�, r, . . .) is a halting configuration,
i.e. instruction labelled L� is

either HALT (a “proper halt”)

or R+
� L, or R−

� L, L′ with R > 0, or
R−

� L′, L with R = 0
and there is no instruction labelled L in the
program (an “erroneous halt”)

E.g.
L0 : R

+
0 � L2

L1 : HALT
halts erroneously.

Computation Theory , L 2 24/171



Halting

For a finite computation c0, c1, . . . , cm, the last
configuration cm = (�, r, . . .) is a halting configuration.

Note that computations may never halt. For example,

L0 : R
+
0 � L0

L1 : HALT
only has infinite computation sequences

(0, r), (0, r + 1), (0, r + 2), . . .

Computation Theory , L 2 25/171

Graphical representation
� one node in the graph for each instruction

� arcs represent jumps between instructions

� lose sequential ordering of instructions—so need to indicate
initial instruction with START.

instruction representation

R+
� L R+ [L]

R−
� L, L′

[L]

R−

[L′]
HALT HALT

L0 START [L0]

Computation Theory , L 2 26/171



Example
registers:
R0 R1 R2
program:
L0 : R

−
1 � L1, L2

L1 : R
+
0 � L0

L2 : R
−
2 � L3, L4

L3 : R
+
0 � L2

L4 : HALT

graphical representation:
START

R
−
1 R

+
0

R
−
2 R

+
0

HALT

Claim: starting from initial configuration (0, 0, x, y),
this machine’s computation halts with configuration
(4, x + y, 0, 0).

Computation Theory , L 2 27/171

Partial functions
Register machine computation is deterministic: in any
non-halting configuration, the next configuration is
uniquely determined by the program.
So the relation between initial and final register contents
defined by a register machine program is a partial
function. . .

Definition. A partial function from a set X to a set Y
is specified by any subset f ⊆ X× Y satisfying

(x, y) ∈ f ∧ (x, y′) ∈ f → y = y′

for all x ∈ X and y, y′ ∈ Y .
Computation Theory , L 2 28/171



Partial functions

Definition. A partial function from a set X to a set Y
is specified by any subset f ⊆ X× Y satisfying

(x, y) ∈ f ∧ (x, y′) ∈ f → y = y′

for all x ∈ X and y, y′ ∈ Y .

ordered pairs {(x, y) | x ∈ X ∧ y ∈ Y}

i.e. for all x ∈ X there is
at most one y ∈ Y with
(x, y) ∈ f

Computation Theory , L 2 29/171

Partial functions
Notation:

� “ f (x) = y” means (x, y) ∈ f

� “ f (x)↓” means ∃y ∈ Y ( f (x) = y)

� “ f (x)↑” means ¬∃y ∈ Y ( f (x) = y)

� X⇀Y = set of all partial functions from X to Y
X�Y = set of all (total) functions from X to Y

Definition. A partial function from a set X to a set Y
is total if it satisfies

f (x)↓

for all x ∈ X.

Computation Theory , L 2 30/171



Computable functions
Definition. f ∈ N

n
⇀N is (register machine)

computable if there is a register machine M with at least
n + 1 registers R0, R1, . . . , Rn (and maybe more)
such that for all (x1, . . . , xn) ∈ N

n and all y ∈ N,

the computation of M starting with R0 = 0,
R1 = x1, . . . , Rn = xn and all other registers
set to 0, halts with R0 = y

if and only if f (x1, . . . , xn) = y.

Note the [somewhat arbitrary] I/O convention: in the initial
configuration registers R1, . . . , Rn store the function’s arguments
(with all others zeroed); and in the halting configuration register R0
stores it’s value (if any).
Computation Theory , L 2 31/171

Example
registers:
R0 R1 R2
program:
L0 : R

−
1 � L1, L2

L1 : R
+
0 � L0

L2 : R
−
2 � L3, L4

L3 : R
+
0 � L2

L4 : HALT

graphical representation:
START

R
−
1 R

+
0

R
−
2 R

+
0

HALT

Claim: starting from initial configuration (0, 0, x, y),
this machine’s computation halts with configuration
(4, x + y, 0, 0). So f (x, y) � x + y is computable.

Computation Theory , L 2 32/171



Computable functions
Recall:

Definition. f ∈ N
n
⇀N is (register machine)

computable if there is a register machine M with at least
n + 1 registers R0, R1, . . . , Rn (and maybe more)
such that for all (x1, . . . , xn) ∈ N

n and all y ∈ N,

the computation of M starting with R0 = 0,
R1 = x1, . . . , Rn = xn and all other registers
set to 0, halts with R0 = y

if and only if f (x1, . . . , xn) = y.

Computation Theory , L 3 33/171

Multiplication f (x, y) � xy
is computable

START R
+
3

R
−
1 R

−
2 R

+
0

HALT R
−
3 R

+
2

Computation Theory , L 3 34/171



Multiplication f (x, y) � xy
is computable

START R
+
3

R
−
1 R

−
2 R

+
0

HALT R
−
3 R

+
2

If the machine is started with (R0, R1, R2, R3) = (0, x, y, 0), it halts
with (R0, R1, R2, R3) = (xy, 0, y, 0).
Computation Theory , L 3 35/171

Further examples

The following arithmetic functions are all computable.
(Proof—left as an exercise!)

projection: p(x, y) � x

constant: c(x) � n

truncated subtraction: x ·− y �

{
x− y if y ≤ x
0 if y > x

Computation Theory , L 3 36/171



Further examples

The following arithmetic functions are all computable.
(Proof—left as an exercise!)

integer division:

x div y �

{
integer part of x/y if y > 0
0 if y = 0

integer remainder: x mod y � x ·− y(x div y)

exponentiation base 2: e(x) � 2x

logarithm base 2:

log2(x) �

{
greatest y such that 2y ≤ x if x > 0
0 if x = 0

Computation Theory , L 3 37/171



Coding Programs as Numbers

Computation Theory , L 3 38/171

Turing/Church solution of the Etscheidungsproblem uses
the idea that (formal descriptions of) algorithms can be
the data on which algorithms act.

To realize this idea with Register Machines we have to
be able to code RM programs as numbers. (In general,
such codings are often called Gödel numberings.)

To do that, first we have to code pairs of numbers and
lists of numbers as numbers. There are many ways to do
that. We fix upon one. . .

Computation Theory , L 3 39/171



Numerical coding of pairs

For x, y ∈ N, define

{
〈〈x, y〉〉 � 2x(2y + 1)
〈x, y〉 � 2x(2y + 1)− 1

So
0b〈〈x, y〉〉 = 0by 1 0 · · · 0

0b〈x, y〉 = 0by 0 1 · · · 1

(Notation: 0bx � x in binary.)

E.g. 27 = 0b11011 = 〈〈0, 13〉〉 = 〈2, 3〉

Computation Theory , L 3 40/171

Numerical coding of pairs

For x, y ∈ N, define

{
〈〈x, y〉〉 � 2x(2y + 1)
〈x, y〉 � 2x(2y + 1)− 1

So
0b〈〈x, y〉〉 = 0by 1 0 · · · 0

0b〈x, y〉 = 0by 0 1 · · · 1

〈−,−〉 gives a bijection (one-one correspondence)
between N×N and N.

〈〈−,−〉〉 gives a bijection between N×N and
{n ∈ N | n �= 0}.

Computation Theory , L 3 41/171



Numerical coding of lists

list N � set of all finite lists of natural numbers, using
ML notation for lists:

� empty list: []

� list-cons: x :: � ∈ list N (given x ∈ N and � ∈ list N)

� [x1, x2, . . . , xn] � x1 :: (x2 :: (· · · xn :: [] · · · ))

Computation Theory , L 3 42/171

Numerical coding of lists

list N � set of all finite lists of natural numbers, using
ML notation for lists.
For � ∈ list N, define ��� ∈ N by induction on the
length of the list �:{

�[]� � 0
�x :: �� � 〈〈x, ���〉〉 = 2x(2 · ��� + 1)

Thus �[x1, x2, . . . , xn]� = 〈〈x1, 〈〈x2, · · · 〈〈xn, 0〉〉 · · · 〉〉〉〉
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Numerical coding of lists

list N � set of all finite lists of natural numbers, using
ML notation for lists.
For � ∈ list N, define ��� ∈ N by induction on the
length of the list �:{

�[]� � 0
�x :: �� � 〈〈x, ���〉〉 = 2x(2 · ��� + 1)

0b�[x1, x2, . . . , xn]� = 1 0· · ·0 1 0· · ·0 ··· 1 0· · ·0

Hence � �→ ��� gives a bijection from list N to N.
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Numerical coding of lists

list N � set of all finite lists of natural numbers, using
ML notation for lists.
For � ∈ list N, define ��� ∈ N by induction on the
length of the list �:{

�[]� � 0
�x :: �� � 〈〈x, ���〉〉 = 2x(2 · ��� + 1)

For example:
�[3]� = �3 :: []� = 〈〈3, 0〉〉 = 23(2 · 0 + 1) = 8 = 0b1000

�[1, 3]� = 〈〈1, �[3]�〉〉 = 〈〈1, 8〉〉 = 34 = 0b100010

�[2, 1, 3]� = 〈〈2, �[1, 3]�〉〉 = 〈〈2, 34〉〉 = 276 = 0b100010100
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Numerical coding of programs

If P is the RM program

L0 : body0
L1 : body1

...
Ln : bodyn

then its numerical code is

�P� � �[�body0�, . . . , �bodyn�]�

where the numerical code �body� of an instruction body

is defined by:

⎧⎨
⎩

�R
+
i � Lj� � 〈〈2i, j〉〉

�R
−
i � Lj, Lk� � 〈〈2i + 1, 〈j, k〉〉〉

�HALT� � 0
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Any x ∈ N decodes to a unique instruction body(x):

if x = 0 then body(x) is HALT,
else (x > 0 and) let x = 〈〈y, z〉〉 in

if y = 2i is even, then
body(x) is R

+
i � Lz,

else y = 2i + 1 is odd, let z = 〈j, k〉 in
body(x) is R

−
i � Lj, Lk

So any e ∈ N decodes to a unique program prog(e),
called the register machine program with index e:

prog(e) �

L0 : body(x0)
...

Ln : body(xn)
where e = �[x0, . . . , xn]�
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Example of prog(e)
� 786432 = 219 + 218 = 0b110 . . . 0︸ ︷︷ ︸

18 ”0”s

= �[18, 0]�

� 18 = 0b10010 = 〈〈1, 4〉〉 = 〈〈1, 〈0, 2〉〉〉 = �R
−
0 � L0, L2�

� 0 = �HALT�

So prog(786432) =
L0 : R

−
0 � L0, L2

L1 : HALT

N.B. In case e = 0 we have 0 = �[]�, so prog(0) is the program
with an empty list of instructions, which by convention we regard as
a RM that does nothing (i.e. that halts immediately).
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Universal Register Machine, U
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High-level specification

Universal RM U carries out the following computation,
starting with R0 = 0, R1 = e (code of a program),
R2 = a (code of a list of arguments) and all other
registers zeroed:

� decode e as a RM program P
� decode a as a list of register values a1, . . . , an

� carry out the computation of the RM program P
starting with R0 = 0, R1 = a1, . . . , Rn = an (and
any other registers occurring in P set to 0).
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Mnemonics for the registers of U and the role they play
in its program:

R1 ≡ P code of the RM to be simulated

R2 ≡ A code of current register contents of simulated RM

R3 ≡ PC program counter—number of the current
instruction (counting from 0)

R4 ≡ N code of the current instruction body

R5 ≡ C type of the current instruction body

R6 ≡ R current value of the register to be incremented or
decremented by current instruction (if not HALT)

R7 ≡ S, R8 ≡ T and R9 ≡ Z are auxiliary registers.

R0 result of the simulated RM computation (if any).
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Overall structure of U’s program
1 copy PCth item of list in P to N (halting if PC >
length of list); goto 2

2 if N = 0 then halt, else decode N as 〈〈y, z〉〉; C ::= y;
N ::= z; goto 3

{at this point either C = 2i is even and current instruction is R
+
i � Lz,

or C = 2i + 1 is odd and current instruction is R
−
i � Lj, Lk where z = 〈j, k〉}

3 copy ith item of list in A to R; goto 4

4 execute current instruction on R; update PC to next
label; restore register values to A; goto 1

To implement this, we need RMs for manipulating (codes of) lists of
numbers. . .
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The program START→ S ::= R→HALT

to copy the contents of R to S can be implemented by

START S− R− Z− HALT

Z+ R+

S+

precondition:
R = x
S = y
Z = 0

postcondition:
R = x
S = x
Z = 0
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The program START→ push X

to L
→HALT

to carry out the assignment (X, L) ::= (0, X :: L) can be
implemented by

START Z+ L− Z− X− HALT

Z+ L+

precondition:
X = x
L = �

Z = 0

postcondition:
X = 0
L = 〈〈x, �〉〉 = 2x(2�+ 1)
Z = 0
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The program START→ pop L

to X

→HALT

�EXIT
specified by

“if L = 0 then (X ::= 0; goto EXIT) else
let L = 〈〈x, �〉〉 in (X ::= x; L ::= �; goto HALT)”

can be implemented by

START X+ HALT

X− L− L+ L− Z− Z−

EXIT Z+ L+
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Overall structure of U’s program
1 copy PCth item of list in P to N (halting if PC >
length of list); goto 2

2 if N = 0 then halt, else decode N as 〈〈y, z〉〉; C ::= y;
N ::= z; goto 3

{at this point either C = 2i is even and current instruction is R
+
i � Lz,

or C = 2i + 1 is odd and current instruction is R
−
i � Lj, Lk where z = 〈j, k〉}

3 copy ith item of list in A to R; goto 4

4 execute current instruction on R; update PC to next
label; restore register values to A; goto 1
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The program for U

START T ::= P
pop T

to N
HALT

PC−
pop N

to C

pop S

to R

push R

to A
PC ::= N R+ C−

pop A

to R

R−
pop N

to PC N+ C−
push R

to S
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The Halting Problem
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Definition. A register machine H decides the Halting
Problem if for all e, a1, . . . , an ∈ N, starting H with

R0 = 0 R1 = e R2 = �[a1, . . . , an]�

and all other registers zeroed, the computation of H
always halts with R0 containing 0 or 1; moreover when
the computation halts, R0 = 1 if and only if

the register machine program with index e eventually
halts when started with R0 = 0, R1 = a1, . . . , Rn = an
and all other registers zeroed.

Theorem. No such register machine H can exist.
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Proof of the theorem
Assume we have a RM H that decides the Halting
Problem and derive a contradiction, as follows:

� Let H′ be obtained from H by replacing START→

by START→ Z ::= R1 →
push Z

to R2
→

(where Z is a register not mentioned in H’s program).

� Let C be obtained from H′ by replacing each HALT

(& each erroneous halt) by R
−
0 R

+
0

HALT

.

� Let c ∈ N be the index of C’s program.
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Proof of the theorem
Assume we have a RM H that decides the Halting
Problem and derive a contradiction, as follows:

C started with R1 = c eventually halts
if & only if

H′ started with R1 = c halts with R0 = 0
if & only if

H started with R1 = c, R2 = �[c]� halts with R0 = 0
if & only if

prog(c) started with R1 = c does not halt
if & only if

C started with R1 = c does not halt
—contradiction!
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Computable functions
Recall:

Definition. f ∈ N
n
⇀N is (register machine)

computable if there is a register machine M with at least
n + 1 registers R0, R1, . . . , Rn (and maybe more)
such that for all (x1, . . . , xn) ∈ N

n and all y ∈ N,

the computation of M starting with R0 = 0,
R1 = x1, . . . , Rn = xn and all other registers
set to 0, halts with R0 = y

if and only if f (x1, . . . , xn) = y.

Note that the same RM M could be used to compute a unary
function (n = 1), or a binary function (n = 2), etc. From now on
we will concentrate on the unary case. . .
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Enumerating computable functions

For each e ∈ N, let ϕe ∈ N⇀N be the unary partial
function computed by the RM with program prog(e).
So for all x, y ∈ N:

ϕe(x) = y holds iff the computation of prog(e) started
with R0 = 0, R1 = x and all other registers zeroed
eventually halts with R0 = y.

Thus
e �→ ϕe

defines an onto function from N to the collection of all
computable partial functions from N to N.
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An uncomputable function
Let f ∈ N⇀N be the partial function with graph
{(x, 0) | ϕx(x)↑}.

Thus f (x) =

{
0 if ϕx(x)↑
undefined if ϕx(x)↓

f is not computable, because if it were, then f = ϕe for some
e ∈ N and hence

� if ϕe(e)↑, then f (e) = 0 (by def. of f ); so ϕe(e) = 0 (by
def. of e), i.e. ϕe(e)↓

� if ϕe(e)↓, then f (e)↑ (by def. of e); so ϕe(e)↑ (by def. of f )

—contradiction! So f cannot be computable.
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(Un)decidable sets of numbers
Given a subset S ⊆ N, its characteristic function

χS ∈ N�N is given by: χS(x) �

{
1 if x ∈ S
0 if x /∈ S.
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(Un)decidable sets of numbers
Definition. S ⊆ N is called (register machine)
decidable if its characteristic function χS ∈ N�N is a
register machine computable function. Otherwise it is
called undecidable.

So S is decidable iff there is a RM M with the property: for all

x ∈ N, M started with R0 = 0, R1 = x and all other registers

zeroed eventually halts with R0 containing 1 or 0; and R0 = 1 on

halting iff x ∈ S.

Basic strategy: to prove S ⊆ N undecidable, try to show that
decidability of S would imply decidability of the Halting Problem.

For example. . .
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Claim: S0 � {e | ϕe(0)↓} is undecidable.

Proof (sketch): Suppose M0 is a RM computing χS0 . From M0’s
program (using the same techniques as for constructing a universal
RM) we can construct a RM H to carry out:

let e = R1 and �[a1, . . . , an]� = R2 in
R1 ::= �(R1 ::= a1) ; · · · ; (Rn ::= an) ; prog(e)� ;

R2 ::= 0 ;
run M0

Then by assumption on M0, H decides the Halting
Problem—contradiction. So no such M0 exists, i.e. χS0 is
uncomputable, i.e. S0 is undecidable.
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Claim: S1 � {e | ϕe a total function} is undecidable.

Proof (sketch): Suppose M1 is a RM computing χS1 . From M1’s
program we can construct a RM M0 to carry out:

let e = R1 in R1 ::= �R1 ::= 0 ; prog(e)� ;
run M1

Then by assumption on M1, M0 decides membership of S0 from
previous example (i.e. computes χS0)—contradiction. So no such
M1 exists, i.e. χS1 is uncomputable, i.e. S1 is undecidable.
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Turing Machines
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Algorithms, informally

No precise definition of “algorithm” at the time Hilbert
posed the Entscheidungsproblem, just examples.

Common features of the examples:

� finite description of the procedure in terms of
elementary operations

e.g. multiply two decimal digits by
looking up their product in a table

� deterministic (next step uniquely determined if there
is one)

� procedure may not terminate on some input data,
but we can recognize when it does terminate and
what the result is.
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Register Machine computation abstracts away from any
particular, concrete representation of numbers (e.g. as
bit strings) and the associated elementary operations of
increment/decrement/zero-test.

Turing’s original model of computation (now called a
Turing machine) is more concrete: even numbers have to
be represented in terms of a fixed finite alphabet of
symbols and increment/decrement/zero-test
programmed in terms of more elementary
symbol-manipulating operations.
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Turing machines, informally

q

↓
� 0 � 1 0 1 � 1 � � · · ·

machine is in one of
a finite set of states

tape symbol
being scanned by
tape head

special left endmarker symbol
special blank symbol

linear tape, unbounded to right, divided into cells
containing a symbol from a finite alphabet of
tape symbols. Only finitely many cells contain
non-blank symbols.
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Turing machines, informally

q

↓
� 0 � 1 0 1 � 1 � � · · ·

� Machine starts with tape head pointing to the special left
endmarker �.

� Machine computes in discrete steps, each of which depends
only on current state (q) and symbol being scanned by tape
head (0).

� Action at each step is to overwrite the current tape cell with a
symbol, move left or right one cell, or stay stationary, and
change state.
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Turing Machines
are specified by:

� Q, finite set of machine states

� Σ, finite set of tape symbols (disjoint from Q) containing
distinguished symbols � (left endmarker) and � (blank)

� s ∈ Q, an initial state

� δ ∈ (Q× Σ)�(Q∪ {acc, rej})× Σ×{L, R, S}, a
transition function, satisfying:

for all q ∈ Q, there exists q′ ∈ Q∪ {acc, rej}
with δ(q, �) = (q′, �, R)
(i.e. left endmarker is never overwritten and machine always

moves to the right when scanning it)
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Example Turing Machine
M = (Q, Σ, s, δ) where

states Q = {s, q, q′} (s initial)

symbols Σ = {�, �, 0, 1}

transition function

δ ∈ (Q× Σ)�(Q∪ {acc, rej})× Σ×{L, R, S}:

δ � � 0 1
s (s, �, R) (q, �, R) (rej, 0, s) (rej, 1, s)
q (rej, �, R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, �, R) (acc, �, S) (rej, 0, S) (q′, 1, L)
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Turing machine computation

Turing machine configuration: (q, w, u)

where

� q ∈ Q∪ {acc, rej} = current state

� w = non-empty string (w = va) of tape symbols under and
to the left of tape head, whose last element (a) is contents of
cell under tape head

� u = (possibly empty) string of tape symbols to the right of
tape head (up to some point beyond which all symbols are �)

Initial configurations: (s, �, u)
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Turing machine computation
Given a TM M = (Q, Σ, s, δ), we write

(q, w, u)→M (q′, w′, u′)

to mean q �= acc, rej, w = va (for some v, a) and

either δ(q, a) = (q′, a′, L), w′ = v, and u′ = a′u

or δ(q, a) = (q′, a′, S), w′ = va′ and u′ = u

or δ(q, a) = (q′, a′, R), u = a′u′′ is non-empty,
w′ = va′a′′ and u′ = u′′

or δ(q, a) = (q′, a′, R), u = ε is empty, w′ = va′�
and u′ = ε.
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Turing machine computation

A computation of a TM M is a (finite or infinite)
sequence of configurations c0, c1, c2, . . .

where

� c0 = (s, �, u) is an initial configuration

� ci →M ci+1 holds for each i = 0, 1, . . ..

The computation

� does not halt if the sequence is infinite

� halts if the sequence is finite and its last element is
of the form (acc, w, u) or (rej, w, u).
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Example Turing Machine
M = (Q, Σ, s, δ) where

states Q = {s, q, q′} (s initial)

symbols Σ = {�, �, 0, 1}

transition function

δ ∈ (Q× Σ)�(Q∪ {acc, rej})× Σ×{L, R, S}:

δ � � 0 1
s (s, �, R) (q, �, R) (rej, 0, s) (rej, 1, s)
q (rej, �, R) (q′, 0, L) (q, 1, R) (q, 1, R)
q′ (rej, �, R) (acc, �, S) (rej, 0, S) (q′, 1, L)

Claim: the computation of M starting from configuration
(s, �, �1n0) halts in configuration (acc, ��, 1n+10).
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The computation of M starting from configuration
(s , � , �1n0):

(s , � , �1n0) →M (s , �� , 1n0)
→M (q , ��1 , 1n−10)
...
→M (q , ��1n , 0)
→M (q , ��1n0 , ε)
→M (q , ��1n+1� , ε)
→M (q′ , ��1n+1 , 0)
...
→M (q′ , �� , 1n+10)
→M (acc , �� , 1n+10)
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Theorem. The computation of a Turing machine M
can be implemented by a register machine.

Proof (sketch).

Step 1: fix a numerical encoding of M’s states, tape
symbols, tape contents and configurations.

Step 2: implement M’s transition function (finite
table) using RM instructions on codes.

Step 3: implement a RM program to repeatedly carry
out→M.
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Step 1
� Identify states and tape symbols with particular
numbers:

acc = 0 � = 0
rej = 1 � = 1

Q = {2, 3, . . . , n} Σ = {0, 1, . . . , m}

� Code configurations c = (q, w, u) by:

�c� = �[q, �[an, . . . , a1]�, �[b1, . . . , bm]�]�

where w = a1 · · · an (n > 0) and u = b1 · · · bm
(m ≥ 0) say.
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Step 2
Using registers

Q = current state

A = current tape symbol

D = current direction of tape head
(with L = 0, R = 1 and S = 2, say)

one can turn the finite table of (argument,result)-pairs
specifying δ into a RM program→ (Q, A, D) ::= δ(Q, A)→
so that starting the program with Q = q, A = a, D = d
(and all other registers zeroed), it halts with Q = q′,
A = a′, D = d′, where (q′, a′, d′) = δ(q, a).
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Step 3
The next slide specifies a RM to carry out M’s
computation. It uses registers

C = code of current configuration

W = code of tape symbols at and left of tape head
(reading right-to-left)

U = code of tape symbols right of tape head (reading
left-to-right)

Starting with C containing the code of an initial
configuration (and all other registers zeroed), the RM
program halts if and only if M halts; and in that case C

holds the code of the final configuration.
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START HALT

�[Q,W,U]�::=C Q<2?

yes

no pop W

to A
(Q,A,D)::=δ(Q,A)

C::=�[Q,W,U]� push A

to W
Q<2?yes

no

push A

to U D−

push B

to W

pop U

to B D−
push A

to W
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Computable functions
Recall:

Definition. f ∈ N
n
⇀N is (register machine)

computable if there is a register machine M with at least
n + 1 registers R0, R1, . . . , Rn (and maybe more)
such that for all (x1, . . . , xn) ∈ N

n and all y ∈ N,

the computation of M starting with R0 = 0,
R1 = x1, . . . , Rn = xn and all other registers
set to 0, halts with R0 = y

if and only if f (x1, . . . , xn) = y.
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We’ve seen that a Turing machine’s computation can be
implemented by a register machine.

The converse holds: the computation of a register
machine can be implemented by a Turing machine.

To make sense of this, we first have to fix a tape
representation of RM configurations and hence of
numbers and lists of numbers. . .
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Tape encoding of lists of numbers
Definition. A tape over Σ = {�, �, 0, 1} codes a list of
numbers if precisely two cells contain 0 and the only cells
containing 1 occur between these.

Such tapes look like:

�� · · · �0 1 · · · 1︸ ︷︷ ︸
n1

� 1 · · · 1︸ ︷︷ ︸
n2 · · ·

� · · · � 1 · · · 1︸ ︷︷ ︸
nk

0 � · · ·︸ ︷︷ ︸
all �′s

which corresponds to the list [n1, n2, . . . , nk].
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Turing computable function
Definition. f ∈ N

n
⇀N is Turing computable if and

only if there is a Turing machine M with the following
property:

Starting M from its initial state with tape head
on the left endmarker of a tape coding
[0, x1, . . . , xn], M halts if and only if
f (x1, . . . , xn)↓, and in that case the final tape
codes a list (of length ≥ 1) whose first
element is y where f (x1, . . . , xn) = y.
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Theorem. A partial function is Turing computable if
and only if it is register machine computable.

Proof (sketch). We’ve seen how to implement any TM by a RM.
Hence

f TM computable implies f RM computable.

For the converse, one has to implement the computation of a RM in
terms of a TM operating on a tape coding RM configurations. To
do this, one has to show how to carry out the action of each type of
RM instruction on the tape. It should be reasonably clear that this
is possible in principle, even if the details (omitted) are tedious.
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Notions of computability
� Church (1936): λ-calculus [see later]

� Turing (1936): Turing machines.

Turing showed that the two very different approaches
determine the same class of computable functions.
Hence:

Church-Turing Thesis. Every algorithm [in intuitive
sense of Lect. 1] can be realized as a Turing machine.
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Notions of computability
Church-Turing Thesis. Every algorithm [in intuitive
sense of Lect. 1] can be realized as a Turing machine.

Further evidence for the thesis:

� Gödel and Kleene (1936): partial recursive functions

� Post (1943) and Markov (1951): canonical systems for
generating the theorems of a formal system

� Lambek (1961) and Minsky (1961): register machines

� Variations on all of the above (e.g. multiple tapes,
non-determinism, parallel execution. . . )

All have turned out to determine the same collection of computable
functions.
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Notions of computability
Church-Turing Thesis. Every algorithm [in intuitive
sense of Lect. 1] can be realized as a Turing machine.

In rest of the course we’ll look at

� Gödel and Kleene (1936): partial recursive functions

(� branch of mathematics called recursion theory)

� Church (1936): λ-calculus

(� branch of CS called functional programming)
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Aim
A more abstract, machine-independent description of the
collection of computable partial functions than provided
by register/Turing machines:

they form the smallest collection of partial
functions containing some basic functions and
closed under some fundamental operations for
forming new functions from old—composition,
primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of
Gödel and Herbrand.
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Basic functions
� Projection functions, projn

i ∈ N
n
�N:

projn
i (x1, . . . , xn) � xi

� Constant functions with value 0, zeron ∈ N
n
�N:

zeron(x1, . . . , xn) � 0

� Successor function, succ ∈ N�N:

succ(x) � x + 1
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Basic functions
are all RM computable:

� Projection projn
i is computed by

START→ R0 ::= Ri →HALT

� Constant zeron is computed by

START→HALT

� Successor succ is computed by

START→R
+
1→ R0 ::= R1 →HALT
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Composition

Composition of f ∈ N
n
⇀N with g1, . . . , gn ∈ N

m
⇀N

is the partial function f ◦ [g1, . . . , gn] ∈ N
m
⇀N

satisfying

f ◦ [g1, . . . , gn](x1, . . . , xm) ≡
f (g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

where ≡ is “Kleene equivalence” of possibly-undefined
expressions: LHS ≡ RHS means “either both LHS and
RHS are undefined, or they are both defined and are
equal.”
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Composition

Composition of f ∈ N
n
⇀N with g1, . . . , gn ∈ N

m
⇀N

is the partial function f ◦ [g1, . . . , gn] ∈ N
m
⇀N

satisfying

f ◦ [g1, . . . , gn](x1, . . . , xm) ≡
f (g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

So f ◦ [g1, . . . , gn](x1, . . . , xm) = z iff there exist
y1, . . . , yn with gi(x1, . . . , xm) = yi (for i = 1..n) and
f (y1, . . . , yn) = z.

N.B. in case n = 1, we write f ◦ g1 for f ◦ [g1].
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Composition
f ◦ [g1, . . . , gn] is computable if f and g1, . . . , gn are.

Proof. Given RM programs

{
F
Gi

computing

{
f (y1, . . . , yn)
gi(x1, . . . , xm)

in

R0 starting with

{
R1, . . . , Rn
R1, . . . , Rm

set to

{
y1, . . . , yn
x1, . . . , xm

, then the next

slide specifies a RM program computing
f ◦ [g1, . . . , gn](x1, . . . , xm) in R0 starting with R1, . . . , Rm set to
x1, . . . , xm.

(Hygiene [caused by the lack of local names for registers in the RM
model of computation]: we assume the programs F, G1, . . . , Gn only
mention registers up to RN (where N ≥ max{n, m}) and that
X1, . . . , Xm, Y1, . . . , Yn are some registers Ri with i > N.)
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START

(X1,...,Xm)::=(R1,...,Rm) G1 Y1 ::= R0 (R0,...,RN)::=(0,...,0)

(R1,...,Rm)::=(X1,...,Xm) G2 Y2 ::= R0 (R0,...,RN)::=(0,...,0)

· · · · · · · · · · · ·

(R1,...,Rm)::=(X1,...,Xm) Gn Yn ::= R0 (R0,...,RN)::=(0,...,0)

(R1,...,Rn)::=(Y1,...,Yn) F
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Partial Recursive Functions

Computation Theory , L 8 101/171

Aim
A more abstract, machine-independent description of the
collection of computable partial functions than provided
by register/Turing machines:

they form the smallest collection of partial
functions containing some basic functions and
closed under some fundamental operations for
forming new functions from old—composition,
primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of
Gödel and Herbrand.
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Examples of recursive definitions{
f1(0) ≡ 0
f1(x + 1) ≡ f1(x) + (x + 1)

f1(x) = sum of
0, 1, 2, . . . , x⎧⎪⎨

⎪⎩
f2(0) ≡ 0
f2(1) ≡ 1
f2(x + 2) ≡ f2(x) + f2(x + 1)

f2(x) = xth Fibonacci
number

{
f3(0) ≡ 0
f3(x + 1) ≡ f3(x + 2) + 1

f3(x) undefined except
when x = 0

f4(x) ≡ if x > 100 then x− 10
else f4( f4(x + 11))

f4 is McCarthy’s "91
function", which maps
x to 91 if x ≤ 100 and
to x− 10 otherwise
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Primitive recursion
Theorem. Given f ∈ N

n
⇀N and g ∈ N

n+2
⇀N,

there is a unique h ∈ N
n+1

⇀N satisfying{
h(�x, 0) ≡ f (�x)
h(�x, x + 1) ≡ g(�x, x, h(�x, x))

for all �x ∈ N
n and x ∈ N.

We write ρn( f , g) for h and call it the partial function
defined by primitive recursion from f and g.
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Primitive recursion
Theorem. Given f ∈ N

n
⇀N and g ∈ N

n+2
⇀N,

there is a unique h ∈ N
n+1

⇀N satisfying

(∗)

{
h(�x, 0) ≡ f (�x)
h(�x, x + 1) ≡ g(�x, x, h(�x, x))

for all �x ∈ N
n and x ∈ N.

Proof (sketch). Existence: the set

h � {(�x, x, y) ∈ N
n+2 | ∃y0, y1, . . . , yx

f (�x) = y0 ∧ (
∧x−1

i=0 g(�x, i, yi) = yi+1)∧ yx = y}
defines a partial function satisfying (∗).

Uniqueness: if h and h′ both satisfy (∗), then one can prove by
induction on x that ∀�x (h(�x, x) = h′(�x, x)).
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Example: addition

Addition add ∈ N
2
�N satisfies:{

add(x1, 0) ≡ x1

add(x1, x + 1) ≡ add(x1, x) + 1

So add = ρ1( f , g) where

{
f (x1) � x1

g(x1, x2, x3) � x3 + 1

Note that f = proj1
1 and g = succ ◦ proj3

3; so add can
be built up from basic functions using composition and
primitive recursion: add = ρ1(proj1

1, succ ◦ proj3
3).
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Example: predecessor

Predecessor pred ∈ N�N satisfies:{
pred(0) ≡ 0
pred(x + 1) ≡ x

So pred = ρ0( f , g) where

{
f () � 0
g(x1, x2) � x1

Thus pred can be built up from basic functions using
primitive recursion: pred = ρ0(zero0, proj2

1).
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Example: multiplication

Multiplication mult ∈ N
2
�N satisfies:{

mult(x1, 0) ≡ 0
mult(x1, x + 1) ≡ mult(x1, x) + x1

and thus mult = ρ1(zero1, add ◦ (proj3
3, proj3

1)).

So mult can be built up from basic functions using
composition and primitive recursion (since add can be).
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Definition. A [partial] function f is primitive recursive
( f ∈ PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

In other words, the set PRIM of primitive recursive
functions is the smallest set (with respect to subset
inclusion) of partial functions containing the basic
functions and closed under the operations of composition
and primitive recursion.
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Definition. A [partial] function f is primitive recursive
( f ∈ PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

Every f ∈ PRIM is a total function, because:

� all the basic functions are total

� if f , g1, . . . , gn are total, then so is f ◦ (g1, . . . , gn)
[why?]

� if f and g are total, then so is ρn( f , g) [why?]
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Definition. A [partial] function f is primitive recursive
( f ∈ PRIM) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition and primitive recursion.

Theorem. Every f ∈ PRIM is computable.

Proof. Already proved: basic functions are computable;
composition preserves computability. So just have to show:

ρn( f , g) ∈ N
n+1

�N computable if f ∈ N
n
�N and

g ∈ N
n+1

�N are.

Suppose f and g are computed by RM programs F and G (with our
usual I/O conventions). Then the RM specified on the next slide
computes ρn( f , g). (We assume X1, . . . , Xn+1, C are some registers
not mentioned in F and G; and that the latter only use registers
R0, . . . , RN , where N ≥ n + 2.)
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START (X1,...,Xn+1,Rn+1)::=(R1,...,Rn+1,0)

F

C+ C=Xn+1? yes

no

HALT

(R1,...,Rn,Rn+1,Rn+2)::=(X1,...,Xn,C,R0)

G (R0,Rn+3,...,RN)::=(0,0,...,0)
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Aim
A more abstract, machine-independent description of the
collection of computable partial functions than provided
by register/Turing machines:

they form the smallest collection of partial
functions containing some basic functions and
closed under some fundamental operations for
forming new functions from old—composition,
primitive recursion and minimization.

The characterization is due to Kleene (1936), building on work of
Gödel and Herbrand.
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Minimization
Given a partial function f ∈ N

n+1
⇀N, define

μn f ∈ N
n
⇀N by

μn f (�x) � least x such that f (�x, x) = 0
and for each i = 0, . . . , x− 1,
f (�x, i) is defined and > 0
(undefined if there is no such x)

In other words

μn f = {(�x, x) ∈ N
n+1 | ∃y0, . . . , yx

(
x∧

i=0

f (�x, i) = yi)∧ (
x−1∧
i=0

yi > 0)∧ yx = 0}

Computation Theory , L 9 114/171



Example of minimization

integer part of x1/x2 ≡ least x3 such that
(undefined if x2=0) x1 < x2(x3 + 1)

≡ μ2 f (x1, x2)

where f ∈ N
3
�N is

f (x1, x2, x3) �

{
1 if x1 ≥ x2(x3 + 1)
0 if x1 < x2(x3 + 1)
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Definition. A partial function f is partial recursive
( f ∈ PR) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition, primitive recursion and minimization.

In other words, the set PR of partial recursive functions
is the smallest set (with respect to subset inclusion) of
partial functions containing the basic functions and
closed under the operations of composition, primitive
recursion and minimization.
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Definition. A partial function f is partial recursive
( f ∈ PR) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition, primitive recursion and minimization.

Theorem. Every f ∈ PR is computable.

Proof. Just have to show:

μn f ∈ N
n
�N is computable if f ∈ N

n+1
�N is.

Suppose f is computed by RM program F (with our usual I/O
conventions). Then the RM specified on the next slide computes
μn f . (We assume X1, . . . , Xn, C are some registers not mentioned in
F; and that the latter only uses registers R0, . . . , RN , where
N ≥ n + 1.)
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START

(X1,...,Xn)::=(R1,...,Rn)

(R1,...,Rn,Rn+1)::=(X1,...,Xn,C)

C+ (R0,Rn+2,...,RN)::=(0,0,...,0)

F

R
−
0 R0::=C HALT
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Computable = partial recursive
Theorem. Not only is every f ∈ PR computable, but
conversely, every computable partial function is partial
recursive.

Proof (sketch). Let f be computed by RM M. Recall how we
coded instantaneous configurations c = (�, r0, . . . , rn) of M as
numbers �[�, r0, . . . , rn]�. It is possible to construct primitive
recursive functions lab, val0, nextM ∈ N�N satisfying

lab(�[�, r0, . . . , rn]�) = �

val0(�[�, r0, . . . , rn]�) = r0

nextM(�[�, r0, . . . , rn]�) = code of M’s next configuration

(Showing that nextM ∈ PRIM is tricky—proof omitted.)
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Proof sketch, cont.

Let configM(�x, t) be the code of M’s configuration after t steps,
starting with initial register values �x. It’s in PRIM because:{

configM(�x, 0) = �[0,�x]�
configM(�x, t + 1) = nextM(configM(�x, t))

Can assume M has a single HALT as last instruction, Ith say (and
no erroneous halts). Let haltM(�x) be the number of steps M takes
to halt when started with initial register values �x (undefined if M
does not halt). It satisfies

haltM(�x) ≡ least t such that I− lab(configM(�x, t)) = 0

and hence is in PR (because lab, configM , I− ( ) ∈ PRIM).

So f ∈ PR, because f (�x) ≡ val0(configM(�x, haltM(�x))).
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Definition. A partial function f is partial recursive
( f ∈ PR) if it can be built up in finitely many steps
from the basic functions by use of the operations of
composition, primitive recursion and minimization.

The members of PR that are total are called recursive
functions.

Fact: there are recursive functions that are not primitive
recursive. For example. . .
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Ackermann’s function
There is a (unique) function ack ∈ N

2
�N satisfying

ack(0, x2) = x2 + 1
ack(x1 + 1, 0) = ack(x1, 1)

ack(x1 + 1, x2 + 1) = ack(x1, ack(x1 + 1, x2))

� ack is computable, hence recursive [proof: exercise].

� Fact: ack grows faster than any primitive recursive
function f ∈ N

2
�N:

∃Nf ∀x1, x2 > Nf ( f (x1, x2) < ack(x1, x2)).
Hence ack is not primitive recursive.
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Lambda-Calculus

Computation Theory , L 10 123/171

Notions of computability
� Church (1936): λ-calculus

� Turing (1936): Turing machines.

Turing showed that the two very different approaches
determine the same class of computable functions.
Hence:

Church-Turing Thesis. Every algorithm [in intuitive
sense of Lect. 1] can be realized as a Turing machine.
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λ-Terms, M
are built up from a given, countable collection of

� variables x, y, z, . . .

by two operations for forming λ-terms:

� λ-abstraction: (λx.M)
(where x is a variable and M is a λ-term)

� application: (M M′)
(where M and M′ are λ-terms).

Some random examples of λ-terms:

x (λx.x) ((λy.(x y))x) (λy.((λy.(x y))x))
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λ-Terms, M
Notational conventions:

� (λx1 x2 . . . xn.M) means
(λx1.(λx2 . . . (λxn.M) . . .))

� (M1 M2 . . . Mn) means (. . . (M1 M2) . . . Mn)
(i.e. application is left-associative)

� drop outermost parentheses and those enclosing the
body of a λ-abstraction. E.g. write
(λx.(x(λy.(y x)))) as λx.x(λy.y x).

� x # M means that the variable x does not occur
anywhere in the λ-term M.
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Free and bound variables
In λx.M, we call x the bound variable and M the body
of the λ-abstraction.

An occurrence of x in a λ-term M is called

� binding if in between λ and .
(e.g. (λx.y x) x)

� bound if in the body of a binding occurrence of x
(e.g. (λx.y x) x)

� free if neither binding nor bound
(e.g. (λx.y x)x).
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Free and bound variables
Sets of free and bound variables:

FV(x) = {x}
FV(λx.M) = FV(M)−{x}
FV(M N) = FV(M)∪ FV(N)

BV(x) = ∅

BV(λx.M) = BV(M)∪ {x}
BV(M N) = BV(M)∪ BV(N)

If FV(M) = ∅, M is called a closed term, or
combinator.
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α-Equivalence M =α M′

λx.M is intended to represent the function f such that

f (x) = M for all x.

So the name of the bound variable is immaterial: if
M′ = M{x′/x} is the result of taking M and changing
all occurrences of x to some variable x′ # M, then λx.M
and λx′.M′ both represent the same function.

For example, λx.x and λy.y represent the same function
(the identity function).
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α-Equivalence M =α M′

is the binary relation inductively generated by the rules:

x =α x
z # (M N) M{z/x} =α N{z/y}

λx.M =α λy.N

M =α M′ N =α N ′

M N =α M′ N ′

where M{z/x} is M with all occurrences of x replaced
by z.
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α-Equivalence M =α M′

For example:

λx.(λxx′.x) x′ =α λy.(λx x′.x)x′

because (λz x′.z)x′ =α (λx x′.x)x′

because λz x′.z =α λx x′.x and x′ =α x′

because λx′.u =α λx′.u and x′ =α x′

because u =α u and x′ =α x′.
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α-Equivalence M =α M′

Fact: =α is an equivalence relation (reflexive, symmetric
and transitive).

We do not care about the particular names of bound variables, just
about the distinctions between them. So α-equivalence classes of
λ-terms are more important than λ-terms themselves.

� Textbooks (and these lectures) suppress any notation for
α-equivalence classes and refer to an equivalence class via a
representative λ-term (look for phrases like “we identify terms
up to α-equivalence” or “we work up to α-equivalence”).

� For implementations and computer-assisted reasoning, there
are various devices for picking canonical representatives of
α-equivalence classes (e.g. de Bruijn indexes, graphical
representations, . . . ).
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Substitution N[M/x]
x[M/x] = M
y[M/x] = y if y �= x

(λy.N)[M/x] = λy.N[M/x] if y # (M x)
(N1 N2)[M/x] = N1[M/x] N2[M/x]

Side-condition y # (M x) (y does not occur in M and
y �= x) makes substitution “capture-avoiding”.

E.g. if x �= y
(λy.x)[y/x] �= λy.y
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Substitution N[M/x]
x[M/x] = M
y[M/x] = y if y �= x

(λy.N)[M/x] = λy.N[M/x] if y # (M x)
(N1 N2)[M/x] = N1[M/x] N2[M/x]

Side-condition y # (M x) (y does not occur in M and
y �= x) makes substitution “capture-avoiding”.

E.g. if x �= y �= z �= x

(λy.x)[y/x] =α (λz.x)[y/x] = λz.y

N �→ N[M/x] induces a total operation on
α-equivalence classes.
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β-Reduction

Recall that λx.M is intended to represent the function f
such that f (x) = M for all x. We can regard λx.M as
a function on λ-terms via substitution: map each N to
M[N/x].

So the natural notion of computation for λ-terms is
given by stepping from a

β-redex (λx.M)N

to the corresponding

β-reduct M[N/x]

Computation Theory , L 10 135/171

β-Reduction

One-step β-reduction, M → M′:

(λx.M)N → M[N/x]
M → M′

λx.M → λx.M′

M → M′

M N → M′ N
M → M′

N M → N M′

N =α M M → M′ M′ =α N ′

N → N ′
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β-Reduction

E.g.
((λy.λz.z)u)y

(λx.x y)((λy.λz.z)u) (λz.z)y y

(λx.x y)(λz.z)

E.g. of “up to α-equivalence” aspect of reduction:

(λx.λy.x)y =α (λx.λz.x)y → λz.y
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Many-step β-reduction, M � M′:

M =α M′

M � M′

(no steps)

M → M′

M � M′

(1 step)

M � M′ M′ → M′′

M � M′′

(1 more step)

E.g.

(λx.x y)((λy z.z)u) � y

(λx.λy.x)y � λz.y
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Lambda-Definable Functions
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β-Conversion M =β N

Informally: M =β N holds if N can be obtained from
M by performing zero or more steps of α-equivalence,
β-reduction, or β-expansion (= inverse of a reduction).

E.g. u ((λx y. v x)y) =β (λx. u x)(λx. v y)

because (λx. u x)(λx. v y)→ u(λx. v y)

and so we have

u ((λx y. v x)y) =α u ((λx y′. v x)y)
→ u(λy′. v y) reduction
=α u(λx. v y)
← (λx. u x)(λx. v y) expansion
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β-Conversion M =β N

is the binary relation inductively generated by the rules:

M =α M′

M =β M′

M → M′

M =β M′

M =β M′

M′ =β M

M =β M′ M′ =β M′′

M =β M′′

M =β M′

λx.M =β λx.M′

M =β M′ N =β N ′

M N =β M′ N ′
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Church-Rosser Theorem
Theorem. � is confluent, that is, if M1 � M � M2,
then there exists M′ such that M1 � M′ � M2.

Corollary. M1 =β M2 iff ∃M (M1 � M � M2).

Proof. =β satisfies the rules generating �; so M � M′ implies

M =β M′. Thus if M1 � M � M2, then M1 =β M =β M2 and
so M1 =β M2.

Conversely, the relation {(M1, M2) | ∃M (M1 � M � M2)}
satisfies the rules generating =β: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem. Hence M1 =β M2 implies ∃M (M1 � M′ � M2).
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β-Normal Forms
Definition. A λ-term N is in β-normal form (nf) if it
contains no β-redexes (no sub-terms of the form
(λx.M)M′). M has β-nf N if M =β N with N a β-nf.

Note that if N is a β-nf and N � N′, then it must be that
N =α N′ (why?).

Hence if N1 =β N2 with N1 and N2 both β-nfs, then N1 =α N2.

(For if N1 =β N2, then N1 � M � N2 for some M; hence by

Church-Rosser, N1 � M′ � N2 for some M′, so

N1 =α M′ =α N2.)

So the β-nf of M is unique up to α-equivalence if

it exists.
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Non-termination
Some λ terms have no β-nf.

E.g. Ω � (λx.x x)(λx.x x) satisfies

� Ω → (x x)[(λx.x x)/x] = Ω,

� Ω � M implies Ω =α M.

So there is no β-nf N such that Ω =β N.

A term can possess both a β-nf and infinite chains

of reduction from it.

E.g. (λx.y)Ω → y, but also (λx.y)Ω → (λx.y)Ω → · · · .
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Non-termination
Normal-order reduction is a deterministic strategy for
reducing λ-terms: reduce the “left-most, outer-most”
redex first.

� left-most: reduce M before N in M N, and then

� outer-most: reduce (λx.M)N rather than either of
M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the
β-nf of M if it possesses one.
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Encoding data in λ-calculus

Computation in λ-calculus is given by β-reduction. To
relate this to register/Turing-machine computation, or to
partial recursive functions, we first have to see how to
encode numbers, pairs, lists, . . . as λ-terms.

We will use the original encoding of numbers due to
Church. . .
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Church’s numerals
0 � λ f x.x
1 � λ f x. f x
2 � λ f x. f ( f x)

...

n � λ f x. f (· · · ( f︸ ︷︷ ︸
n times

x) · · · )

Notation:

⎧⎪⎨
⎪⎩

M0N � N
M1N � M N
Mn+1N � M(MnN)

so we can write n as λ f x. f nx and we have n M N =β Mn N .
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λ-Definable functions
Definition. f ∈ N

n
⇀N is λ-definable if there is a

closed λ-term F that represents it: for all
(x1, . . . , xn) ∈ N

n and y ∈ N

� if f (x1, . . . , xn) = y, then F x1 · · · xn =β y
� if f (x1, . . . , xn)↑, then F x1 · · · xn has no β-nf.

For example, addition is λ-definable because it is represented by
P � λx1 x2.λ f x. x1 f (x2 f x):

P m n =β λ f x. m f (n f x)

=β λ f x. m f ( f nx)

=β λ f x. f m( f nx)

= λ f x. f m+nx
= m + n
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Computable = λ-definable
Theorem. A partial function is computable if and only if
it is λ-definable.

We already know that

Register Machine computable
= Turing computable
= partial recursive.

Using this, we break the theorem into two parts:

� every partial recursive function is λ-definable

� λ-definable functions are RM computable
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λ-Definable functions
Definition. f ∈ N

n
⇀N is λ-definable if there is a

closed λ-term F that represents it: for all
(x1, . . . , xn) ∈ N

n and y ∈ N

� if f (x1, . . . , xn) = y, then F x1 · · · xn =β y
� if f (x1, . . . , xn)↑, then F x1 · · · xn has no β-nf.

This condition can make it quite tricky to find a λ-term
representing a non-total function.

For now, we concentrate on total functions. First, let us
see why the elements of PRIM (primitive recursive
functions) are λ-definable.
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Basic functions
� Projection functions, projn

i ∈ N
n
�N:

projn
i (x1, . . . , xn) � xi

� Constant functions with value 0, zeron ∈ N
n
�N:

zeron(x1, . . . , xn) � 0

� Successor function, succ ∈ N�N:

succ(x) � x + 1
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Basic functions are representable
� projn

i ∈ N
n
�N is represented by λx1 . . . xn.xi

� zeron ∈ N
n
�N is represented by λx1 . . . xn.0

� succ ∈ N�N is represented by

Succ � λx1 f x. f (x1 f x)

since

Succ n =β λ f x. f (n f x)
=β λ f x. f ( f n x)

= λ f x. f n+1 x
= n + 1
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Representing composition

If total function f ∈ N
n
�N is represented by F and

total functions g1, . . . , gn ∈ N
m
�N are represented by

G1, . . . , Gn, then their composition
f ◦ (g1, . . . , gn) ∈ N

m
�N is represented simply by

λx1 . . . xm. F (G1 x1 . . . xm) . . . (Gn x1 . . . xm)

because F (G1 a1 . . . am) . . . (Gn a1 . . . am)
=β F g1(a1, . . . , am) . . . gn(a1, . . . , am)
=β f (g1(a1, . . . , am), . . . , gn(a1, . . . , am))
= f ◦ (g1, . . . , gn)(a1, . . . , am)

.
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Representing composition

If total function f ∈ N
n
�N is represented by F and

total functions g1, . . . , gn ∈ N
m
�N are represented by

G1, . . . , Gn, then their composition
f ◦ (g1, . . . , gn) ∈ N

m
�N is represented simply by

λx1 . . . xm. F (G1 x1 . . . xm) . . . (Gn x1 . . . xm)

This does not necessarily work for partial functions. E.g. totally

undefined function u ∈ N⇀N is represented by U � λx1.Ω
(why?) and zero1 ∈ N�N is represented by Z � λx1.0; but

zero1 ◦ u is not represented by λx1. Z(U x1), because

(zero1 ◦ u)(n)↑ whereas (λx1. Z(U x1)) n =β Z Ω =β 0.

(What is zero1 ◦ u represented by?)
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Primitive recursion
Theorem. Given f ∈ N

n
⇀N and g ∈ N

n+2
⇀N,

there is a unique h ∈ N
n+1

⇀N satisfying{
h(�x, 0) ≡ f (�x)
h(�x, x + 1) ≡ g(�x, x, h(�x, x))

for all �x ∈ N
n and x ∈ N.

We write ρn( f , g) for h and call it the partial function
defined by primitive recursion from f and g.
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Representing primitive recursion

If f ∈ N
n
�N is represented by a λ-term F and

g ∈ N
n+2

�N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ N

n+1
�N satisfying{

h(�a, 0) = f (�a)

h(�a, a + 1) = g(�a, a, h(�a, a))
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Representing primitive recursion

If f ∈ N
n
�N is represented by a λ-term F and

g ∈ N
n+2

�N is represented by a λ-term G,

we want to show λ-definability of the unique

h ∈ N
n+1

�N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (N
n+1

�N)�(N
n+1

�N) is given by

Φ f ,g(h)(�a, a) � if a = 0 then f (�a)
else g(�a, a− 1, h(�a, a− 1))
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Representing primitive recursion

If f ∈ N
n
�N is represented by a λ-term F and

g ∈ N
n+2

�N is represented by a λ-term G,

we want to show λ-definability of the unique

h ∈ N
n+1

�N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (N
n+1

�N)�(N
n+1

�N) is given by. . .

Strategy:

� show that Φ f ,g is λ-definable;

� show that we can solve fixed point equations
X = M X up to β-conversion in the λ-calculus.
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Representing booleans
True � λx y. x
False � λx y. y

If � λ f x y. f x y

satisfy

� If True M N =β True M N =β M
� If False M N =β False M N =β N
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Representing test-for-zero
Eq0 � λx. x(λy. False) True

satisfies

� Eq0 0 =β 0 (λy. False) True

=β True

� Eq0 n + 1 =β n + 1 (λy. False) True

=β (λy. False)n+1 True

=β (λy. False)((λy. False)n True)
=β False
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Representing ordered pairs
Pair � λx y f . f x y
Fst � λ f . f True

Snd � λ f . f False

satisfy

� Fst(Pair M N) =β Fst(λ f . f M N)
=β (λ f . f M N) True

=β True M N
=β M

� Snd(Pair M N) =β · · · =β N
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Representing predecessor

Want λ-term Pred satisfying

Pred n + 1 =β n
Pred 0 =β 0

Have to show how to reduce the “n + 1-iterator” n + 1 to the
“n-iterator” n.

Idea: given f , iterating the function g f : (x, y) �→ ( f (x), x)
n + 1 times starting from (x, x) gives the pair ( f n+1(x), f n(x)).
So we can get f n(x) from f n+1(x) parametrically in f and x, by
building g f from f , iterating n + 1 times from (x, x) and then
taking the second component.

Hence. . .
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Representing predecessor

Want λ-term Pred satisfying

Pred n + 1 =β n
Pred 0 =β 0

Pred � λy f x. Snd(y (G f )(Pair x x))
where

G � λ f p. Pair( f (Fst p))(Fst p)

has the required β-reduction properties. [Exercise]
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Curry’s fixed point combinator Y

Y � λ f . (λx. f (x x))(λx. f (x x))

satisfies Y M → (λx. M(x x))(λx. M(x x))
→ M((λx. M(x x))(λx. M(x x)))

hence Y M � M((λx. M(x x))(λx. M(x x))) � M(Y M).

So for all λ-terms M we have

Y M =β M(Y M)
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Representing primitive recursion

If f ∈ N
n
�N is represented by a λ-term F and

g ∈ N
n+2

�N is represented by a λ-term G,

we want to show λ-definability of the unique

h ∈ N
n+1

�N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (N
n+1

�N)�(N
n+1

�N) is given by

Φ f ,g(h)(�a, a) � if a = 0 then f (�a)
else g(�a, a− 1, h(�a, a− 1))

We now know that h can be represented by

Y(λz�xx. If(Eq0 x)(F�x)(G�x (Pred x)(z�x (Pred x)))).
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Representing primitive recursion

Recall that the class PRIM of primitive recursive
functions is the smallest collection of (total) functions
containing the basic functions and closed under the
operations of composition and primitive recursion.

Combining the results about λ-definability so far, we
have: every f ∈ PRIM is λ-definable.

So for λ-definability of all recursive functions, we just
have to consider how to represent minimization.
Recall. . .
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Minimization
Given a partial function f ∈ N

n+1
⇀N, define

μn f ∈ N
n
⇀N by

μn f (�x) � least x such that f (�x, x) = 0
and for each i = 0, . . . , x− 1,
f (�x, i) is defined and > 0
(undefined if there is no such x)

Can express μn f in terms of a fixed point equation:

μn f (�x) ≡ g(�x, 0) where g satisfies g = Ψ f(g)
with Ψ f ∈ (N

n+1
⇀N)�(N

n+1
⇀N) defined by

Ψ f(g)(�x, x) ≡ if f (�x, x) = 0 then x else g(�x, x + 1)
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Representing minimization

Suppose f ∈ N
n+1

�N (totally defined function)
satisfies ∀�a∃a ( f (�a, a) = 0), so that μn f ∈ N

n
�N

is totally defined.

Thus for all �a ∈ N
n, μn f (�a) = g(�a, 0) with

g = Ψ f(g) and Ψ f(g)(�a, a) given by
if ( f (�a, a) = 0) then a else g(�a, a + 1).

So if f is represented by a λ-term F, then μn f is
represented by

λ�x.Y(λz�x x. If(Eq0(F�x x)) x (z�x (Succ x)))�x 0
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Recursive implies λ-definable

Fact: every partial recursive f ∈ N
n
⇀N can be

expressed in a standard form as f = g ◦ (μnh) for some
g, h ∈ PRIM. (Follows from the proof that computable =

partial-recursive.)

Hence every (total) recursive function is λ-definable.

More generally, every partial recursive function is
λ-definable, but matching up ↑ with � ∃β−nf makes the
representations more complicated than for total
functions: see [Hindley, J.R. & Seldin, J.P. (CUP, 2008),
chapter 4.]
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Computable = λ-definable
Theorem. A partial function is computable if and only if
it is λ-definable.

We already know that computable = partial recursive ⇒
λ-definable. So it just remains to see that λ-definable functions
are RM computable. To show this one can

� code λ-terms as numbers (ensuring that operations for
constructing and deconstructing terms are given by RM
computable functions on codes)

� write a RM interpreter for (normal order) β-reduction.

The details are straightforward, if tedious.
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