
Reinforcement Learning

We now examine:

• some potential shortcomings of hidden Markov models, and of
supervised learning;

• an extension know as the Markov Decision Process (MDP) ;

• the way in which we might learn from rewards gained as a result
of acting within an environment ;

• specific, simple algorithms for performing such learning, and their
convergence properties.

Reading: Russell and Norvig, chapter 21. Mitchell chapter 13.

Copyright c© Sean Holden 2006-10.

Reinforcement learning and HMMs

Hidden Markov Models (HMMs) are appropriate when our agent
models the world as follows

Pr(S0) S0 S1 S2 S3

E1 E3

· · ·

Pr(St|St−1)

Pr(Et|St)

E2

and only wants to infer information about the state of the world on
the basis of observing the available evidence .

This might be criticised as un-necessarily restricted, although it is
very effective for the right kind of problem.

Reinforcement learning and supervised learning

Supervised learners learn from specifically labelled chunks of in-
formation :

x ???

(x1, 1)

(x2, 1)

(x3, 0)
...

This might also be criticised as un-necessarily restricted: there are
other ways to learn.

Reinforcement learning: the basic case

We now begin to model the world in a more realistic way as follows:

S0 S1 S2 S3 · · ·

In any state:

Perform an action a to move to a new state. (There may be many possibilities.)

Receive a reward r depending on the start state and action.

The agent can perform actions in order to change the world’s
state .

If the agent performs an action in a particular state, then it gains a
corresponding reward .

Deterministic Markov Decision Processes

Formally, we have a set of states

S = {s1, s2, . . . , sn}

and in each state we can perform one of a set of actions

A = {a1, a2, . . . , am}.

We also have a function

S : S × A → S

such that S(s, a) is the new state resulting from performing action a

in state s, and a function

R : S × A → R

such that R(s, a) is the reward obtained by executing action a in state
s.

Deterministic Markov Decision Processes

From the point of view of the agent, there is a matter of considerable
importance:

The agent does not have access to the functions S and R .

It therefore has to learn a policy , which is a function

p : S → A

such that p(s) provides the action a that should be executed in state
s.

What might the agent use as its criterion for learning a policy?

Measuring the quality of a policy

Say we start in a state at time t, denoted st, and we follow a policy p.
At each future step in time we get a reward. Denote the rewards rt,
rt+1, . . . and so on.

A common measure of the quality of a policy p is the discounted
cumulative reward

V p(st) =
∞
∑

i=0

ǫirt+i

= rt + ǫrt+1 + ǫ2rt+2 + · · ·

where 0 ≤ ǫ ≤ 1 is a constant, which defines a trade-off for how
much we value immediate rewards against future rewards.

The intuition for this measure is that, on the whole, we should like
our agent to prefer rewards gained quickly.

Measuring the quality of a policy

Other common measures are the average reward

lim
T→∞

1

T

T
∑

i=0

rt+i

and the finite horizon reward
T
∑

i=0

rt+i

In these notes we will only address the discounted cumulative re-
ward.

Two important issues

Note that in this kind of problem we need to address two particularly
relevant issues:

• The temporal credit assignment problem: that is, how do we
decide which specific actions are important in obtaining a re-
ward?

• The exploration/exploitation problem. How do we decide be-
tween exploiting the knowledge we already have, and exploring
the environment in order to possibly obtain new (and more useful)
knowledge?

We will see later how to deal with these.

The optimal policy

Ultimately, our learner’s aim is to learn the optimal policy

popt = argmax
p

V p(s)

for all s. We will denote the optimal discounted cumulative reward as

Vopt(s) = V popt(s).

How might we go about learning the optimal policy?

Learning the optimal policy

The only information we have during learning is the individual re-
wards obtained from the environment.

We could try to learn Vopt(s) directly, so that states can be compared:

Consider s as better than s′ if Vopt(s) > Vopt(s
′).

However we actually want to compare actions , not states . Learning
Vopt(s) might help as

popt(s) = argmax
a

[R(s, a) + ǫVopt(S(s, a))]

but only if we know S and R.

As we are interested in the case where these functions are not
known, we need something slightly different.

The Q function

The trick is to define the following function:

Q(s, a) = R(s, a) + ǫVopt(S(s, a))

This function specifies the discounted cumulative reward obtained if
you do action a in state s and then follow the optimal policy .

As
popt(s) = argmax

a
Q(s, a)

then provided one can learn Q it is not necessary to have knowl-
edge of S and R to obtain the optimal policy .

The Q function

Note also that
Vopt(s) = max

α
Q(s, α)

and so
Q(s, a) = R(s, a) + ǫ max

α
Q(S(s, a), α)

which suggests a simple learning algorithm.

Let Q′ be our learner’s estimate of what the exact Q function is.

That is, in the current scenario Q′ is a table containing the estimated
values of Q(s, a) for all pairs (s, a).

Q-learning

Start with all entries in Q′ set to 0. (In fact we will see in a moment
that random entries will do.)

Repeat the following:

1. Look at the current state s and choose an action a. (We will see
how to do this in a moment.)

2. Do the action a and obtain some reward R(s, a).

3. Observe the new state S(s, a).

4. Perform the update

Q′(s, a) = R(s, a) + ǫ max
α

Q′(S(s, a), α)

Note that this can be done in episodes . For example, in learning
to play games, we can play multiple games, each being a single
episode.

Convergence of Q-learning

This looks as though it might converge!

Note that, if the rewards are at least 0 and we initialise Q′ to 0 then,

∀n, s, a Q′
n+1(s, a) ≥ Q′

n(s, a)

and
∀n, s, a Q(s, a) ≥ Q′

n(s, a) ≥ 0

However, we need to be a bit more rigorous than this...

Convergence of Q-learning

If:

1. the agent is operating in an environment that is a deterministic
MDP;

2. rewards are bounded in the sense that there is a constant δ > 0
such that

∀s, a |R(s, a)| < δ

3. all possible pairs s and a are visited infinitely often;

then the Q-learning algorithm converges, in the sense that

∀a, s Q′
n(s, a) → Q(s, a)

as n → ∞.

Convergence of Q-learning

This is straightforward to demonstrate.

Using condition 3, take two stretches of time in which all s and a pairs
occur:

All s, a occur All s, a occur

Define
ξ(n) = max

s,a
|Q′

n(s, a) −Q(s, a)|

the maximum error in Q′ at n.

What happens when Q′
n(s, a) is updated to Q′

n+1(s, a)?

Convergence of Q-learning

We have,

|Q′
n+1(s, a) −Q(s, a)|

= |(R(s, a) − ǫ max
α

Q′
n(S(s, a), α)) − (R(s, a) − ǫ max

α
Q(S(s, a), α))|

= ǫ|max
α

Q′
n(S(s, a), α) − max

α
Q(S(s, a), α)|

≤ ǫ max
α

|Q′
n(S(s, a), α) −Q(S(s, a), α)|

≤ ǫ max
s,a

|Q′
n(s, a) −Q(s, a)|

= ǫξ(n).

Convergence as described follows.

Choosing actions to perform

We have not yet answered the question of how to choose actions to
perform during learning.

One approach is to choose actions based on our current estimate
Q′. For instance

action chosen in current state s = argmax
a

Q′(s, a).

However we have already noted the trade-off between exploration
and exploitation. It makes more sense to:

• explore during the early stages of training;

• exploit during the later stages of training.

This seems particularly important in the light of condition 3 of the
convergence proof.

Choosing actions to perform

One way in which to choose actions that incorporates these require-
ments is to introduce a constant λ and choose actions probabilisti-
cally according to

Pr(action a|state s) =
λQ′(s,a)

∑

a λQ′(s,a)

Note that:

• if λ is small this promotes exploration ;

• if λ is large this promotes exploitation .

We can vary λ as training progresses.

Improving the training process

There are two simple ways in which the process can be improved:

1. If training is episodic, we can store the rewards obtained during
an episode and update backwards at the end.

This allows better updating at the expense of requiring more mem-
ory.

2. We can remember information about rewards and occasionally
re-use it by re-training.

Nondeterministic MDPs

The Q-learning algorithm generalises easily to a more realistic situ-
ation, where the outcomes of actions are probabilistic .

Instead of the functions S and R we have probability distributions

Pr(new state|current state, action)

and
Pr(reward|current state, action).

and we now use S(s, a) and R(s, a) to denote the corresponding ran-
dom variables.

We now have

V p = E

(

∞
∑

i=0

ǫirt+i

)

and the best policy popt maximises V p.

Q-learning for nondeterministic MDPs

We now have

Q(s, a) = E(R(s, a)) + ǫ
∑

σ

Pr(σ|s, a)V opt(σ)

= E(R(s, a)) + ǫ
∑

σ

Pr(σ|s, a) max
α

Q(σ, α)

and the rule for learning becomes

Q′
n+1 = (1 − θn+1)Q

′
n(s, a) + θn+1

[

R(s, a) + max
α

Q′
n(S(s, a), α)

]

with

θn+1 =
1

1 + vn+1(s, a)

where vn+1(s, a) is the number of times the pair s and a has been
visited so far.

Convergence of Q-learning for nondeterministic MDPs

If:

1. the agent is operating in an environment that is a nondeterministic
MDP;

2. rewards are bounded in the sense that there is a constant δ > 0
such that

∀s, a |R(s, a)| < δ

3. all possible pairs s and a are visited infinitely often;

4. ni(s, a) is the ith time that we do action a in state s;

and also...

Convergence of Q-learning for nondeterministic MDPs

...we have

0 ≤θn < 1
∞
∑

i=1

θni(s,a) = ∞

∞
∑

i=1

θ2
ni(s,a) < ∞

then with probability 1 the Q-learning algorithm converges, in the
sense that

∀a, s Q′
n(s, a) → Q(s, a)

as n → ∞.

Alternative representation for the Q′ table

But there’s always a catch...

We have to store the table for Q′:

• even for quite straightforward problems it is HUGE!!! - certainly
big enough that it can’t be stored;

• a standard approach to this problem is, for example, to represent
it as a neural network ;

• one way might be to make s and a the inputs to the network and
train it to produce Q′(s, a) as its output.

This, of course, introduces its own problems, although it has been
used very successfully in practice.

It might be covered in Artificial Intelligence III , which unfortunately
does not yet exist!

26

