
Uncertainty IV: Simple Decision-Making

We now examine:

• the concept of a utility function;

• the way in which such functions can be related to reasonable
axioms about preferences;

• a generalization of the Bayesian network, known as a decision
network;

• how to measure the value of information, and how to use such
measurements to design agents that can ask questions.

Reading: Russell and Norvig, chapter 16.
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Simple decision-making

We now look at choosing an action by maximising expected utility.

A utility function U (s) measures the desirability of a state.

If we can express a probability distribution for the states resulting
from alternative actions, then we can act in order to maximise ex-
pected utility.

For an action a, let Result(a) = {s1, . . . , sn} be a set of states that
might be the result of performing action a. Then the expected utility
of a is

EU(a|E) =
∑

s∈Result(a)

Pr(s|a,E)U (s)

Note that this applies to individual actions. Sequences of actions will
not be covered in this course.

Simple decision-making: all of AI?

Much as this looks like a complete and highly attractive method for
an agent to decide how to act, it hides a great deal of complexity:

1. it may be hard to compute U (s). You generally don’t know how
good a state is until you know where it might lead on to: planning
etc...

2. knowing what state you’re currently in involves most of AI!

3. dealing with Pr(s|a,E) involves Bayesian networks.

Utility in more detail

Overall, we now want to express preferences between different things.

Let’s use the following notation:

X > Y : X is preferred to Y

X = Y : we are indifferent regarding X and Y

X ≥ Y : X is preferred, or we’re indifferent

X, Y and so on are lotteries. A lottery has the form

X = [p1, O1|p2, O2| · · · |pn, On]

where Oi are the outcomes of the lottery and pi their respective prob-
abilities. Outcomes can be other lotteries or actual states.



Axioms for utility theory

Given we are dealing with preferences it seems that there are some
clear properties that such things should exhibit:

Transitivity: if X > Y and Y > Z then X > Z.

Orderability: either X > Y or Y > X or X = Y .

Continuity: if X > Y > Z then there is a probability p such that

[p,X|(1− p), Z] = Y

Substitutability: if X = Y then

[p, X|(1− p), L] = [p, Y |(1− p), L]

Axioms for utility theory

Monotonicity: if X > Y then for probabilities p1 and p2, p1 ≥ p2 if and
only if

[p1, X|(1− p1), Y ] ≥ [p2, X|(1− p2), Y ]

Decomposability:

[p1, X|(1−p1), [p2, Y |(1−p2), Z]] = [p1, X|(1−p1)p2, Y |(1−p1)(1−p2), Z]

Axioms for utility theory

If an agent’s preferences conform to the utility theory axioms—and
note that we are only considering preferences, not numbers—then it
is possible to define a utility function U (s) for states such that:

1. U (s1) > U (s2)←→ s1 > s2

2. U (s1) = U (s2)←→ s1 = s2

3. U ([p1, s1|p2, s2| · · · |pn, sn]) =
∑n

i=1 piU (si).

We therefore have a justification for the suggested approach.

Designing utility functions

There is complete freedom in how a utility function is defined, but
clearly it will pay to define them carefully.

Example: the utility of money (for most people) exhibits a monotonic
preference. That is, we prefer to have more of it.

But we need to talk about preferences between lotteries.

Say you’ve won 100, 000 pounds in a quiz and you’re offered a coin
flip:

• for heads: you win a total of 1, 000, 000 pounds;

• for tails: you walk away with nothing!



Designing utility functions

The expected monetary value (EMV) of this lottery is

(0.5× 1, 000, 000) + (0.5× 0) = 500, 000

whereas the EMV of the initial amount is 100, 000.

BUT: most of us would probably refuse to take the coin flip.

The story is not quite as simple as this though: our attitude probably
depends on how much money we have to start with. If I have M

pounds to start with then I am in fact choosing between expected
utility of U (M + 100, 000) and expected utility of

(0.5× U (M)) + (0.5× U (M + 1, 000, 000))

If M is 50, 000, 000 my attitude is much different to if it is 10, 000.

Designing utility functions

In fact, research shows that the utility of M pounds is for most people
almost exactly proportional to log M , for M > 0.

U(M)

M

Decision networks

Decision networks, also known as influence diagrams, allow us to
work actions and utilities into the formalism of Bayesian networks.

Site of landfill

Road traffic

Legal action

Build cost

Air quality

Cost to taxpayer

Road conjestion

Utility

Decision networks

A decision network has three types of node:

Chance nodes: are denoted by ovals. These are random variables
(RVs) represented by a distribution conditional on their parents, as
in Bayesian networks. Parents can be other chance nodes or a de-
cision node.

Decision nodes: are denoted by squares. They describe possible
outcomes of the decision of interest. Here we deal only with single
decisions: multiple decisions require alternative techniques.

Utility nodes: are denoted by diamonds. They describe the utility
function relevant to the problem, as a function of the values of the
node’s parents.



Decision networks

Sometimes such diagrams are simplified by leaving out the RVs de-
scribing the new state and converting current state and decision di-
rectly to utility:

Road traffic

Legal action

Build cost

Utility

Air quality, cost to taxpayer and
road conjestion describe future state
and so never appear as evidence.

This gives us fewer nodes to deal with BUT
potentially less flexibility in exploring alternative
descriptions of the problem.

Site of landfill

EU(a|E) =
∑

s∈Result(a) Pr(s|a, E)U(s)

This is an action-utility table. The utility no longer depends on a state
but is the expected utility for a given action.

Evaluation of decision networks

Once a specific action is selected for a decision node it acts like a
chance node for which a specific value is being used as evidence.

1. set the current state chance nodes to their evidence values

2. for each potential action

• fix the decision node

• compute the probabilities for the utility node’s parents

• compute the expected utility

3. return the action that maximised EU(a|E)

The value of information

We have been assuming that a decision is to be made with all evi-
dence available beforehand. This is unlikely to be the case.

Knowing what questions one should ask is a central, and important
part of making decisions. Example:

• doctors do not diagnose by first obtaining results for all possible
tests on their patients;

• they ask questions to decide what tests to do;

• they are informed in formulating which tests to perform by proba-
bilities of test outcomes, and by the manner in which knowing an
outcome might improve treatment;

• tests can have associated costs.

The value of perfect information

Information value theory provides a formal way in which we can rea-
son about what further information to gather using sensing actions.

Say we have evidence E, so

EU(action|E) = max
a

∑

s∈Result(a)

Pr(s|a,E)U (s)

denotes how valuable the best action, that is, the best action based
on E, must be.

How valuable would it be to learn about a further piece of evidence?

If we examined another RV E ′ and found that E ′ = e′ then the best
action might be altered as we’d be computing

EU(action′|E,E ′) = max
a

∑

s∈Result(a)

Pr(s|a,E, E ′)U (s)



The value of perfect information

BUT: because E ′ is a RV, and in advance of testing we don’t know its
value, we need to average over its possible values using our current
knowledge.

This leads to the definition of the value of perfect information (VPI)

VPIE(E ′) =

{

∑

e′

Pr(E ′ = e′|E)EU(action′|E, E ′ = e′)

}

−EU(action|E)

The value of perfect information

VPI has the following properties:

• VPIE(E ′) ≥ 0

• It is not necessarily additive, that is, it is possible that

VPIE(E ′, E ′′) 6= VPIE(E ′) + VPIE(E ′′)

• It is independent of ordering

VPIE(E ′, E ′′) = VPIE(E ′) + VPIE,E′(E
′′)

= VPIE(E ′′) + VPIE,E′′(E
′)

Agents that can gather information

In constructing an agent with the ability to ask questions, we would
hope that it would:

• use a good order in which to ask the questions;

• avoid asking irrelevant questions;

• trade off the cost of obtaining information against the value of that
information;

• choose a good time to stop asking questions.

We now have the means with which to approach such a design.

Agents that can gather information

Assuming we can associate a cost C(E ′) with obtaining the knowl-
edge that E ′ = e′, an agent can act as follows:

• given a decision network and current percept

• find the piece of evidence E ′ maximising VPIE(E ′)− C(E ′)

• if VPIE(E ′)− C(E ′) is positive then find the value of E ′, else take
the action indicated by the decision network.

This is known as a myopic agent as it requests a single piece of
evidence at once.
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