
Uncertainty I: Probability as Degree of Belief

We now examine:

• how probability theory might be used to represent and reason
with knowledge when we are uncertain about the world;

• how inference in the presence of uncertainty can in principle be
performed using only basic results along with the full joint prob-
ability distribution ;

• how this approach fails in practice;

• how the notions of independence and conditional indepen-
dence may be used to solve this problem.

Reading: Russell and Norvig, chapter 13.
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Uncertainty in AI

The (predominantly logic-based) methods covered so far have as-
sorted shortcomings:

• limited epistemological commitment—true/false/unknown;

• actions are possible when sufficient knowledge is available...

• ...but this is not generally the case;

• in practice there is a need to cope with uncertainty .

For example in the Wumpus World:

• we can not make observations further afield than the current lo-
cality;

• consequently inferences regarding pit/wumpus location etc will
not usually be possible.

Uncertainty in AI

A couple of more subtle problems have also presented themselves:

• The Qualification Problem: it is not generally possible to guar-
antee that an action will succeed—only that it will succeed if
many other preconditions do/don’t hold.

• Rational action depends on the likelihood of achieving different
goals, and their relative desirability .

Logic (as seen so far) has major shortcomings

An example:

∀x symptom(x,toothache) → problem(x,cavity)

This is plainly incorrect. Toothaches can be caused by things other
than cavities.

∀x symptom(x,toothache) →problem(x,cavity)∨

problem(x,abscess)∨

problem(x,gum-disease)∨

· · ·

BUT:

• it is impossible to complete the list;

• there’s no clear way to take account of the relative likelihoods of
different causes.



Logic (as seen so far) has major shortcomings

If we try to make a causal rule

∀x problem(x,abscess) → symptom(x,toothache)

it’s still wrong—abscesses do not always cause pain.

We need further information in addition to

problem(x,abscess)

and it’s still not possible to do this correctly.

Logic (as seen so far) has major shortcomings

FOL can fail for essentially three reasons:

1. Laziness: it is not feasible to assemble a set of rules that is suf-
ficiently exhaustive.

If we could, it would not be feasible to apply them.

2. Theoretical ignorance: insufficient knowledge exists to allow
us to write the rules.

3. Practical ignorance: even if the rules have been obtained there
may be insufficient information to apply them.

Truth, falsehood, and belief

Instead of thinking in terms of the truth or falsity of a statement we
want to deal with an agent’s degree of belief in the statement.

• Probability theory is the perfect tool for application here.

• Probability theory allows us to summarise the uncertainty due
to laziness and ignorance.

An important distinction

There is a fundamental difference between probability theory and
fuzzy logic :

• when dealing with probability theory, statements remain in fact
either true or false ;

• a probability denotes an agent’s degree of belief one way or
another;

• fuzzy logic deals with degree of truth .

In practice the use of probability theory has proved spectacularly
successful.



Belief and evidence

An agent’s beliefs will depend on what it has perceived : probabilities
are based on evidence and may be altered by the acquisition of new
evidence:

• Prior (unconditional) probability denotes a degree of belief in
the absence of evidence;

• Posterior (conditional) probability denotes a degree of belief
after evidence is perceived.

As we shall see Bayes’ theorem is the fundamental concept that
allows us to update one to obtain the other.

Making rational decisions under uncertainty

When using logic , we concentrated on finding an action sequence
guaranteed to achieve a goal, and then executing it.

When dealing with uncertainty we need to define preferences among
states of the world and take into account the probability of reaching
those states.

Utility theory is used to assign preferences.

Decision theory combines probability theory and utility theory.

A rational agent should act in order to maximise expected utility.

Probability

We want to assign degrees of belief to propositions about the world.

We will need:

• Random variables with associated domains —typically boolean,
discrete, or continuous;

• all the usual concepts—events, atomic events, sets etc;

• probability distributions and densities;

• probability axioms (Kolmogorov);

• conditional probability and Bayes’ theorem.

So if you’ve forgotten this stuff now is a good time to re-read it.

Probability

The standard axioms are:

• Range
0 ≤ Pr(x) ≤ 1

• Always true propositions

Pr(always true proposition) = 1

• Always false propositions

Pr(always false proposition) = 0

• Union
Pr(x ∨ y) = Pr(x) + Pr(y) − Pr(x ∧ y)



Origins of probabilities I

Historically speaking, probabilities have been regarded in a number
of different ways:

• Frequentist: probabilities come from measurements;

• Objectivist: probabilities are actual “properties of the universe”
which frequentist measurements seek to uncover.

An excellent example: quantum phenomena.

A bad example: coin flipping—the uncertainty is due to our un-
certainty about the initial conditions of the coin.

• Subjectivist: probabilities are an agent’s degrees of belief.

This means the agent is allowed to make up the numbers!

Origins of probabilities II

The reference class problem : even frequentist probabilities are
subjective.

Example: Say a doctor takes a frequentist approach to diagnosis.
She examines a large number of people to establish the prior prob-
ability of whether or not they have heart disease.

To be accurate she tries to measure ”similar people”. (She knows for
example that gender might be important.)

Taken to an extreme, all people are different and there is therefore
no reference class .

Origins of probabilities III

The principle of indifference (Laplace).

• Give equal probability to all propositions that are syntactically
symmetric with respect to the available evidence.

• Refinements of this idea led to the attempted development by
Carnap and others of inductive logic .

• The aim was to obtain the correct probability of any proposition
from an arbitrary set of observations.

It is currently thought that no unique inductive logic exists.

Any inductive logic depends on prior beliefs and the effect of these
beliefs is overcome by evidence.

Prior probability

A prior probability denotes the probability (degree of belief) as-
signed to a proposition in the absence of any other evidence .

For example
Pr(Cavity = true) = 0.05

denotes the degree of belief that a random person has a cavity be-
fore we make any actual observation of that person .



Notation

To keep things compact, we will use

Pr(Cavity)

to denote the entire probability distribution of the random variable
Cavity.

Instead of
Pr(Cavity = true) = 0.05

Pr(Cavity = false) = 0.95

write
Pr(Cavity) = (0.05, 0.95)

Notation

A similar convention will apply for joint distributions. For example, if
Decay can take the values severe, moderate or low then

Pr(Cavity,Decay)

is a 2 by 3 table of numbers.

severe moderate low
true 0.26 0.1 0.01
false 0.01 0.02 0.6

Similarly
Pr(true,Decay)

denotes 3 numbers etc.

The full joint probability distribution

The full joint probability distribution is the joint distribution of all
random variables that describe the state of the world.

This can be used to answer any query .

(But of course life’s not really that simple!)

Conditional probability

We use the conditional probability

Pr(x|y)

to denote the probability that a proposition x holds given that all the
evidence we have so far is contained in proposition y.

From basic probability theory

Pr(x|y) =
Pr(x ∧ y)

Pr(y)



Conditional probability and implication are distinct

Conditional probability is not analogous to logical implication .

• Pr(x|y) = 0.1 does not mean that if y is true then Pr(x) = 0.1.

• Pr(x) is a prior probability.

• The notation Pr(x|y) is for use when y is the entire evidence.

• Pr(x|y ∧ z) might be very different.

Using the full joint distribution to perform inference

We can regard the full joint distribution as a knowledge base .

We want to use it to obtain answers to questions.

CP ¬ CP
HBP ¬ HBP HBP ¬ HBP

HD 0.09 0.05 0.07 0.01
¬ HD 0.02 0.08 0.03 0.65

We’ll use this medical diagnosis problem as a running example.

• HD = Heart disease

• CP = Chest pain

• HBP = High blood pressure

Using the full joint distribution to perform inference

The process is nothing more than the application of basic results:

• Sum atomic events:
Pr(HD ∨ CP) = Pr(HD ∧ CP ∧ HBP)

+ Pr(HD ∧ CP ∧ ¬HBP)

+ Pr(HD ∧ ¬CP ∧ HBP)

+ Pr(HD ∧ ¬CP ∧ ¬HBP)

+ Pr(¬HD ∧ CP ∧ HBP)

+ Pr(¬HD ∧ CP ∧ ¬HBP)

= 0.09 + 0.05 + 0.07 + 0.01 + 0.02 + 0.08

= 0.32

• Marginalisation: if A and B are sets of variables then

Pr(A) =
∑

b

Pr(A ∧ b) =
∑

b

Pr(A|b) Pr(b)

Using the full joint distribution to perform inference

Usually we will want to compute the conditional probability of some
variable(s) given some evidence.

For example

Pr(HD|HBP) =
Pr(HD ∧ HBP)

Pr(HBP)
=

0.09 + 0.07

0.09 + 0.07 + 0.02 + 0.03
= 0.76

and

Pr(¬HD|HBP) =
Pr(¬HD ∧ HBP)

Pr(HBP)
=

0.02 + 0.03

0.09 + 0.07 + 0.02 + 0.03
= 0.24



Using the full joint distribution to perform inference

The process can be simplified slightly by noting that

α =
1

Pr(HBP)

is a constant and can be regarded as a normaliser making relevant
probabilities sum to 1.

So a short cut is to avoid computing it as above. Instead:

Pr(HD|HBP) = α Pr(HD ∧ HBP) = (0.09 + 0.07)α

Pr(¬HD|HBP) = α Pr(¬HD ∧ HBP) = (0.02 + 0.03)α

and we need
Pr(HD|HBP) + Pr(¬HD|HBP) = 1

so
α =

1

0.09 + 0.07 + 0.02 + 0.03

Using the full joint distribution to perform inference

The general inference procedure is as follows:

Pr(Q|e) =
1

Z
Pr(Q ∧ e) =

1

Z

∑

u

Pr(Q, e, u)

where

• Q is the query variable

• e is the evidence

• u are the unobserved variables

• 1/Z normalises the distribution.

Using the full joint distribution to perform inference

Simple eh?

Well, no...

• For n Boolean variables the table has 2n entries.

• Storage and processing time are both O(2n).

• You need to establish 2n numbers to work with.

In reality we might well have n > 1000, and of course it’s even worse
if variables are non-Boolean.

How can we get around this?

Exploiting independence

If I toss a coin and roll a dice, the full joint distribution of outcomes
requires 2 × 6 = 12 numbers to be specified.

1 2 3 4 5 6
Head 0.014 0.028 0.042 0.057 0.071 0.086
Tail 0.033 0.067 0.1 0.133 0.167 0.2

Here Pr(Coin = head) = 0.3 and the dice has probability i/21 for the
ith outcome.

BUT: if we assume the outcomes are independent then

Pr(Coin,Dice) = Pr(Coin) Pr(Dice)

Where Pr(Coin) has two numbers and Pr(Dice) has six.

So instead of 12 numbers we only need 8.



Exploiting independence

Similarly, say instead of just considering HD, HBP and CP we also
consider the outcome of the Oxford versus Cambridge tiddlywinks
competition TC

Pr(TC = Oxford) = 0.2

Pr(TC = Cambridge) = 0.7

Pr(TC = Draw) = 0.1

Now

Pr(HD,HBP,CP,TC) = Pr(TC|HD,HBP,HD) Pr(HD,HBP,HD)

Assuming that the patient is not an extraordinarily keen fan of tid-
dlywinks, their cardiac health has nothing to do with the outcome,
so

Pr(TC|HD,HBP,HD) = Pr(TC)

and 2 × 2 × 2 × 3 = 24 numbers has been reduced to 3 + 8 = 11.

Exploiting independence

In general you need to identify such independence through knowl-
edge of the problem.

BUT:

• it generally does not work as clearly as this;

• the independent subsets themselves can be big.

Bayes theorem

From first principles

Pr(x, y) = Pr(x|y) Pr(y)

Pr(x, y) = Pr(y|x) Pr(x)

so

Pr(x|y) =
Pr(y|x) Pr(x)

Pr(y)

The most important equation in modern AI?

When evidence e is involved this can be written

Pr(Q|R, e) =
Pr(R|Q, e) Pr(Q|e)

Pr(R|e)

Bayes theorem

Taking another simple medical diagnosis example: does a patient
with a fever have malaria? A doctor might know that

Pr(fever|malaria) = 0.99

Pr(malaria) =
1

10000

Pr(fever) =
1

20
Consequently we can try to obtain Pr(malaria|fever) by direct ap-
plication of Bayes theorem

Pr(malaria|fever) =
0.99 × 0.0001

0.05
= 0.00198

or using the alternative technique

Pr(malaria|fever) = α Pr(fever|malaria) Pr(malaria)

if the relevant further quantity Pr(fever|¬malaria) is known.



Bayes theorem

• Sometimes the first possibility is easier, sometimes not.

• Causal knowledge such as

Pr(fever|malaria)

might well be available when diagnostic knowledge such as

Pr(malaria|fever)

is not.

• Say the incidence of malaria, modelled by Pr(Malaria), sud-
denly changes. Bayes theorem tells us what to do.

• The quantity
Pr(fever|malaria)

would not be affected by such a change.

Causal knowledge can be more robust.

Conditional independence

What happens if we have multiple pieces of evidence?

We have seen that to compute

Pr(HD|CP,HBP)

directly might well run into problems.

we could try using Bayes theorem to obtain

Pr(HD|CP,HBP) = α Pr(CP,HBP|HD) Pr(HD)

However while HD is probably manageable, a quantity such as Pr(CP,HBP
might well still be problematic especially in more realistic cases.

Conditional independence

However although in this case we might not be able to exploit inde-
pendence directly we can say that

Pr(CP,HBP|HD) = Pr(CP|HD) Pr(HBP|HD)

which simplifies matters.

Conditional independence :

• Pr(A, B|C) = Pr(A|C) Pr(B|C)

• If we know that C is the case then A and B are independent.

Although CP and HBP are not independent, they do not directly influ-
ence one another in a patient known to have heart disease.

This is much nicer!

Pr(HD|CP,HBP) = α Pr(CP|HD) Pr(HBP|HD) Pr(HD)

Naive Bayes

Conditional independence is often assumed even when it does not
hold.

Naive Bayes :

Pr(A, B1, B2, . . . , Bn) = Pr(A)
n∏

i=1

Pr(Bi|A)

Also known as Idiot’s Bayes .

Despite this, it is often surprisingly effective.



Uncertainty II - Bayesian Networks

Having seen that in principle, if not in practice, the full joint distribu-
tion alone can be used to perform any inference of interest, we now
examine a practical technique.

• We introduce the Bayesian network (BN) as a compact represen-
tation of the full joint distribution.

• We examine the way in which a BN can be constructed.

• We examine the semantics of BNs.

• We look briefly at how inference can be performed.

Reading: Russell and Norvig, chapter 14.

Bayesian networks

Also called probabilistic/belief/causal networks or knowledge maps .

TW HD

CP HBP

• Each node is a random variable (RV).

• Each node Ni has a distribution

Pr(Ni|parents(Ni))

• A Bayesian network is a directed acyclic graph.

• Roughly speaking, an arrow from N to M means N directly af-
fects M .

Bayesian networks

After a regrettable incident involving an inflatable gorilla, a famous
College has decided to install an alarm for the detection of roof
climbers.

• The alarm is very good at detecting climbers.

• Unfortunately, it is also sometimes triggered when one of the ex-
tremely fat geese that lives in the College lands on the roof.

• One porter’s lodge is near the alarm, and inhabited by a chap with
excellent hearing and a pathological hatred of roof climbers: he
always reports an alarm. His hearing is so good that he some-
times thinks he hears an alarm, even when there isn’t one.

• Another porter’s lodge is a good distance away and inhabited by
an old chap with dodgy hearing who likes to watch his collection
of videos with the sound turned up.

Bayesian networks

Alarm

Climber

Lodge1 Lodge2

Goose

No: 0.95

Yes: 0.05

Pr(Climber)

Yes: 0.2

No: 0.8

Pr(Goose)

Pr(L1|A)

a 0.99

¬a 0.08 ¬a

a

Pr(L2|A)

0.6

0.001

Pr(A|C,G)

C G Pr(A|C,G)

Y 0.98
N
Y

N
Y

Y
N

N

0.08
0.96
0.2



Bayesian networks

Note that:

• in the present example all RVs are discrete (in fact Boolean) and
so in all cases Pr(Ni|parents(Ni)) can be represented as a table
of numbers;

• Climber and Goose have only prior probabilities;

• all RVs here are Boolean, so a node with p parents requires 2p

numbers.

Semantics

A BN with n nodes represents the full joint probability distribution for
those nodes as

Pr(N1 = n1, N2 = n2, . . . , Nn = nn) =

n∏

i=1

Pr(Ni = ni|parents(Ni)) (1)

For example

Pr(¬C,¬G,A,L1,L2) = Pr(L1|A) Pr(L2|A) Pr(A|¬C,¬G) Pr(¬C) Pr(¬G)

= 0.99 × 0.6 × 0.08 × 0.95 × 0.8

Semantics

In general Pr(A, B) = Pr(A|B) Pr(B) so abbreviating Pr(N1 = n1, N2 =
n2, . . . , Nn = nn) to Pr(n1, n2, . . . , nn) we have

Pr(n1, . . . , nn) = Pr(nn|nn−1, . . . , n1) Pr(nn−1, . . . , n1)

Repeating this gives
Pr(n1, . . . , nn) = Pr(nn|nn−1, . . . , n1) Pr(nn−1|nn−2, . . . , n1) · · ·Pr(n1)

=
n∏

i=1

Pr(ni|ni−1, . . . , n1)

(2)
Now compare equations 1 and 2. We see that BNs make the as-
sumption

Pr(Ni|Ni−1, . . . , N1) = Pr(Ni|parents(Ni))

for each node, assuming that parents(Ni) ⊆ {Ni−1, . . . , N1}.

Each Ni is conditionally independent of its predecessors given
its parents

Semantics

• When constructing a BN we want to make sure the preceding
property holds.

• This means we need to take care over ordering.

• In general causes should directly precede effects.

· · ·

Ni

parents(Ni)

Here, parents(Ni) contains all preceding nodes having a direct influ-
ence on Ni.



Semantics

Deviation from this rule can have major effects on the complexity of
the network.

That’s bad! We want to keep the network simple:

• if each node has at most p parents and there are n Boolean
nodes, we need to specify at most n2p numbers...

• ...whereas the full joint distribution requires us to specify 2n num-
bers.

So: there is a trade-off attached to the inclusion of tenuous although
strictly-speaking correct edges.

Semantics

As a rule, we should include the most basic causes first, then the
things they influence directly etc.

What happens if you get this wrong?

Example: add nodes in the order L2,L1,G,C,A.

Goose

Lodge1

Climber Alarm

Lodge2

Semantics

In this example:

• increased connectivity;

• many of the probabilities here will be quite unnatural and hard to
specify.

Once again: causal knowledge is preferred to diagnostic knowledge.

Semantics

As an alternative we can say directly what conditional independence
assumptions a graph should be interpreted as expressing. There are
two common ways of doing this.

N1 A N2

P2P1

Any node A is conditionally independent of the Ni—its non-descendants—
given the Pi—its parents.



Semantics

A M4

M1 M2 M3

M8

M5M6M7

Any node A is conditionally independent of all other nodes given the
Markov blanket Mi—that is, its parents, its children, and its children’s
parents.

More complex nodes

How do we represent

Pr(Ni|parents(Ni))

when nodes can denote general discrete and/or continuous RVs?

• BNs containing both kinds of RV are called hybrid BNs.

• Naive discretisation of continuous RVs tends to result in both a
reduction in accuracy and large tables.

• O(2p) might still be large enough to be unwieldy.

• We can instead attempt to use standard and well-understood dis-
tributions, such as the Gaussian.

• This will typically require only a small number of parameters to be
specified.

More complex nodes

Example: functional relationships are easy to deal with.

Ni = f(parents(Ni))

Pr(Ni = ni|parents(Ni)) =

{
1 if ni = f(parents(Ni))
0 otherwise

More complex nodes

Example: a continuous RV with one continuous and one discrete
parent.

Pr(Speed of car|Throttle position,Tuned engine)

where SC and TP are continuous and TE is Boolean.

• For a specific setting of ET = true it might be the case that SC
increases with TP, but that some uncertainty is involved

Pr(SC|TP,et) = N(getTP + cet, σ
2
et)

• For an un-tuned engine we might have a similar relationship with
a different behaviour

Pr(SC|TP,¬et) = N(g¬etTP + c¬et, σ
2
¬et)

There is a set of parameters {g, c, σ} for each possible value of the
discrete RV.



More complex nodes

Example: a discrete RV with a continuous parent

Pr(Go roofclimbing|Size of fine)

We could for example use the probit distribution

Pr(Go roofclimbing = true|size) = Φ

(
t − size

s

)

where

Φ(x) =

∫ x

−∞

N(y)dy

and N(x) is the Gaussian distribution with zero mean and variance
1.

More complex nodes

1

1

2

x

0

Φ(x)

1

1

2

size

t = 100

s controls slope

Pr(GRC = true|size)

More complex nodes

Alternatively, for this example we could use the logit distribution

Pr(Go roofclimbing = true|size) =
1

1 + e(−2(t−size)/s)

which has a similar shape.

• Tails are longer for the logit distribution.

• The logit distribution tends to be easier to use...

• ...but the probit distribution is often more accurate.

Basic inference

We saw earlier that the full joint distribution can be used to perform
all inference tasks:

Pr(Q|e) =
1

Z
Pr(Q ∧ e) =

1

Z

∑

u

Pr(Q, e, u)

where

• Q is the query variable

• e is the evidence

• u are the unobserved variables

• 1/Z normalises the distribution.



Basic inference

As the BN fully describes the full joint distribution

Pr(Q, u, e) =
n∏

i=1

Pr(Ni|parents(Ni))

It can be used to perform inference in the obvious way.

Pr(Q|e) =
1

Z

∑

u

n∏

i=1

Pr(Ni|parents(Ni))

• More sophisticated algorithms aim to achieve this more efficiently.

• For complex BNs we resort to approximation techniques.

Other approaches to uncertainty: Default reasoning

One criticism made of probability is that it is numerical whereas hu-
man argument seems fundamentally different in nature:

• on the one hand this seems quite defensible. I certainly am
not aware of doing logical thought through direct manipulation
of probabilities, but;

• on the other hand, neither am I aware of solving differential equa-
tions in order to walk!

Default reasoning:

• does not maintain degrees of belief;

• allows something to be believed until a reason is found not to.

Other approaches to uncertainty: rule-based systems

Rule-based systems have some desirable properties:

• Locality: if we establish the evidence X and we have a rule X →
Y then Y can be concluded regardless of any other rules.

• Detachment: once any Y has been established it can then be
assumed. (It’s justification is irrelevant.)

• Truth-functionality: truth of a complex formula is a function of the
truth of its components.

These are not in general shared by probabilistic systems. What hap-
pens if:

• we try to attach measures of belief to rules and propositions;

• we try to make a truth-functional system by, for example, making
belief in X ∧ Y a function of beliefs in X and Y ?

Other approaches to uncertainty: rule-based systems

Problems that can arise:

1. Say I have the causal rule

Heart disease 0.95
−→ Chest pain

and the diagnostic rule

Chest pain 0.7
−→ Heart disease

Without taking very great care to keep track of the reasoning pro-
cess, these can form a loop.

2. If in addition I have

Chest pain 0.6
−→ Recent physical exertion

then it is quite possible to form the conclusion that with some
degree of certainty heart disease is explained by exertion, which
may well be incorrect.



Other approaches to uncertainty: rule-based systems

In addition, we might argue that because heart disease is an expla-
nation for chest pain the belief in physical exertion should decrease.

In general when such systems have been successful it has been
through very careful control in setting up the rules.

Other approaches to uncertainty: Dempster-Shafer theory

Dempster-Shafer theory attempts to distinguish between uncertainty
and ignorance.

Whereas the probabilistic approach looks at the probability of X, we
instead look at the probability that the available evidence supports
X.

This is denoted by the belief function Bel(X).

Example: given a coin but no information as to whether it is fair I
have no reason to think one outcome should be preferred to another

Bel(outcome = head) = Bel(outcome = tail) = 0

Other approaches to uncertainty: Dempster-Shafer theory

These beliefs can be updated when new evidence is available. If an
expert tells us there is n percent certainty that it’s a fair coin then

Bel(outcome = head) = Bel(outcome = tail) =
n

100
×

1

2
.

We may still have a “gap” in that

Bel(outcome = head) + Bel(outcome = tail) 6= 1.

Dempster-Shafer theory provides a coherent system for dealing with
belief functions.

Other approaches to uncertainty: Dempster-Shafer theory

Problems:

• the Bayesian approach deals more effectively with the quantifica-
tion of how belief changes when new evidence is available;

• the Bayesian approach has a better connection to the concept of
utility, whereas the latter is not well-understood for use in con-
junction with Dempster-Shafer theory.



Uncertainty III: exact inference in Bayesian networks

We now examine:

• the basic equation for inference in Bayesian networks, the latter
being hard to achieve if approached in the obvious way;

• the way in which matters can be improved a little by a small mod-
ification to the way in which the calculation is done;

• the way in which much better improvements might be possible
using a still more informed approach, although not in all cases.

Reading: Russell and Norvig, chapter 14, section 14.4.

Performing exact inference

We know that in principle any query Q can be answered by the cal-
culation

Pr(Q|e) =
1

Z

∑

u

Pr(Q, e, u)

where Q denotes the query, e denotes the evidence, u denotes un-
observed variables and 1/Z normalises the distribution.

The naive implementation of this approach yields the Enumerate-
Joint-Ask algorithm, which unfortunately requires O(2n) time and space
for n Boolean random variables (RVs).

Performing exact inference

In what follows we will make use of some abbreviations.

• C denotes Climber

• G denotes Goose

• A denotes Alarm

• L1 denotes Lodge1

• L2 denotes Lodge2

Instead of writing out Pr(C = ⊤), Pr(C = ⊥) etc we will write Pr(c),
Pr(¬c) and so on.

Performing exact inference

Also, for a Bayesian network, Pr(Q, e, u) has a particular form ex-
pressing conditional independences in the problem. For our earlier
example:

Alarm

Climber

Lodge1 Lodge2

Goose

No: 0.95

Yes: 0.05

Pr(Climber)

Pr(L1|A)

a 0.99

¬a 0.08

Yes: 0.2

No: 0.8

Pr(Goose)

¬a

a

Pr(L2|A)

0.6

0.001

Pr(A|C,G)

C G Pr(A|C,G)

Y 0.98
N
Y

N
Y

Y
N

N

0.08
0.96
0.2

Pr(C, G,A, L1, L2) = Pr(C)Pr(G)Pr(A|C,G)Pr(L1|A)Pr(L2|A)



Performing exact inference

Consider the computation of the query Pr(C|l1, l2)

We have

Pr(C|l1, l2) =
1

Z

∑

A

∑

G

Pr(C)Pr(G)Pr(A|C, G)Pr(l1|A)Pr(l2|A)

Here there are 5 multiplications for each set of values that appears
for summation, and there are 4 such values.

In general this gives time complexity O(n2n) for n Boolean RVs.

Performing exact inference

Looking more closely we see that

Pr(C|l1, l2) =
1

Z

∑

A

∑

G

Pr(C)Pr(G)Pr(A|C, G)Pr(l1|A)Pr(l2|A)

=
1

Z
Pr(C)

∑

A

Pr(l1|A)Pr(l2|A)
∑

G

Pr(G)Pr(A|C,G)

=
1

Z
Pr(C)

∑

G

Pr(G)
∑

A

Pr(A|C, G)Pr(l1|A)Pr(l2|A)

(3)

So for example...

Performing exact inference

So for example...

Pr(c|l1, l2) =
1

Z
Pr(c)

(

Pr(g)

{
Pr(a|c, g)Pr(l1|a)Pr(l2|a)

+Pr(¬a|c, g)Pr(l1|¬a)Pr(l2|¬a)

}

+Pr(¬g)

{
Pr(a|c,¬g)Pr(l1|a)Pr(l2|a)

+Pr(¬a|c,¬g)Pr(l1|¬a)Pr(l2|¬a)

})

with a similar calculation for Pr(¬c|l1, l2).

Basically straightforward, BUT optimisations can be made.

Performing exact inference

Pr(l1|a)

Pr(l2|a)

Pr(l1|¬a)

Pr(l2|¬a)

Pr(a|c, g) Pr(¬a|c, g)

Pr(l1|a)

Pr(l2|a)

Pr(l1|¬a)

Pr(l2|¬a)

Pr(c)

Pr(g) Pr(¬g)

+

+

+

Pr(¬a|c,¬g)Pr(a|c,¬g)

Repeated Repeated



Optimisation 1: Enumeration-Ask

The enumeration-ask algorithm improves matters to O(2n) time and
O(n) space by performing the computation depth-first.

However matters can be improved further by avoiding the duplication
of computations that clearly appears in the example tree.

Optimisation 2: variable elimination

Looking again at the fundamental equation (3)

1

Z
Pr(C)
︸ ︷︷ ︸

C

∑

G

Pr(G)
︸ ︷︷ ︸

G

∑

A

Pr(A|C,G)
︸ ︷︷ ︸

A

Pr(l1|A)
︸ ︷︷ ︸

L1

Pr(l2|A)
︸ ︷︷ ︸

L2

where C,G,A, L1, L2 denote the relevant factors.

The basic idea is to evaluate (3) from right to left (or in terms of the
tree, bottom up) storing results as we progress and re-using them
when necessary.

Pr(l1|A) depends on the value of A. We store it as a table FL1(A).
Similarly for Pr(l2|A).

FL1(A) =

(
0.99
0.08

)

FL2(A) =

(
0.6

0.001

)

as Pr(l1|a) = 0.99, Pr(l1|¬a) = 0.08 and so on.

Optimisation 2: variable elimination

Similarly for Pr(A|C,G), which is dependent on A, C and G

FA(A, C,G) =

A C G FA(A, C,G)
⊤ ⊤ ⊤ 0.98
⊤ ⊤ ⊥ 0.96
⊤ ⊥ ⊤ 0.2
⊤ ⊥ ⊥ 0.08
⊥ ⊤ ⊤ 0.02
⊥ ⊤ ⊥ 0.04
⊥ ⊥ ⊤ 0.8
⊥ ⊥ ⊥ 0.92

Can we write
Pr(A|C, G)Pr(l1|A)Pr(l2|A) (4)

as
FA(A, C,G)FL1(A)FL2(A) (5)

in a reasonable way?

Optimisation 2: variable elimination

The answer is “yes” provided multiplication of factors is defined cor-
rectly. Looking at (3)

1

Z
Pr(C)

∑

G

Pr(G)
∑

A

Pr(A|C,G)Pr(l1|A)Pr(l2|A)

note that the values of the product (4) in the summation depend on
the values of C and G external to it, and the values of A themselves.
So (5) should be a table collecting values for (4) where correspon-
dences between RVs are maintained.

This leads to a definition for multiplication of factors best given by
example.



Optimisation 2: variable elimination

F(A, B)F(B,C) = F(A, B,C)

where

A B F(A, B) B C F(B,C) A B C F(A, B,C)
⊤ ⊤ 0.3 ⊤ ⊤ 0.1 ⊤ ⊤ ⊤ 0.3 × 0.1
⊤ ⊥ 0.9 ⊤ ⊥ 0.8 ⊤ ⊤ ⊥ 0.3 × 0.8
⊥ ⊤ 0.4 ⊥ ⊤ 0.8 ⊤ ⊥ ⊤ 0.9 × 0.8
⊥ ⊥ 0.1 ⊥ ⊥ 0.3 ⊤ ⊥ ⊥ 0.9 × 0.3

⊥ ⊤ ⊤ 0.4 × 0.1
⊥ ⊤ ⊥ 0.4 × 0.8
⊥ ⊥ ⊤ 0.1 × 0.8
⊥ ⊥ ⊥ 0.1 × 0.3

Optimisation 2: variable elimination

This process gives us

FA(A, C,G)FL1(A)FL2(A) =

A C G
⊤ ⊤ ⊤ 0.98 × 0.99 × 0.6
⊤ ⊤ ⊥ 0.96 × 0.99 × 0.6
⊤ ⊥ ⊤ 0.2 × 0.99 × 0.6
⊤ ⊥ ⊥ 0.08 × 0.99 × 0.6
⊥ ⊤ ⊤ 0.02 × 0.08 × 0.001
⊥ ⊤ ⊥ 0.04 × 0.08 × 0.001
⊥ ⊥ ⊤ 0.8 × 0.08 × 0.001
⊥ ⊥ ⊥ 0.92 × 0.08 × 0.001

Optimisation 2: variable elimination

How about

FA,L1,L2(C,G) =
∑

A

FA(A, C,G)FL1(A)FL2(A)

To denote the fact that A has been summed out we place a bar over
it in the notation.

∑

A

FA(A, C,G)FL1(A)FL2(A) =FA(a,C,G)FL1(a)FL2(a)

+ FA(¬a,C,G)FL1(¬a)FL2(¬a)

where

FA(a,C,G) =

C G
⊤ ⊤ 0.98
⊤ ⊥ 0.96
⊥ ⊤ 0.2
⊥ ⊥ 0.08

FL1(a) = 0.99 FL2(a) = 0.6

and similarly for FA(¬a,C,G), FL1(¬a) and FL2(¬a).

Optimisation 2: variable elimination

FA(a,C,G)FL1(a)FL2(a) =

C G
⊤ ⊤ 0.98 × 0.99 × 0.6
⊤ ⊥ 0.96 × 0.99 × 0.6
⊥ ⊤ 0.2 × 0.99 × 0.6
⊥ ⊥ 0.08 × 0.99 × 0.6

FA(¬a,C,G)FL1(¬a)FL2(¬a) =

C G
⊤ ⊤ 0.02 × 0.08 × 0.001
⊤ ⊥ 0.04 × 0.08 × 0.001
⊥ ⊤ 0.8 × 0.08 × 0.001
⊥ ⊥ 0.92 × 0.08 × 0.001

FA,L1,L2(C,G) =

C G
⊤ ⊤ (0.98 × 0.99 × 0.6) + (0.02 × 0.08 × 0.001)
⊤ ⊥ (0.96 × 0.99 × 0.6) + (0.04 × 0.08 × 0.001)
⊥ ⊤ (0.2 × 0.99 × 0.6) + (0.8 × 0.08 × 0.001)
⊥ ⊥ (0.08 × 0.99 × 0.6) + (0.92 × 0.08 × 0.001)



Optimisation 2: variable elimination

Now, say for example we have ¬c, g. Then doing the calculation
explicitly would give
∑

A

Pr(A|¬c, g)Pr(l1|A))Pr(l2|A)

= Pr(a|¬c, g)Pr(l1|a)Pr(l2|a) + Pr(¬a|¬c, g)Pr(l1|¬a)Pr(l2|¬a)

= (0.2 × 0.99 × 0.6) + (0.8 × 0.08 × 0.001)

which matches!

Continuing in this manner form

FG,A,L1,L2(C,G) = FG(G)FA,L1,L2(C,G)

sum out G to obtain FG,A,L1,L2(C) =
∑

G FG(G)FA,L1,L2(C,G), form

FC,G,A,L1,L2 = FC(C)FG,A,L1,L2(C)

and normalise.

Optimisation 2: variable elimination

What’s the computational complexity now?

• for Bayesian networks with suitable structure we can perform in-
ference in linear time and space;

• however in the worst case it is #P -hard, which is worse than NP -
hard.

Consequently, we may need to resort to approximate inference.

Exercises

Exercise 1: This question revisits the Wumpus World, but now our
hero (let’s call him Wizzo the Incompetent), having learned some
probability by attending Artificial Intelligence II , will use probabilis-
tic reasoning instead of situation calculus.

Wizzo, through careful consideration of the available knowledge on
Wumpus caves, has established that each square contains a pit with
prior probability 0.3, and pits are independent of one-another. Let
Piti,j be a Boolean random variable (RV) denoting the presence of
a pit at row i, column j. So for all i, j

Pr(Piti,j = ⊤) = 0.3 (6)
Pr(Piti,j = ⊥) = 0.7 (7)

In addition, after some careful exploration of the current cave, our
hero has discovered the following.

Exercises

1

2

3

4

1 2 3 4

B

OKOK OK

OK

B
?

Pit1,1 = ⊥

Pit1,2 = ⊥

Pit1,3 = ⊥

Pit2,3 = ⊥

B denotes squares where a breeze is perceived. Let Breezei,j be a
Boolean RV denoting the presence of a breeze at i, j

Breeze1,2 = Breeze2,3 = ⊤ (8)
Breeze1,1 = Breeze1,3 = ⊥ (9)

Wizzo is considering whether to explore the square at 2, 4. He will do
so if the probability that it contains a pit is less than 0.4. Should he?



Exercises

Hint : The RVs involved are Breeze1,2,Breeze2,3,Breeze1,1,Breeze1,3

and Piti,j for all the i, j. You need to calculate

Pr(Pit2,4|all the evidence you have so far)

Exercises

Exercise 2: Continuing with the running example of the roof-climber
alarm...

The porter in lodge 1 has left and been replaced by a somewhat
more relaxed sort of chap, who doesn’t really care about roof-climbers
and therefore acts according to the probabilities

Pr(l1|a) = 0.3 Pr(¬l1|a) = 0.7
Pr(l1|¬a) = 0.001 Pr(¬l1|¬a) = 0.999

Your intrepid roof-climbing buddy is on the roof. What is the probabil-
ity that lodge 1 will report him? Use the variable elimination algorithm
to obtain the relevant probability. Do you learn anything interesting
about the variable L2 in the process?

Exercises

Exercise 3: Exam question, 2006, paper 8, question 9.

87


