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1 Introduction

These notes provide a reminder of some simple manipulationsthat turn up a great deal when dealing
with probabilities. The material in this handout—assumingyou know it well—should suffice for
getting you through most of the AI material on uncertain reasoning. In particular, the boxed results
are the really important ones.

Random variables (RVs) are by convention given capital letters. Say we have the RVsX1, . . . ,Xn.
Their values are given using lower case. So for exampleX1 might be a binary RV taking val-
uestrue and false, andX2 might be the outcome of rolling a die and therefore taking values
one, two, . . . , six.

The use of probability in AI essentially reduces to representing in some usable way the joint
distributionP (X1, . . . ,Xn) of all the RVs our agent is interested in, because if we can do that then in
principle we can computeany probability that might be of interest. (This is explained infull below.)

To be clear, the joint distribution is talking about theconjunction of the RVs. We’ll stick to the
convention that a comma-separated list of RVs (or a set of RVs) represents a conjunction. Also, the
notation

∑

xi∈Xi

(. . . xi . . .)

denotes the sum over allvalues of a random variable. So for example ifX1 is binary then

∑

x1∈X1

P (x1,X2) = P (true,X2) + P (false,X2) (1)

This extends to summing oversets of RVs. Let’s define

X = {X1, . . . ,Xn}

and
X

′ = {X ′

1, . . . ,X
′

m}

and for any setsX andX
′ ⊆ X of RVs defineX\X′ to be the setX with the elements ofX′ removed

X\X′ = {X ∈ X|X 6∈ X
′}

We’ll always be assuming thatX′ ⊆ X. Finally

∑

x′∈X′

(

. . . , x′

1, . . . , x
′

m, . . .
)

means
∑

x′

1
∈X′

1

∑

x′

2
∈X′

2

· · ·
∑

x′

m∈X′

m

(

. . . , x′

1, . . . , x
′

m, . . .
)
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2 Standard trick number 1: marginalising

Marginalising is the process of getting rid of RVs that we don’t want to have to think about—although
in some cases it’s used the other way around to introduce variables. In general, say we want to ignore
Xi. Then

P (X\{Xi}) =
∑

xi∈Xi

P (X)

So for example, equation 1 is actually telling us that withX = {X1,X2}

P (X2) = P (X\{X1})

=
∑

x1∈X1

P (x1,X2)

= P (true,X2) + P (false,X2)

This can obviously be iterated for as many RVs as we like, so ifX’ is the set of random variables
we’re not interested in then

P (X\X′) =
∑

x′∈X′

P (X)

These notes assume for the most part that RVs are discrete. Everything still applies when continuous
RVs are involved, but sums are then replaced by integrals. For example, we can marginalise the
two-dimensional Gaussian density

p(x1, x2) =
1

2π
exp

(

−
1

2

(

x2

1 + x2

2

)

)

as follows

p(x1) =
1

2π

∫

∞

−∞

exp

(

−
1

2

(

x2

1 + x2

2

)

)

dx2

3 Standard trick number 2: you can treat a conjunction of RVs as an
RV

When we consider events such asX1 = true andX2 = four, theconjunction of the events is also an
event. This goes for any number of events, and any number of RVs as well. Why is that interesting?
Well, Bayes’ theorem usually looks like this

P (X|Y ) =
P (Y |X)P (X)

P (Y )

However as a conjunction of RVs can be treated as a RV we can also write things like

P (X1,X5|X2,X3,X10) =
P (X2,X3,X10|X1,X5)P (X1,X5)

P (X2,X3,X10)

and Bayes’ theorem still works.
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4 Standard trick number 3: conditional distributions are still distribu-
tions

This is perhaps the point I want to make that’s most often missed: a conditional probability distribu-
tion is still a probability distribution. Consequently the first two tricks extend to them without any
extra work—you simply apply them while leaving the conditioning RVs (the ones on the right hand
side of the| in P (. . . | . . .)) alone. So, for instance, we can write

P (X1|X3) =
∑

x2∈X2

P (X1,X2|X3)

or in general for sets of RVs

P (X|Z) =
∑

y∈Y

P (X,Y|Z)

Quite often this trick is used tointroduce extra RVs inY rather than eliminate them. The reason for
this is that you can then try to re-arrange the contents of thesum to get something useful. In particular
you can often use the following further tricks.

Just as marginalisation still works for conditional distributions, so do Bayes’ theorem and related
ideas. For example, the definition of a conditional distribution looks like this

P (X|Y ) =
P (X,Y )

P (Y )
(2)

so
P (X,Y ) = P (X|Y )P (Y )

As the left hand side of this equation is a joint probability distribution, and conjunctions of RVs act
like RVs, we can extend this to arbitrary numbers of RVs to get, for example

P (X1,X2,X3) = P (X1|X2,X3)P (X2,X3)

= P (X1|X2,X3)P (X2|X3)P (X3)

What’s more useful however is to note that Bayes’ theorem is obtained from equation 2 and its twin

P (Y |X) =
P (X,Y )

P (X)

by a simple re-arrangement. How might this work if we have conjunctions of random variables?
Consider

P (X|Y,Z) =
P (X,Y,Z)

P (Y,Z)

and its twin

P (Y |X,Z) =
P (X,Y,Z)

P (X,Z)

both of which follow from the definition of conditional probability. Re-arranging to eliminate the
P (X,Y,Z) gives

P (X|Y,Z) =
P (Y |X,Z)P (X,Z)

P (Y,Z)

3



We now have two smaller joint distributionsP (Y,Z) andP (X,Z) which we can split to give

P (X|Y,Z) =
P (Y |X,Z)P (X|Z)P (Z)

P (Y |Z)P (Z)

=
P (Y |X,Z)P (X|Z)

P (Y |Z)

or in general, with sets of RVs

P (X|Y,Z) =
P (Y|X,Z)P (X|Z)

P (Y|Z)
(3)

5 How to (in principle) compute absolutely anything

Say you want to compute a conditional probabilityP (X|Z). By definition

P (X|Z) =
P (X,Z)

P (Z)

and if the complete collection of all the RVs our agent is interested in is{X,Y,Z} then both the
numerator and the denominator can be computed by marginalising the joint distributionP (X,Y,Z).
In fact as the denominator serves essentially just to make the left hand side sum to1 (when we sum
overX) so that it’s a proper probability distribution, we often treat it just as a constant and write

P (X|Z) =
1

Z

∑

y∈Y

P (X,Y,Z)

The quantityZ is called thepartition function if you’re a physicist orevidence if you’re a computer
scientist, for reasons that will become clear during the lectures.
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